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Abstract

We propose a method for designing convolu-
tional neural network (CNN) architectures based on
Cartesian genetic programming (CGP). In the pro-
posed method, the architectures of CNNs are rep-
resented by directed acyclic graphs, in which each
node represents highly-functional modules such as
convolutional blocks and tensor operations, and
each edge represents the connectivity of layers. The
architecture is optimized to maximize the classifi-
cation accuracy for a validation dataset by an evo-
lutionary algorithm. We show that the proposed
method can find competitive CNN architectures
compared with state-of-the-art methods on the im-
age classification task using CIFAR-10 and CIFAR-
100 datasets.

1 Introduction

Deep neural networks (DNNs) have shown excellent perfor-
mance on many challenging machine learning tasks, such
as image recognition, speech recognition, and reinforcement
learning tasks. Convolutional neural networks (CNNs) [Le-
Cun et al, 1998], the DNN model often used for com-
puter vision tasks, have seen huge success, particularly in
image recognition tasks in the past few years. A standard
CNN architecture consists of several convolutions, pooling,
and fully connected layers. Recent studies have proposed
a new CNN architecture that achieves higher performance,
e.g., GoogLeNet [Szegedy er al., 2015] and ResNet [He et al.,
2016]. These widely-used networks are designed by humans,
but designing such architectures requires expert knowledge
and trial-and-error. Hence, the automatic design of CNN ar-
chitectures has much attention.

Recent studies for the automatic design of CNN require
many weight-parameter optimizations; the weights of can-
didate CNN architectures are trained by a stochastic gradi-
ent descent (SGD), and the architectures are evaluated with

This paper is an abridged version of the paper [Suganuma et
al., 2017a] that won a best-paper award at the evolutionary machine
learning (EML) track of GECCO 2017 conference.
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trained weights on a validation dataset'. Evolutionary com-
putation (EC) or reinforcement learning (RL) is employed as
an architecture search method. The EC based architecture
search methods [Miikkulainen et al., 2017; Real et al., 2017;
Xie and Yuille, 2017] generate a new architecture by re-
combination and mutation operators, and evaluate it on a
validation dataset after the weight training. The EC al-
gorithms are expected to find the architecture that maxi-
mizes the performance (e.g., classification accuracy). The
RL based architecture search methods [Baker et al., 2017;
Zoph and Le, 2017] optimize the policy that generates the
CNN architectures by such as the policy gradient and Q-
learning. Also, the reward used in the RL algorithms is the
performance on a validation dataset. Reducing the computa-
tional cost for the architecture search is crucial topic because
these methods require much computational cost to optimize
neural network architectures.

In this work, we attempt to design CNN architectures
based on genetic programming. We use the Cartesian ge-
netic programming (CGP) [Miller and Thomson, 2000] en-
coding scheme to represent the CNN architecture, where the
architecture is represented by a directed acyclic graph. The
advantage of this representation is its flexibility; it can rep-
resent variable-length network architectures and skip connec-
tions. In addition, we adopt relatively highly-functional mod-
ules such as convolutional blocks and tensor concatenation
as the node functions in the graph to reduce the search space
of architectures. To evaluate the architecture represented by
CGP, we train the network by SGD on a training dataset. The
performance on a validation dataset is then assigned as the
fitness of the architecture. Based on this fitness evaluation,
the architecture is optimized to maximize the fitness (i.e., the
validation accuracy) by evolutionary algorithms. To verify
the performance of the proposed approach, we experimented
involving constructing a CNN architecture for the image clas-
sification task with the CIFAR-10 and CIFAR-100 datasets.
The experimental result shows that the proposed method can
be used to find competitive CNN architectures compared with

'In contrast, the traditional evolutionary neural networks, so-
called neuroevolution [Stanley and Miikkulainen, 2002], typically
optimizes both of the weights and architecture at the same time by
an evolutionary computation method.
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state-of-the-art models automatically.

2 CNN Architecture Design Using Cartesian
Genetic Programming

2.1 Representation of CNN Architectures

We represent the architecture of CNNs by a directed acyclic
graph defined on a two-dimensional grid of M rows and N
columns. This graph is optimized by an evolutionary algo-
rithm, where the graph called phenotype is encoded by a list
of integers called genotype. Figure 1 shows an example of a
genotype (top), a phenotype (middle) and the corresponding
CNN architecture (bottom).

