
Operator Counting Heuristics for Probabilistic Planning

Felipe Trevizan, Sylvie Thiébaux, Patrik Haslum
Research School of Computer Science, Australian National University

Data61, CSIRO
first.last@anu.edu.au

Abstract
For the past 25 years, heuristic search has been used
to solve domain-independent probabilistic planning
problems, but with heuristics that determinise the
problem and ignore precious probabilistic infor-
mation. In this paper, we present a generaliza-
tion of the operator-counting family of heuristics
to Stochastic Shortest Path problems (SSPs) that
is able to represent the probability of the actions
outcomes. Our experiments show that the equiv-
alent of the net change heuristic in this general-
ized framework obtains significant run time and
coverage improvements over other state-of-the-art
heuristics in different planners.

1 Introduction
Over the past two decades, heuristic search has established
itself as the method of choice for optimal deterministic plan-
ning. This is in large part thanks to the strong focus on de-
veloping domain-independent admissible heuristics, of which
there is now a large supply to choose from – see e.g. works
on delete-relaxation [Bonet and Geffner, 2001], critical path
[Haslum and Geffner, 2000], abstraction [Helmert et al.,
2007], landmark [Helmert and Domshlak, 2009], operator-
counting [van den Briel et al., 2007, Pommerening et al.,
2014], and potential heuristics [Pommerening et al., 2015].

Heuristic search also has the potential to be a power-
ful approach for optimally solving probabilistic planning
problems such as Stochastic Shortest Path problems (SSPs).
Many search algorithms have been developed for this pur-
pose, including (L)TRDP [Barto et al., 1995, Bonet and
Geffner, 2003], LAO* [Hansen and Zilberstein, 2001], FRET
[Kolobov et al., 2011, Steinmetz et al., 2016], and i-dual [Tre-
vizan et al., 2016]. However, in contrast to the situation in de-
terministic planning, the success of these algorithms has been
limited by the lack of effective domain-independent heuristics
dedicated to SSPs. Existing heuristics simply determinise the
problem and fall back on well-established deterministic plan-
ning heuristics, failing to exploit valuable information about
the probabilities of action outcomes.

In this paper, we present the regrouped operator counting
heuristics (hroc) [Trevizan et al., 2017b] that, as far as we are
aware, is the first domain-independent admissible heuristic

for SSPs that reasons about both cost and outcomes probabil-
ities of actions. hroc is an extension of the operator-counting
heuristics used in the deterministic setting [Pommerening et
al., 2014] in which additional constraints are added to model
the outcome probability distribution of the each action. Our
experiments show that iLAO* and LRTDP guided by hroc of-
ten explore significantly fewer nodes than when guided by
state-of-the-art heuristics for SSPs obtaining up to 56x speed
up in running time. Moreover, hroc is able to improve the scal-
ability of the planners allowing them to solve larger problems
than with the previous heuristics.

This paper focuses on one of the contributions in our
ICAPS 2017 paper [Trevizan et al., 2017b], and briefly sum-
marises the others. We refer to that paper for further details.

2 Stochastic Shortest Path Problems
We start with some background about stochastic shortest
paths problems, which we represent using a probabilistic vari-
ant of SAS+ [Backström, 1992]. We then follow with a de-
scription of relevant solution methods and heuristics for SSPs.

Probabilistic SAS+. A probabilistic SAS+ task is a tuple
〈V ,A, s0, s?, C〉. V is a finite set of state variables, and each
variable v has a finite domain Dv . A partial state (or valua-
tion) is a function s on a subset Vs of V , such that s[v] ∈ Dv

for v ∈ Vs and v = ⊥ otherwise. If Vs = V , we say that s
is a state. s0 is the initial state and s? is a partial state repre-
senting the goal. Given two partial states s and s′, we write
s′ ⊆ s when s′[v] = s[v] for all v ∈ Vs′ .

