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Abstract
Privacy audit logs are used to capture the actions of
participants in a data sharing environment in order
for auditors to check compliance with privacy poli-
cies. However, collusion may occur between the
auditors and participants to obfuscate actions that
should be recorded in the audit logs. In this paper,
we propose a Linked Data based method of utiliz-
ing blockchain technology to create tamper-proof
audit logs that provide proof of log manipulation
and non-repudiation.

1 Introduction
Health data analytics and Artificial Intelligence (AI) enabled
diagnostics (e.g., IBM Watson cognitive computing) are in-
creasingly becoming part of healthcare processes. Carefully
designed and continuously updated AI systems rely on the
collaboration between diverse researchers (e.g., medical sci-
entists, computer scientists, statisticians) and the processing
of immense private data to provide prediction and diagnosis
of conditions (e.g., health research). Protecting the privacy of
individuals who contribute their data to such a collaborative
research environment is a challenging task, particularly when
individual’s personal information is passed between different
organizations, researchers, and AI systems that might operate
under different jurisdictions.

Data sharing agreements (DSA) are legally binding doc-
uments established between organizations that detail the
policies and conditions related to the sharing of personal
data [Swarup et al., 2006]. Auditing the use and transforma-
tion of the data is essential to enforcing accountability, espe-
cially when AI systems are part of the collaborative process.
The scenario in Fig. 1 demonstrates a collaborative research
environment where the research teams must comply with the
DSAs and are monitored for their compliance through the use
of privacy audit logs. Auditors are responsible for checking
compliance with the DSA by examining the privacy logs gen-
erated by the research teams [Samavi and Consens, 2018].

In the scenario in Fig. 1, there is a problem in the trust
placed in an auditor and the audit log itself. If the audi-
tor works for the organization that they are auditing then the
quality of the audit depends on influencing factors between
the organization and the auditor [Anderson, 2016]. Collusion

Figure 1: Example auditing scenario in a data sharing environment

can occur between individuals in the organization, such as
researchers in the research teams, and the auditor to obfus-
cate or modify the integrity of the generated logs. Inadvertent
breaches of privacy policies by AI systems must also be cap-
tured in the generated logs and should not be tampered with.
The resulting degraded trust placed in the auditing process
is a problem that needs to be solved in order to prove that
organizations are responsible for privacy breaches resulting
from non-compliant actions or to prove that they are com-
pliant with the policies. In order to combat the potential
modification of the logs due to collusion between auditors
and researchers or inadvertent breaches of data usage by AI
systems, a mechanism to provide tamper-proof audit logs is
needed [Spoke, 2015].

In this paper, we propose a Linked Data-based [Heath and
Bizer, 2011] model for creating tamper-proof privacy audit
logs and provide a mechanism for log integrity and authentic-
ity verification that auditors can execute in conjunction with
performing compliance checking queries. Section 2 presents
how privacy audit logs are generated and the design require-
ments of our model. Our solution to generate tamper-proof
privacy audit logs is described in Sect. 3. In Sect. 4, the
results of an experiment to validate the scalability of our
method is given. Section 5 provides an investigation of the
related work. Concluding remarks are discussed in Sect. 6.

2 Properties of Tamper-Proof Privacy Logs
Privacy auditing addresses three characteristics of infor-
mation accountability: validation, attribution, and evi-
dence [Weitzner et al., 2008]. Validation verifies a posteriori
if a participant has performed the tasks as expected, whereas
attribution and evidence deal with finding the responsible par-
ticipants for non-compliant actions and producing support-
ing evidence, respectively [Weitzner et al., 2008]. To address
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(a) Privacy audit log genera-
tion process

(b) Tamper-proof log gener-
ation process

Figure 2: Privacy audit log generation comparison

these characteristics, privacy audit logs need to capture events
with deontic modalities, such as capturing privacy policies,
purpose of data usage, obligations of parties, and data access
activities. A privacy audit log generation process is depicted
in Fig. 2a. The process is composed of a logger producing
log events of promised and performed privacy acts and storing
them in an audit log accessible to auditors. The logger gen-
erates multiple privacy log events (e1 to en) over time (e.g.,
expressing privacy policies, requesting access and access ac-
tivities). An auditor can then perform compliance queries
against the audit log to determine if the performed acts are
in compliance with the policies in the governing DSA (e.g.,
the scenario in Fig. 1) [Samavi and Consens, 2014].