A genotype consists of M N + 1 genes, and each gene
has information regarding the type 7" and connections C' of
a node. The node corresponds to a highly-functional mod-
ule in CNN, e.g., the type T specifies one of the convo-
lution or residual blocks, pooling layers, and tensor opera-
tions described later in detail. The connections C, specify-
ing the node number in the anterior columns than the target
node, represent which nodes are the input to the target node.
This connection restriction ensures the feed-forward network
structure. The last (M N + 1)-st gene, having only connec-
tion information C, represents the output layer, and its type is
fixed based on the task.

In the CGP encoding scheme, there may be the nodes that
do not connect to the output node; we call these nodes non-
active nodes. In contrast, we define the nodes that connect to
the output node as active nodes. Note that nodes depicted in
the neighboring two columns are not necessarily connected.
Thus, the resulting CNN architecture can have a different
number of modules (layers) depending on the node connec-
tions, i.e., the number of layers is decided by evolutionary
algorithms. Note that the maximum depth of a network is V.
To control how the number of layers will be chosen, we intro-
duce a hyper-parameter called level-back L, such that nodes
given in the n-th column are allowed to be connected from
nodes given in the columns ranging from max(0,n — L) to
n — 1, where the zeroth column indicates the inputs. If we use
smaller L, then the resulting CNNs will tend to be deeper.

2.2 Node Functions

Referring to the modern CNN architectures, we select the
highly-functional modules as node functions. We prepare the
six types of node functions called ConvBlock, ResBlock, max
pooling, average pooling, concatenation, and summation.

The ConvBlock consists of standard convolution process-
ing with a stride of 1 followed by batch normalization [loffe
and Szegedy, 2015] and rectified linear units (ReLU) [Nair
and Hinton, 2010]. The ResBlock is composed of a con-
volution processing, batch normalization, ReLU, and tensor
summation. The ResBlock performs an identity mapping by
shortcut connections as described in [He et al., 2016]. For the
number F' and receptive field size k of filters of ConvBlock
and ResBlock, we chose them from F' € {32,64, 128} and
k € {3 x 3,5 x 5}, respectively.

The max and average poolings perform a max and average
operation, respectively, over the local neighbors of the feature
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Figure 1: Example of a genotype, a phenotype, and the correspond-
ing CNN architecture. The genotype (top) has information regard-
ing the CNN architecture (bottom). In this example, the phenotype
(middle) is defined on two rows and three columns.

maps. We use the pooling with the 2 x 2 receptive field size
and the stride of 2.

The concatenation function concatenates two feature maps
in the channel dimension. If the input feature maps to be
concatenated have different numbers of rows or columns, we
down-sample the larger feature maps by max pooling so that
they become the same sizes of the inputs. The summation per-
forms the element-wise addition of two feature maps, channel
by channel. In the same way as the concatenation, if the in-
put feature maps to be added have different numbers of rows
or columns, we down-sample the larger feature maps by max
pooling. In addition, if the inputs have different numbers of
channels, we pad the smaller feature maps with zeros for in-
creasing channels. In Figure 1, the summation node performs
max pooling to the first input so as to get the same input ten-
sor sizes.

The output node represents the softmax function with the
number of classes. The outputs fully connect to all elements
of the input.
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2.3 Evolutionary Algorithm

We use a point mutation as the genetic operator in the same
way as the standard CGP. The type and connections of each
node randomly change to valid values according to a muta-
tion rate. The standard CGP mutation has the possibility of
affecting only non-active nodes. In that case, the phenotype
does not change by the mutation and does not require a fitness
evaluation again. The fitness evaluation of the CNN archi-
tectures is so expensive because it requires the training of the
CNN. To use the computational resource efficiently, we apply
the mutation operator until at least one active node changes
for reproducing the candidate solution. We call this muta-
tion a forced mutation. Moreover, to maintain a neutral drift,
which is effective for CGP evolution [Miller and Smith, 2006;
Miller and Thomson, 2000], we change only the non-active
nodes of a parent by the mutation if the fitnesses of the off-
springs do not improve. We call this mutation a neutral mu-
tation.

We use the modified (1 + A) evolutionary strategy (with
A = 2 in our experiments). The procedure of our modified
algorithm is as follows:

1. Generate an initial individual at random as parent P, and
train the CNN represented by P followed by assigning
the validation accuracy as the fitness.