The result of applying a (partial) valuation e in state s is the
state res(s, e) such that res(s, e)[v] = e[v] if e[v] 6= ⊥ and
res(s, e)[v] = s[v] otherwise. A is a finite set of probabilistic
actions. Each a ∈ A consists of a precondition pre(a) rep-
resented by a partial valuation over V , a set eff(a) of effects,
each of which is a partial valuation over V , and a probabil-
ity distribution Pra(·) over effects e ∈ eff(a) representing
the probability of res(s, e) being the state resulting from ap-
plying a in s. Finally, C(a) ∈ R∗+ is the immediate cost of
applying a.

Stochastic Shortest Path Problem. A probabilistic SAS+

task is a factored representation of a Stochastic Shortest Path
problem (SSP) [Bertsekas and Tsitsiklis, 1991]. A SSP is a
tuple S = 〈S, s0,G,A, P, C〉 in which S is the finite set of
states, s0 ∈ S is the initial state, G ⊂ S is the non-empty

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5384

set of goal states, A is the finite set of actions, A(s) is the
subset of actions applicable in state s, P (s′|s, a) represents
the probability that s′ ∈ S is reached after applying action
a ∈ A(s) in state s, and C(a) ∈ R∗+ is the immediate cost of
applying action a.

Corresponding SSP. The correspondence between SSPs
and their probabilistic SAS+ representation is straightfor-
ward: a probabilistic SAS+ task 〈V ,A, s0, s?, C〉 defines an
SSP 〈S, s0,G,A, P, C〉 where S = ×v∈V Dv , G = {s ∈
S|s? ⊆ s}, A(s) = {a ∈ A|pre(a) ⊆ s}, and Pr(s′|s, a) =∑

e∈eff(a) s.t. s′=res(s,e) Pra(e).

Policies. A solution for an SSP is a policy π : S 7→ A such
that π(s) ∈ A(s) is the action to be applied in state s. An
optimal policy minimises the total expected cost of reaching
G from s0. In this paper, we assume that s0 6∈ G and that
the goal is always reachable, i.e., that there are no dead ends.
However, our experiments feature problems with dead ends
and relax this assumption using the fixed-cost penalty formu-
lation of dead ends [Kolobov et al., 2012].1

The optimal policy π∗ for an SSP might not be unique;
however, any optimal policy can be obtained from the unique
optimal value function V ∗ [Bertsekas and Tsitsiklis, 1991].
Given a state s, V ∗(s) represents the minimum total expected
cost of reaching G from s and it is formally defined as the
fixed-point solution of the Bellman equations:

V ∗(s) = min
a∈A(s)

∑
s′∈S

P (s′|s, a)(C(a) + V ∗(s′)) (1)

for s ∈ S \ G and V ∗(s) = 0 for s ∈ G.

Heuristic Search. Directly solving the Bellman equa-
tions (1) requires exploring the entire state space at once.
In contrast, heuristic search algorithms for SSPs such as
(i)LAO* [Hansen and Zilberstein, 2001] and LRTDP [Bonet
and Geffner, 2003] start from the factored problem repre-
sentation (e.g., as a probabilistic SAS+ task), and incremen-
tally generate parts of the search space, guided by admissible
heuristics that estimate the expected cost to reach the goal
from each newly generated state (fringe state).

All-outcomes determinisation. A key technique to com-
pute heuristics for SSPs is the all-outcomes determinisa-
tion [Jimenez et al., 2006]. Formally, given a probabilistic
SAS+ task, its all-outcomes determinisation is the determin-
istic SAS+ task with identical set of variables, initial state,
and goal, but whose actions are split into one deterministic
action αa,e for each probabilistic action a ∈ A and effect
e ∈ eff(a), such that pre(αa,e) = pre(a), eff(αa,e) = {e},
and C(αa,e) = C(a).

Current Heuristics for SSPs. The admissible heuristics
(i.e.,lower bounds on V ∗) used by heuristic search algo-
rithms are typically obtained in two steps: (i) compute the
all-outcomes determinisation of the given SSP; (ii), since
the resulting deterministic planning problem is still PSPACE-
complete, it is further relaxed into an admissible determin-
istic planning heuristic computable in polynomial time, such

1More principled treatments of dead ends are also possible [Tre-
vizan et al., 2017a].

as h-max or lm-cut [Bonet and Geffner, 2001, Helmert and
Domshlak, 2009]. Unfortunately, these relaxations of V ∗ do
not take probabilities into account, foregoing valuable infor-
mation.