In this research, we utilize the L2TAP privacy audit log
because it provides an infrastructure to capture all relevant
privacy events and provides SPARQL solutions for major pri-
vacy processes such as obligation derivation and compliance
checking [Samavi and Consens, 2018]. The L2TAP model
follows the principles of Linked Data to publish the logs. By
leveraging a Linked Data infrastructure and expressing the
contents of the logs using dereferenceable URIs, the L2TAP
audit log supports extensibility and flexibility in a web-scale
environment [Samavi and Consens, 2018].

An event in a privacy audit log needs to be non-repudiable
so that the performed act cannot be denied and the authentic-
ity of the event can be provably demonstrated. For example,
in the scenario in Fig. 1, if an auditor determines that the re-
searchers have performed non-compliant actions, there is no
provable method of holding the researchers accountable for
their performed acts. Furthermore, after being logged, log
events should not be altered by any participant, including the
logger and auditor. If the researchers and auditors act in col-
lusion to hide non-compliant acts in the log to avoid conse-
quential actions, the resulting log does not represent the true
events. Without a mechanism to provably demonstrate that
the integrity of the log is intact, there will be a significant
lack of confidence in the auditing process [Spoke, 2015]. The
privacy audit log should enable the logger to digitally sign
an event to support non-repudiation and offer a mechanism
to preserve the integrity of log events (e.g., hashing or en-
cryption). Verifying the signature of an event will prove the
authenticity of the event logger and the ability to verify the
integrity of the log events will result in a genuine audit of the

participant’s actions, since the performed actions (events) in
the log are proven to be authentic.

Figure 2b depicts the additional steps required in the pri-
vacy audit log generation process to support event non-
repudiation and integrity. The log is generated by the logger,
but an additional entity, the integrity preserver, is required.
After a log event is generated, the event must be signed by
the logger to support provable accountability. Integrity proof
digests (i.e. cryptographic hashes) of the log events should
be generated and stored by the integrity preserver as the im-
mutable record of the integrity proof. These records can then
be retrieved to enhance the process of compliance checking
with log integrity verification.

3 Blockchain Enabled Privacy Audit Logs
In situations where a central authority has control over infor-
mation resources, the trust placed in that authority to maintain
correct and accurate information is reduced because there is
no provable mechanism for external entities to verify the state
of the resources. Blockchain technology solves the trust prob-
lem by maintaining records and transactions of information
resources through a distributed network, rather than a cen-
tral authority [Kehoe et al., 2015]. The use of blockchain
technology to create an immutable record of transactions is
analogous to the auditing problem we are trying to solve; the
need for the immutable storage of information that is not gov-
erned by a central authority. In this section, we present how
our blockchain enabled privacy audit log model works. We
start with a brief background on the blockchain technology
leveraged by our model, the Bitcoin blockchain, in Sect. 3.1.
We describe the architecture of our model in Sect. 3.2 and the
log integrity verification process in Sect. 3.3.