2. Generate a set of \ offsprings O by applying the forced
mutation to P.

3. Train the A CNNs represented by offsprings O in paral-
lel, and assign the validation accuracies as the fitness.

4. Apply the neutral mutation to parent P.

5. Select an elite individual from the set of P and O, and
then replace P with the elite individual.

6. Return to step 2 until a stopping criterion is satisfied.

3 Experiments and Results

3.1 Dataset

We test our method on the image classification task using the
CIFAR-10 and CIFAR-100 datasets in which the number of
classes is 10 and 100, respectively. The numbers of training
and test images are 50, 000 and 10, 000, respectively, and the
size of images is 32 x 32. We randomly sample 45, 000 im-
ages from the training set to train the CNN, and we use the
remaining 5, 000 images for the validation set of the CGP fit-
ness evaluation.

We preprocess the data with the per-pixel mean subtrac-
tion. To prevent overfitting, we use a weight decay with the
coefficient 1.0x 10~* and data augmentation. We use the data
augmentation method based on [He er al., 2016]: padding 4
pixels on each side followed by choosing a random 32 x 32
crop from the padded image, and random horizontal flips on
the cropped 32 x 32 image.

3.2 Experimental Setting

To assign the fitness to the candidate CNN architectures, we
train the CNN by SGD with a mini-batch size of 128. The
softmax cross-entropy loss is used as the loss function. We
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initialize the weights by the He’s method [He et al., 2015] and
use the Adam optimizer [Kingma and Ba, 2015] with 8; =
0.9, B2 =0.999, e = 1.0 x 1078, and an initial learning rate
of 0.01. We train each CNN for 50 epochs and reduce the
learning rate by a factor of 10 at 30th epoch.

For the parameter setting for CGP, we chose the mutation
rate as r = 0.05, the graph with M/ = 5 and N = 30, and
level-back L = 10. The offspring size of A is set to two;
that is the same number of GPUs in our experimental ma-
chines. We test two node function sets called ConvSet and
ResSet for our method. The ConvSet contains ConvBlock,
max pooling, average pooling, concatenation, and summa-
tion, and the ResSet contains ResBlock, max pooling, aver-
age pooling, concatenation, and summation. The difference
between these two function sets is whether we adopt Con-
vBlock or ResBlock. The numbers of generations are 500 for
ConvSet, 300 for ResSet.

After the CGP process, we re-train the best CNN archi-
tecture using 50,000 training images, and we calculate the
classification accuracy for the 10, 000 test images to evaluate
the designed CNN architectures.

In this re-training phase, we optimize the weights of the
obtained architecture for 500 epochs with a different training
procedure; we use SGD with a momentum of 0.9, a mini-
batch size of 128, and a weight decay of 5.0 x 10~4. We
start a learning rate of 0.01 and set it to 0.1 at 5th epoch, then
we reduce it to 0.01 and 0.001 at 250th and 375th epochs,
respectively. This learning rate schedule is based on the ref-
erence [He et al., 2016]. We run the proposed method on the
machine with 3.2GHz CPU, 32GB RAM, and two NVIDIA
GeForce GTX 1080 (or two GTX 1080 Ti) GPUs.

3.3 Results

We run our method for three times on each dataset and re-
port the classification performance. We compare the classi-
fication performance of our method with the state-of-the-art
methods and summarize the classification error rates in Ta-
ble 1. We refer to the architectures designed by our method
as CGP-CNN. For instance, CGP-CNN (ConvSet) means the
proposed method with the node function set of ConvSet.
The models, Network in Network, VGG, ResNet, Fractal-
Net, and Wide ResNet are hand-crafted CNN architectures,
whereas the CoDeepNEAT, MetaQNN, Genetic CNN, Large-
scale Evolution, and Neural Architecture Search are the mod-
els constructed by the architecture search method.

As can be seen in Table 1, the error rates of our methods
are competitive with the state-of-the-art methods. In partic-
ular, CGP-CNN (ResSet) shows good performance, and the
architectures constructed by using our method have a good
balance between classification errors, the numbers of param-
eters and GPUs. The Neural Architecture Search achieved the
best error rate on the CIFAR-10 dataset, but this method used
800 GPUs for the architecture search. Our method can find a
competitive architecture with a reasonable machine resource.