3 Regrouped Operator Counting Heuristics
In this section, we present the Regrouped Operator-Counting
Heuristic hroc, our probabilistic version of the family of
operator-counting heuristics. This family of heuristics are de-
scribed using a linear program (LP) of variables known as
operator counts [Pommerening et al., 2014]. When applied
to the all-outcomes determinisation of a given probabilistic
SAS+ task, an operator count variable Ya,e represents, for
each action a and effect e of a, the number of times a is exe-
cuted and e occurs. These operator counts variables Ya,e are
used in linear constraints to represent a relaxation of the orig-
inal problem and an LP is formulated to find the solution with
minimum cost for this relaxed problem. The idea behind hroc

is to add a set of linear constraints to any operator-counting
heuristic that regroup the operator counts Ya,e of the same
probabilistic action a and enforce the relationship between
the respective probabilities of the effects e of a.

In this paper, we focus on the net change heuristic hnet,
that is, the operator-counting heuristic using net change con-
straints. Intuitively, the net change heuristic keeps track of
the changes in the value of each state variable from a state
to another. For each possible state variable assignment (or
atom) v = d ∈ Dv , this heuristic distinguishes between 4
disjoint classes of action/effect pairs, depending on whether
they always produce (AP), sometimes produce (SP), always
consume (AC) or sometimes consume (SC) the atom:
• APv=d = {(a, e) | e[v] = d, pre(a)[v] = d′ 6= d}
• SPv=d = {(a, e) | e[v] = d, pre(a)[v] = ⊥}
• ACv=d = {(a, e) | e[v] = d′ 6= d, pre(a)[v] = d}
• SCv=d = {(a, e) | e[v] = d′ 6= d, pre(a)[v] = ⊥}
The possible net change that a variable can accumulate

from a state s where s[v] = d to the goal s? is:

pncs→s?
v=d =

{0, 1} if s?[v] = ⊥ and s[v] 6= d
{−1, 0} if s?[v] = ⊥ and s[v] = d
{1} if s?[v] = d and s[v] 6= d
{−1} if s?[v] = d′ and s[v] = d 6= d′

{0} otherwise
With these notations, given v ∈ V , d ∈ Dv , and a state

s, the net change constraints Nv,d,s are defined as the linear
constraints (C1) and (C2) and the net change heuristic hnet is
formally described in Definition 1.∑
(a,e)∈APv=d

Ya,e −
∑

(a,e)∈ACv=d

Ya,e +
∑

(a,e)∈SPv=d

Ya,e≥min pncs→s?
v=d (C1)

∑
(a,e)∈APv=d

Ya,e −
∑

(a,e)∈ACv=d

Ya,e −
∑

(a,e)∈SCv=d

Ya,e≤max pncs→s?
v=d (C2)

Definition 1 (net change heuristic). Given a probabilistic
SAS+ task, the net change heuristic hnet at state s is the solu-
tion of the LP:

hnet(s) = min
Y

∑
a,e

Ya,eC(a)
∣∣∣ Nv,d,s ∀v∈V , d∈Dv

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5385

In order to recover the information about the probabilistic
effects of each action lost by the all-outcomes determinisation
(a necessary step to compute Nv,d,s), our heuristic hroc uses
the following set of linear constraints:

Definition 2 (Regrouping constraints). The set of regroup-
ing constraints, denoted as Regroup, is

Pra(e1)Ya,e2 = Pra(e2)Ya,e1 ∀ a ∈ A, {e1, e2}∈eff(a).

These constraints enforce that the expected number of times
outcome e1 of action a occurs is proportional with a factor
Pra(e1)/Pra(e2) to the expected number of times any other
outcome e2 of the same action occurs. Therefore, not only
the probability of each effect is recovered, but also their de-
pendency, i.e., Ya,ei>0 iff Ya,ej >0 for all {e1, e2}⊆eff(a).