3.1 Bitcoin Blockchain
The Bitcoin system [Nakamoto, 2008] is a cryptocurrency
scheme based on a decentralized and distributed consen-
sus network. Transactions propagate through the Bitcoin
peer-to-peer network in order to be verified and stored in a
blockchain. A blockchain is a decentralized database com-
prised of a continuously increasing amount of records, or
blocks, that represents an immutable digital ledger of trans-
actions [Pilkington, 2016]. Each block in the blockchain is
composed of a header containing a hash of the previous block
in the chain (forming a chain of blocks) and transaction pay-
load. Transactions are written to the blockchain through data
structures that contain an input(s) and output(s). The Bit-
coin blockchain allows up to 80 bytes of additional storage
to a transaction output using the OP RETURN opcode avail-
able through Bitcoin’s transaction scripting language [Cucu-
rull and Puiggalı́, 2016]. A blockchain explorer application
programming interface (API) and explorer web application
are required to query transaction and block information on
the Bitcoin network. We utilize this queryable special trans-
action to store an integrity proof of privacy audit logs on the
Bitcoin blockchain.

3.2 Architectural Components
A blockchain is well suited to fill the role of the integrity pre-
server in the tamper-proof log generation process in Fig. 2b.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5375



Figure 3: The architecture of the model

We use the capabilities provided by the Bitcoin blockchain
to store an immutable record of the log integrity proofs. The
logger generates privacy log events and signs these events.
After producing integrity proofs of the signed events, each of
the proofs will be written to the Bitcoin blockchain through a
series of transactions. The components for signing log events
and creating Bitcoin transactions are signature graph gener-
ation and block graph generation illustrated in Fig. 3 and
described below.

The signature graph generation component is responsible
for capturing the missing non-repudiation property of the
L2TAP audit log framework. An L2TAP audit log is com-
posed of various privacy events such as data access requests
and responses. The log events consist of a header that cap-
tures the provenance of an event and a body containing infor-
mation about the event, such as what data is being accessed
by whom. URIs are used to identify a set of statements in the
header and body to form RDF named graphs stored in a quad
store [Carroll et al., 2005]. We generate a new named graph,
called the signature graph, that contains assertions about the
event’s signature, including the signature value and how to
verify the signature. The event that will be signed is pulled
from the quad store and signed by the logger (flow 1). The
signature graph generation follows the process in [Kasten et
al., 2014; Kleedorfer et al., 2016], which includes the graph
digest algorithm in [Sayers and Karp, 2004] to compute the
digest of the event graph. The logger signs the event digest
with their private key. There needs to be a public key infras-
tructure (PKI) with certificate authorities (CA) in place where
the logger has a generated key pair used for digital signatures
(flow 2). The computed signature and signature graph will be
passed to the block graph generation component to be part of
the integrity proof digest computation (flow 3).

The block graph generation component conducts transac-
tions on the Bitcoin network to write the integrity proof di-
gest to the blockchain. Formally, an integrity proof is a cryp-
tographic hash of an event graph and corresponding signature
graph, where integrityProof = Πn

i=0h(si)mod(p), n is the
number of statements in the graphs, h is a cryptographic hash
function (e.g., SHA-256), si is a graph statement, and p is a
large prime number. The logger uses a Bitcoin client to create
a transaction containing the integrity proof digest (flow 4) to
be written to the blockchain. After the transaction is written
to the blockchain, the transaction data is queried through a
RESTful request [Rodriguez, 2008] to a blockchain explorer
API (flow 5). The queried data is parsed to an RDF named
graph, called the block graph. The block graph contains the
integrity proof digest and information identifying the block
containing the transaction on the blockchain. After the block
graph has been generated, it is stored in a quad store in order

for an auditor to perform log event integrity and signature ver-
ification queries (flows 6 and 7, respectively). Generating a
block graph reduces the burden on the auditor when perform-
ing log integrity verification since all of the event integrity
proofs are stored in a quad store. Without the block graphs,
the auditor would have to search the entire Bitcoin blockchain
for the integrity proof digests. Since the Bitcoin blockchain
is a public ledger, there are many transactions unrelated to the
auditor’s search, which would make this method of searching
inefficient. An alternative approach is to use a full Bitcoin
client to download the entire blockchain, however in this case
the required network bandwidth and local computing power
are major limitations.