Examples of CNN architectures designed by our method
are shown in [Suganuma er al., 2017a; 2017b]. We can ob-
serve that these architectures are quite different; the concate-
nation and summation nodes are not frequently used in CGP-
CNN (ResSet), whereas these nodes are frequently used in



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Model # params | # GPUs | CIFAR-10 | CIFAR-100
Network in Network [Lin et al., 2014] — — 8.81 35.68
VGG [Simonyan and Zisserman, 2015] 15.2M - 7.94 33.45
ResNet [He et al., 2016] 1.7M - 6.61 32.40
FractalNet [Larsson et al., 2017] 38.6M - 5.22 23.30
Wide ResNet [Zagoruyko and Komodakis, 2016] 36.0M - 4.00 19.25
CoDeepNEAT [Miikkulainen ef al., 2017] - - 7.3 -
MetaQNN [Baker et al., 2017] 3."T™M 10 6.92 27.14
Genetic CNN [Xie and Yuille, 2017] - 10 7.10 29.03
Genetic CNN from Wide Resnet [Xie and Yuille, 2017] - 10 5.39 25.12
Large-Scale Evolution [Real et al., 2017] 5.4M 250 5.40 -
Large-Scale Evolution [Real ef al., 2017] 40.4M 250 - 23.0
Neural Architecture Search [Zoph and Le, 2017] 37.4M 800 3.65 -
CGP-CNN (ConvSet) 1.56M 2 5.92 (6.70) -
CGP-CNN (ConvSet) 2.0M 2 - 26.7 (27.9)
CGP-CNN (ResSet) 1.7"M 2 5.01 (6.00) -
CGP-CNN (ResSet) 4.6M 2 - 26.5 (27.6)

Table 1: Comparison of the error rates (%) and the number of learnable weight parameters on the CIFAR-10 and 100 datasets. We run
the proposed method for three times for each dataset and report the classification errors in the format of “best (mean).” We refer to the
architectures constructed by the proposed method as CGP-CNN. In CGP-CNN, the numbers of learnable weight parameters of the best
architecture are reported. The values of other models except for VGG and ResNet for CIFAR-100 are referred from the literature.

CGP-CNN (ConvSet). These nodes lead a wide network;
therefore, the network of CGP-CNN (ConvSet) is a wider
structure than that of CGP-CNN (ResSet).

4 Related Work

Some architecture search methods based on either EC [Mi-
ikkulainen et al., 2017; Real et al., 2017; Xie and Yuille,
2017] or RL [Baker et al., 2017; Zoph and Le, 2017] for
DNNSs have been proposed at nearly the same time with our
work. Since these approaches require much computational
cost in general, the recent works concentrate on the reduc-
tion of computational cost and improvement of architecture
search efficiency [Cai er al., 2018; Liu et al., 2017; 2018;
Pham et al., 2018; Real et al., 2018; Zhong et al., 2017,
Zoph et al., 2017]. For instance, Cai et al. [Cai et al., 2018]
specify an initial architecture by an existing one, and the ac-
tions, deepening the architecture by adding a layer or widen-
ing an existing layer by replacing an existing layer with a
wider layer, are applied to the initial architecture to gener-
ate a new architecture. Pham et al. [Pham et al., 2018] have
introduced the parameter sharing across models during the
architecture search and achieved a test error of 2.89% on the
CIFAR-10 dataset with one GPU.

Most methods of the CNN architecture search are applied
to image classification tasks such as using CIFAR-10. They,
however, can be naturally applied to other computer vision
tasks and DNNs. The architecture search method explained
in this paper has applied to automatically construct the auto-
encoder typed CNNs for the image denoising and inpainting
tasks [Suganuma er al., 2018]. The result shows that the de-
signed architectures outperform the existing state-of-the-art
hand-crafted architectures on both denoising and inpainting
tasks.
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5 Conclusion

In this work, we have attempted to take a GP-based approach
for designing the CNN architectures and have verified its
potential. The proposed method designs the CNN architec-
tures based on CGP and adopts the highly-functional mod-
ules, such as convolutional blocks and tensor operations, for
searching for the adequate architectures efficiently. We have
constructed the CNN architecture for the image classification
task with the CIFAR-10 and CIFAR-100 datasets. The exper-
imental result showed that the proposed method can automat-
ically find competitive CNN architectures compared with the
state-of-the-art models.

One direction of future work is to develop the evolutionary
algorithm to reduce the computational cost of the architec-
ture design, e.g., increasing the training data for the neural
network as the generation progresses. Another future work
is to apply the proposed method to other image datasets and
tasks.
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