The heuristic hroc is presented in Definition 3. hroc is
an admissible heuristic for SSPs, that is, for all s ∈ S,
hroc(s) ≤ V ∗(s) [Trevizan et al., 2017b]. Intuitively, the ad-
missibility of hroc is due the admissibility of hnet and the fact
the only difference between them is the set of regroup con-
straints that enforces the probabilistic definition of actions
through the ratio of their expectations; therefore, as in the
original SSP, if a particular effect of an action is desirable, all
other effect of the same action must be accounted for since
they will happen with positive probability.

Definition 3 (Regrouped operator-counting heuristic).
Given a probabilistic SAS+ task, the regrouped operator-
counting heuristic hroc at state s is the solution of the LP:

hroc(s) = min
Y

∑
a,e

Ya,eC(a)
∣∣∣ Regroup,Nv,d,s ∀v∈V , d∈Dv

4 Empirical Evaluation
In this section we empirically evaluate hroc against the fol-
lowing state-of-the-art heuristics for SSPs: hmax, hlmc and
net change heuristic hnet. Notice that all these heuristics
are determinisation-based heuristics. We use LRTDP and
iLAO* as the search algorithms for this comparison. Each
parametrization of planner and heuristic solves the same
problem 30 times using a different random seed on each run
to initialize the planner to account for the stochastic nature of
the problem. For each run, we enforce a 30-minutes and 4-Gb
cut-off for all experiments. We use two metrics for our exper-
iments: (i) coverage, the number of runs a given parametriza-
tion found the optimal solution (out of 30) for each problem;
and (ii) runtime, the average time spent to find the optimal
solution over the runs that found the optimal solution.

We consider the following domains from the 2008 Interna-
tional Planning Competition (IPC’08): probabilistic Blocks
World, Exploding Blocks World, and Triangle Tire World.
We also consider a new domain, Probabilistic Parc Printer.
This domain is a probabilistic extension of the sequential Parc
Printer domain from IPC in which s sheets need to be printed
on a modular printer. The printer has c unreliable compo-
nents in which a sheet can jam with probability 0.1 making
the component unavailable and requiring a new exemplar of
this sheet to be printed. The unavailability of components cre-
ates avoidable dead ends. Also, a high-cost repair action that

LRTDP iLAO
hmax hlmc hnet hroc hmax hlmc hnet hroc

B
lo

ck
s

W
or

ld 8 3 0 26 30 2 30 30 30
8 28 0 30 30 30 30 30 30
8 2 0 12 30 2 30 30 30

10 0 0 0 30 0 0 1 30
10 0 0 0 30 0 0 0 30
12 0 0 0 0 0 0 0 30

Pa
rc

Pr
in

te
r

F,4,2 30 30 30 30 4 30 30 30
F,4,3 30 30 30 30 0 30 30 30
F,5,2 0 30 0 30 2 16 0 30
F,5,3 0 30 0 30 0 0 0 30
T,4,2 0 0 0 1 1 30 30 30
T,4,3 0 0 0 0 0 30 30 30
T,5,1 0 0 0 0 0 0 0 30

E
xp

lo
di

ng
B

W

7 30 30 30 30 30 30 30 30
8 30 30 0 30 0 0 0 3
9 30 30 0 30 30 30 0 30

10 30 30 0 30 23 4 0 11
11 0 0 0 0 12 6 0 16
12 0 0 0 0 24 15 0 26
15 0 0 0 0 28 12 0 23

Tr
ia

g.
Ti

re 3 30 30 30 30 30 30 30 30
4 30 30 30 30 30 30 30 30
5 30 24 0 30 0 0 0 4
6 0 0 0 30 0 0 0 0

Table 1: Coverage for selected SSP problems. Best planner (i.e.,
fastest planner to obtain the best coverage) in bold. Dead-end variant
of the hroc is used in the gray cells. Parameters: number of blocks for
blocks world; (has repair action,s,c) for parc printer; and IPPC’08
problem number for exploding blocks world and triangle tire world.

removes all jams and restores availability of all components
can be available.

Table 1 presents coverage results for a subset of our exper-
iments. The following is a summary of our findings from
the experiments and we refer the reader to Trevizan et al.
(2017b) for a comprehensive description of our methodology,
domains and results.