3.3 Log Integrity Verification
The goal of an auditor in a privacy auditing scenario is to
check the compliance of participants’ actions with respect
to the privacy policies. The authors in [Samavi and Con-
sens, 2014] described a SPARQL-based solution for com-
pliance checking (i.e., determining if data holders have fol-
lowed the access policies for given data access activities). We
extended the SPARQL-based solution to enhance the com-
pliance checking queries described in [Samavi and Consens,
2014] to include the integrity and authenticity verification of
log events.

For a given L2TAP log, the process of verifying the log
integrity and authenticity and compliance checking can be
performed in a sequence; i.e., for all events in the log, first
ensure the integrity and authenticity of all events and then
execute the compliance queries for the interested access re-
quest. However, in practice this approach is not desirable as
for a fast growing log, verifying the entire log for each au-
dit query is very expensive (see our experiment in Sect. 4).
Alternatively, we can devise an algorithm that verifies the in-
tegrity and authenticity of a small subset of the event graphs
for a given access request. The L2TAP ontology provides
compliance checking of a subset of events through SPARQL
queries [Samavi and Consens, 2018], which our integrity ver-
ification procedure can leverage to reduce the runtime.

Prior to an auditor checking compliance, they must verify
the integrity of a log event and the event signature. The inter-
ested event and signature graphs are queried from the quad
store. Since a cryptographically secure hash function was
used to compute the digest, any modification of the graphs
will result in a different digest. If the search of the block
graphs is successful and the computed digest is found, then
the log event must have remained unmodified [Anderson,
2016]. Therefore, the auditor must recompute the integrity
proof digest of the log event (using the same method as the
logger) as described in Sect. 3.2. A SPARQL query is then
executed against the block graphs to find a matching digest. If
the query returns a block graph containing the integrity proof
digest, we proceed to verify the signature in the signature
graph. If no matching value is found in the block graphs,
we conclude that the integrity of the log event has been com-
promised. In the case of no matching integrity proof digest
or signature verification failure, the auditor will know which
event has been modified and who the logger of the event is.
However, the auditor will not know what the modification is,
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only that a modification has occurred. Therefore, proof of
malicious interference would need further investigation.

Despite the verification process supporting the confiden-
tiality, authenticity and integrity of a privacy log, the ap-
proach is susceptible to an internal attack to subvert the verifi-
cation process. However, to be successful, an attacker would
have to generate and sign a fake log event, store the event in
the quad store, calculate an integrity proof, store the proof on
the blockchain, and finally generate a block graph pointing to
the fake integrity proof block.

4 Experimental Evaluation
This section presents a scalability evaluation of our
blockchain enabled privacy audit log model from an auditor’s
perspective. In the experiment, we ran our log integrity veri-
fication procedure on increasingly sized L2TAP audit logs.

To simulate the process of an auditor checking the integrity
of an audit log, we generated synthetic L2TAP logs1, which
consist of events such as, log initialization, privacy prefer-
ences and policies, access request, access response, and ac-
tual access; specific event content can be found in [Samavi
and Consens, 2018]. The signature and block graph for each
event needs to be generated for the auditor to perform the
integrity verification procedure. The initial state of the ex-
periment is an audit log containing n events (composed of
2n header and body graphs) with n generated signature and
block graphs. All of these graphs (4n) are stored in a quad
store prior to measuring the scalability of the integrity verifi-
cation solution. Figure 4 depicts the log sizes in the experi-
ment, which included 10,000 events with 100,000 triples.

The experiment was run by executing SPARQL queries on
a Virtuoso2 server and quad store deployed on a Red Hat
Enterprise Linux Server release 7.3 (Maipo) with two CPUs
(both 2 GHz Intel Xeon) and 8 GB of memory. The RDF
graph processing and hash computations for integrity proof
and signature computations were run on a MacBook Pro with
a 2.9 GHz Intel Core i7 processor and 8 GB of memory. The
execution time measures the time difference between sending
the queries to the quad store on the server over HTTP and
verifying the integrity proof digest and the signature. The
recorded time does not take into account the time to generate
the signature and block graphs (these were pre-computed be-
fore the experiment) or the time needed to write the data to
the Bitcoin blockchain. To account for variability in the test-
ing environment, each reported elapsed time is the average of
five independent executions.