Does taking probability into account in the heuristic help?
Yes. Notice that the only difference between hnet and hroc is
that hroc takes probability into account through the regrouping
constraints and planners using hroc obtained a speed up w.r.t.
to hnet between 2x-56x, 1.3x-10x, and 1.1x-14x for blocks
world, tire world and parc printer respectively. Moreover,
planners using hroc were able to scale up to larger problems
than when using hnet: 10 blocks vs 8 blocks for blocks world,
5 vs 4 sheets for parc printer, and problem #5 vs #4 for tire
world. For exploding blocks world, there was no statistical
difference – unless we incorporate dead-end detection as re-
flected in the table and explained below.

How does hroc compare to the state-of-the-art? For
blocks world, planners using hroc are the only ones that scale
up to problems with 10 blocks and the best performance over-
all is obtained by iLAO* with hroc. For parc printer, hroc out-
performs all other heuristics. The best performance in this
domain alternates between LRTDP with hroc and iLAO* with
hroc. For tire world LRTDP with hmax is the best planner
closely followed by LRTDP with hroc as the problem size in-
creases up to problem #5. LRTDP with hroc is the only plan-
ner that can handle problem #6. A similar trend happens for
iLAO* with hmax and hroc. Except in exploding blocks world,
we found that hroc expands much fewer states, e.g., up to 48x

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5386

less than hmax and 10x less than hnet in parc printer, 5x times
less than hlmc in blocks world.

For exploding blocks world, planners using hnet and hroc

perform poorly as they do not detect dead ends as early as
hmax and hlmc. This advantage of hmax and hlmc is due to
two reasons: (i) a state s has zero probability of reaching the
goal iff it is a dead end in the all-outcomes determinisation,
thus hmax and hlmc are aware of dead ends even though they
ignore probabilities; and (ii) for this domain, the dead ends
are reached when a precondition of an action that potentially
leads to the goal becomes false, thus hmax and hlmc can easily
find the dead ends since they propagate the actions precondi-
tions. To illustrate these points, we augmented hroc with hmax

as a dead-end detector. Formally, hroc
de (s) equals the dead-end

penalty if hmax reports that s is a dead end and hroc(s) other-
wise. The results for hroc

de corroborate the above explanation
because of the large increase in performance when compared
against hroc. Moreover, planners using hmax and hroc

de perform
similarly and the best heuristic for a given problem alternates
between them: hmax is better in 4 problems, hroc

de is better in 3
problems, and the difference is statistically insignificant for 2
problems.

5 Beyond SSPs and hroc

C-SSPs. Constrained SSPs (C-SSPs) are a natural general-
ization of SSPs to model planning under uncertainty prob-
lems for resource-bounded agents with multiple competing
objectives [Altman, 1999, Dolgov and Durfee, 2005]. In a
C-SSP, actions are associated with multiple cost functions
(e.g., fuel, time, money), one of which is designated as the
primary, and the others as secondary costs, and one seeks a
policy that minimizes the expected primary cost subject to
cost constraints, i.e., constraints over the expected secondary
costs.

hroc for C-SSPs. Recently, the first heuristic search algo-
rithm for C-SSPs, i-dual, was introduced [Trevizan et al.,
2016]. Although it provided a large improvement over blind
search algorithms, its full potential was not realised due to
the lack of heuristics that could take cost constraints into ac-
count. We have shown how hroc can be easily extended to in-
corporate such constraints resulting in hc-roc [Trevizan et al.,
2017b], the first heuristic for C-SSPs that reasons about both
outcome probabilities of actions and cost constraints. The
empirical evaluation of i-dual using hroc against hc-roc shows
that taking cost constraints into consideration improves both
the scalability and running time of i-dual, e.g., hc-roc success-
fully solved 16 problems from the constrained version of the
parc printer domain that hroc could not solve.

Projection Occupation Measure Heuristic. Similarly to
hroc, the projection occupation measure heuristic (hpom) [Tre-
vizan et al., 2017b] is a heuristic for SSPs that takes outcome
probabilities of actions into consideration. hpom is also de-
fined as an LP and is formulated using occupation measures,
which are the probabilistic counterpart of operator counts.
Formally, an occupation measure xs,a represents the expected
number of times action a is executed in state s and the dual
LP representation of the Bellman equations is formulated us-
ing them [D’Epenoux, 1963].