The elapsed execution time is plotted in Fig. 4. The graph
illustrates the execution time of verifying the signature, com-
puting and verifying the integrity of the events, and the over-
all process. The experiment validates the linear time growth
for the entire integrity checking procedure. In practice, an
auditor would operate on a subset of events in the log based
on the results from compliance queries for a given access re-
quest. We have opted to demonstrate a worst-case sce-
nario by verifying the integrity and authenticity of an entire
log rather than a subset of the events. This also demonstrates

1Logs available at: https://doi.org/10.6084/m9.figshare.5234770
2https://virtuoso.openlinksw.com
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Figure 4: Execution times for integrity and signature verification

the execution time of large subsets of events that are the size
of the entire log.

5 Related Work
There are a number of proposals that provide a mechanism
for verifying the integrity of an audit log [Accorsi, 2009;
Stathopoulos et al., 2008]. Butin et al. [Butin et al., 2013]
address the issues of log design for accountability, such as
how meaningful a posteriori compliance analysis can be per-
formed on the logs. Tong et al. [Tong et al., 2014] provide
role-based access control auditability in audit logs to prevent
the misuse of data. However, these solutions only address the
integrity of audit logs and miss the non-repudiation aspect.

Kleedorfer et al. [Kleedorfer et al., 2016] propose a Linked
Data based messaging system that verifies conversations us-
ing digital signatures. The RDF graph messages are signed
and a signature graph is produced, which can be iteratively
signed as the messages pass between recipients. Kasten et
al. [Kasten et al., 2014] provide a framework for comput-
ing RDF graph signatures. This framework supports signing
graph data at different levels of granularity and multiple graph
signatures [Kasten et al., 2014]. Kasten [Kasten, 2016] dis-
cusses how the confidentiality, integrity, and availability of
Semantic Web data can be achieved through approaches of
Semantic Web encryption and signatures.

Use of blockchain technology in the auditing of financial
transactions have been investigated [Anderson, 2016] after
the Enron Scandal, where auditor fraud was the source of
public distrust [Spoke, 2015]. Anderson [Anderson, 2016]
proposes a method of verifying the integrity of files using a
blockchain. Similar to our approach, Cucurull et al. [Cucu-
rull and Puiggalı́, 2016] present a method for enhancing the
security of logs by utilizing the Bitcoin blockchain. Our ap-
proach differs by providing a model to create tamper-proof
logs in a highly scalable Linked Data environment.

6 Conclusions
In this paper we presented a method for utilizing blockchain
technology to provide tamper-proof privacy audit logs. The
provided solution applies to Linked Data based privacy audit
logs, in which lacked a mechanism to preserve log integrity.
The model can be used by loggers to generate tamper-proof
privacy audit logs whereas the integrity verification queries
can be used by external auditors to check if the logs have
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been modified. The paper includes an experimental evalua-
tion that demonstrates the scalability of the audit log integrity
verification procedure.

There are a number of directions for future work. First,
we acknowledge Bitcoin’s limitations in terms of cost, speed,
and scalability [Manu, 2017]. We utilized Bitcoin since
it provides an established mechanism suitable for integrity
proofs and to demonstrate the feasibility of our solution ap-
plied to Linked Data. For an optimized implementation,
other blockchain technologies should be compared in terms
of transaction fee, scalability, and smart contract and private
ledger support. Second, a large log will require many trans-
actions and occupy a large space on the blockchain. Merkle
trees [Merkle, 1980] can reduce the storage and transaction
requirements by writing the tree root (composed of multiple
integrity proofs) to the blockchain. However, this increases
the effort to verify the log integrity since more hash value
computations are required to reconstruct the hash tree. For-
malizing the trade-offs between hash trees and the verification
effort is an interesting optimization problem to investigate.
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