Given a probabilistic SAS+ task, hpom works by projecting
the problem onto its variables and representing each projec-
tion as its own SSP using occupation measures. A benefit of
projections is that they are still probabilistic problems; there-
fore the outcome probabilities of actions is not lost. Nonethe-
less, treating the projections as independent problems yields a
lower bound on V ∗ worse than the state-of-the-art heuristics
based on determinisation [Trevizan et al., 2017b]. Instead,
hpom weakly ties all projections together to obtain a relaxed
problem that can still be solved efficiently while providing a
tighter lower bound on V ∗. This weak tying is implemented
as a set of linear constraints over the occupation measures en-
forcing that the total expected number of times a given action
is executed in each projection is the same. We proved that
hpom is admissible and that, for all s ∈ S, hroc(s) ≤ hpom(s).
Our experiments show that iLAO* and LRTDP guided by hroc

are more efficient then their counterparts using hpom. This
stems from the fact that hroc requires substantially fewer LP
variables than hpom. Similarly to hroc, hpom can be generalized
to C-SSPs by adding cost constraints into its LP formulation.

Integrated i-dual. An advantage of occupation measure
heuristics such as hpom over operator counting ones such as
hroc, is that they can be computed at once for multiple states
using the same set of linear constraints. Thus, their formula-
tion can directly be incorporated into the LP solved by i-dual
to update the current policy at each iteration. This yields
a new algorithm, integrated i-dual (i2-dual) [Trevizan et al.,
2017b], which represents a brand new type of heuristic search
method for C-SSPs where the heuristic computation is lazy,
reusable across multiple parts of the search space, and works
in unison with the policy update. In our experiments, i2-dual
outperforms i-dual in coverage, time and number of nodes
expanded, regardless of the heuristic used by the latter. For
instance, in the constrained version of the parc printer do-
mains, i2-dual obtained a coverage between 30% and 100%
in 13 problems for which all other planners’ coverage was 0%
and up to 34x speed up w.r.t. the second best planner in the
other problems.

6 Conclusion
In this paper, we have presented hroc and the first domain-
independent admissible heuristic specifically designed to ex-
ploit the interactions between probabilities and action costs
found in SSPs. We have shown that hroc perform well across
a range of domains and search algorithms, and that handling
probabilities in heuristics often pays. Previous heuristics ex-
ploiting outcome probabilities have only considered MaxProb
type problems, and used the planning graph data structure
which can yield poor estimates when policies are cyclic [Lit-
tle and Thiébaux, 2006]. One area of future work is to im-
prove the accuracy of hroc by augmenting its formulation with
merges and disjunctive action landmarks (and other operator
counting constraints), as was done in the deterministic setting
by Bonet and van den Briel [2014].

Acknowledgements
This research was funded by AFOSR grant FA2386-15-1-
4015.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5387

References
[Altman, 1999] Eitan Altman. Constrained Markov Deci-

sion Processes, volume 7. CRC Press, 1999.
[Backström, 1992] Christer Backström. Equivalence and

tractability results for SAS+ planning. In Proc. 3rd Int.
Conf. on Principles of Knowledge Representation and
Reasoning (KR), 1992.

[Barto et al., 1995] Andrew G. Barto, Steven J. Bradtke, and
Satinder P. Singh. Learning to act using real-time dynamic
programming. Artif. Intell., 72(1-2):81–138, 1995.

[Bertsekas and Tsitsiklis, 1991] D.P. Bertsekas and J.N.
Tsitsiklis. An Analysis of Stochastic Shortest Path Prob-
lems. Mathematics of Operations Research, 16(3):580–
595, 1991.

[Bonet and Geffner, 2001] Blai Bonet and Hector Geffner.
Planning as heuristic search. Artif. Intell., 129(1-2):5–33,
2001.

[Bonet and Geffner, 2003] Blai Bonet and Hector Geffner.
Labeled RTDP: improving the convergence of real-time
dynamic programming. In Proc. Int. Conf. on Automated
Planning and Scheduling, 2003.

[Bonet and van den Briel, 2014] Blai Bonet and Menkes
van den Briel. Flow-based heuristics for optimal planning:
Landmarks and merges. In Proc. Int. Conf. on Automated
Planning and Scheduling, 2014.

[D’Epenoux, 1963] F. D’Epenoux. A probabilistic produc-
tion and inventory problem. Management Science, 10:98–
108, 1963.

[Dolgov and Durfee, 2005] Dmitri A. Dolgov and Ed-
mund H. Durfee. Stationary deterministic policies for con-
strained mdps with multiple rewards, costs, and discount
factors. In Proc. Int. Joint Conf. on Artificial Intelligence,
2005.

[Hansen and Zilberstein, 2001] Eric A Hansen and Shlomo
Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1):35–62,
2001.

[Haslum and Geffner, 2000] Patrik Haslum and Hector
Geffner. Admissible heuristics for optimal planning.
In Proc. Int. Conf. of Artificial Intelligence Planning
Systems, pages 140–149, 2000.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proc. Int. Conf. on Au-
tomated Planning and Scheduling, 2009.

[Helmert et al., 2007] Malte Helmert, Patrik Haslum, and
Jörg Hoffmann. Flexible abstraction heuristics for opti-
mal sequential planning. In Proc. Int. Conf. on Automated
Planning and Scheduling, pages 176–183, 2007.

[Jimenez et al., 2006] Sergio Jimenez, Andrew Coles, and
Amanda Smith. Planning in probabilistic domains using
a deterministic numeric planner. In Proc. Workshop of
the UK Planning and Scheduling Special Interest Group,
2006.

[Kolobov et al., 2011] Andrey Kolobov, Mausam, Daniel S.
Weld, and Hector Geffner. Heuristic search for general-
ized stochastic shortest path mdps. In Proc. Int. Conf. on
Automated Planning and Scheduling, 2011.

[Kolobov et al., 2012] Andrey Kolobov, Mausam, and
Daniel S. Weld. A theory of goal-oriented mdps with
dead ends. In Proc. Conf. on Uncertainty in Artificial
Intelligence (UAI), 2012.

[Little and Thiébaux, 2006] Iain Little and Sylvie Thiébaux.
Concurrent probabilistic planning in the graphplan frame-
work. In Proc. Int. Conf. on Automated Planning and
Scheduling, 2006.

[Pommerening et al., 2014] Florian Pommerening, Gabriele
Röger, Malte Helmert, and Blai Bonet. Lp-based heuris-
tics for cost-optimal planning. In Proc. Int. Conf. on Auto-
mated Planning and Scheduling, 2014.

[Pommerening et al., 2015] Florian Pommerening, Malte
Helmert, Gabriele Röger, and Jendrik Seipp. From non-
negative to general operator cost partitioning. In Proc.
of National Conference on Artificial Intelligence (AAAI),
pages 3335–3341, 2015.

[Steinmetz et al., 2016] Marcel Steinmetz, Joerg Hoffmann,
and Olivier Buffet. Revisiting goal probability analysis in
probabilistic planning. In Proc. Int. Conf. on Automated
Planning and Scheduling, 2016.

[Trevizan et al., 2016] Felipe W. Trevizan, Sylvie Thiébaux,
Pedro Henrique Santana, and Brian C. Williams. Heuris-
tic search in dual space for constrained stochastic shortest
path problems. In Proc. Int. Conf. on Automated Planning
and Scheduling, 2016.

[Trevizan et al., 2017a] Felipe W. Trevizan, Florent
Teichteil-Kœnigsbuch, and Sylvie Thiébaux. Effi-
cient solutions for stochastic shortest path problems with
dead ends. In Proc. 33rd Conf. on Uncertainty in Artificial
Intelligence (UAI), 2017.

[Trevizan et al., 2017b] Felipe W. Trevizan, Sylvie
Thiébaux, and Patrik Haslum. Occupation measure
heuristics for probabilistic planning. In Proc. Int. Conf. on
Automated Planning and Scheduling, 2017.

[van den Briel et al., 2007] Menkes van den Briel, J. Ben-
ton, Subbarao Kambhampati, and Thomas Vossen. An lp-
based heuristic for optimal planning. In Int. Conf. on Prin-
ciples and Practice of Constraint Programming, 2007.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5388

