Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Greedy Stone Tower Creations with a Robotic Arm

Martin Wermelinger*!, Fadri Furrer*2, Hironori Yoshida*-3

Fabio Gramazio®*, Matthias Kohler*, Roland Siegwart? and Marco Hutter'
'Robotic Systems Lab, ETH Zurich, Switzerland

2 Autonomous Systems Lab, ETH Zurich, Switzerland
3Preferred Networks, Inc,
4Gramazio Kohler Research, ETH Zurich, Switzerland
martin.wermelinger @mavt.ethz.ch, fadri.furrer @mavt.ethz.ch, hyoshida@hy-ma.com

Abstract

Predominately, robotic construction is applied as
prefabrication in structured indoor environments
with standard building materials. Our work, on
the other hand, focuses on utilizing irregular ma-
terials found on-site, such as rubble and rocks, for
autonomous construction. We present a pipeline
to detect arbitrarily placed objects in a scene and
form a structure out of the detected objects. The
next best stacking pose is selected using a search-
ing method employing gradient descent with ran-
dom initial orientations, exploiting a physics en-
gine. This approach is validated in an experimental
setup using a robotic manipulator by constructing
balancing vertical stacks without mortars and ad-
hesives. We show the results of eleven consecutive
trials to form such towers autonomously using four
arbitrarily in front of the robot placed rocks.

1 Introduction and Related Work

Over the last decade, robotics has been introduced to architec-
tural construction not only for safer and more efficient con-
struction, but also for exploring diverse forms [Kohler et al.,
2014]. However, there are still intensive manual labor works
involved for on-site assembly of these components [Knaack
etal., 2012].

Digital fabrication has explored applications of au-
tonomous robots in unstructured on-site operation scenar-
ios [Dorfler et al., 2016; Sandy et al., 2016], but are re-
stricted to build with regular materials. Building structures
with irregularly shaped objects requires structural analysis,
e.g., through numerical analysis [Livesley, 1978; Livesley,
1992]. There exist tools for obvious contact surfaces as
shown by [Block et al., 2006] and [Whiting et al., 2009].
However with irregularly shaped elements, we need to start
from contact detection and then acquire contact surfaces.

*The authors contributed equally to this work. M.W. for the ma-
nipulation tasks, F.F. was responsible for the object detection, H.Y.
for the pose searching algorithm.
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This can be done in a physics engine, such as Open Dynamics
Engine (ODE), for evaluating structural stability [Battaglia et
al., 2013]. In our work we also use the simulation environ-
ment but with irregular, concave shapes.

Our work focuses on handling objects of arbitrary shape,
such as found irregularly shaped stones, without using addi-
tional adhesives to build dry-stack compositions. As a case
study, discrete rigid elements, such as stones or concrete rub-
ble, are targeted as a building material. The goal is to con-
struct a balancing vertical tower with found objects, while
maintaining the structure in static equilibrium using a robotic
manipulator. The use of such objects reveals the following
challenges. Firstly, individual object instances need to be
identified. Secondly, grasping and stacking poses are not ob-
vious, requiring a novel algorithm to pick a ‘good’ next pose
among infinitely many. Thirdly, the stacking task may be per-
formed in unstable situations, requiring recurring structural
evaluation and target re-planning after each object placement.
To achieve this, we developed an iterative work-flow includ-
ing precise object detection, motion control, and planning the
next target pose (see Fig. 1). As part of this autonomous
stacking work-flow, we describe an algorithm suggesting sta-
ble poses for stacking, validated by an implementation in a
real-world experiment.

This paper makes the following contributions regarding
handling irregularly shaped objects:

— apose searching algorithm considering structural stabil-
ity using a physics engine

— an object detection pipeline

— an autonomous system for constructing balancing verti-
cal towers using a manipulator

An extended and comprehensive overview of this work is
given by [Furrer et al., 2017].

2 Object Detection

Before starting with the stacking algorithm, we need to find
the objects in the scene. Additionally, during the course of
the object stacking, we want to be able to track the locations
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Figure 1: In an offline step we scan a set of objects (top). These
objects, or a subset of it, can be distributed arbitrarily on the work-
space and get detected by our object detection pipeline (middle-left).
From the detected objects the presented pose searching algorithm
proposes the next stable stack (middle-right). A motion planner
(bottom-right) is used to generate the trajectories to replicate the
proposed stack with the robot arm (bottom-left). After placing the
object, its pose is measured and used as base for the subsequent pose
searching step.

of the objects. In the scope of this work, we are only con-
sidering pre-scanned models of the objects to be detected in
the scene. We present an object detection pipeline that con-
sists of the following steps. We start by extracting 3D key-
points from raw point clouds of an RGB-D sensor. These
keypoints are then described using keypoint descriptors and
matched to keypoints from a pre-scanned object in a descrip-
tor matching step. Using these matches and a clustering step,
we find an initial alignment of the scene and the pre-scanned
object, which is then refined by applying an Iterative Closest
Point (ICP) algorithm. As a final step of the object detection
pipeline, we verify that we have enough inlier points by ap-
plying the identified pose transform of the object to the scene.

2.1 Keypoint Extraction and Description

From an RGB-D sensor we get a scene point cloud P¢, in
camera frame C. To get keypoints, we used two methods, a
simple voxel based subsampling, as well as the Point Cloud
Library (PCL) implementation of Intrinsic Shape Signatures
(ISS) [Zhong, 20091, which can not only describe the key-
points, but also be used as a keypoint detector. Beside the
ISS descriptor, we use Rotational Projection Statistics (RoPS)
descriptors [Guo et al., 2013], which were giving us better re-
sults in the matching step, at a slightly higher computational

cost.

2.2 Descriptor Matching and Clustering

We compare a keypoint k¢ scene Of a scene point cloud with
a keypoint of a point cloud of a pre-scanned object ko object
in object frame O. To find a pair of corresponding keypoints
ke scene and Ko gbject, We set up a kd-tree in descriptor space
to find the nearest neighbors. Then we use an approach, pre-
sented in [Chen and Bhanu, 2004], to verify that the matched
keypoints are geometrical consistent. We select the b best
transforms T¢o j matching, J € {1,...,b} that give the most
geometrical consistent matches. The transforms T¢o j, matching
project the object point cloud P o opject into the camera frame
C. Using an ICP step we refine these transforms 7o j matchings
to get better alignments of the two complete filtered point
clouds P¢ scene and P o object.- The final transform T¢o is ob-
tained after checking the inlier ratio of the transformed point
clouds.

2.3 Object in Robot Arm Frame

To transform the point cloud of the localized object P o opject
into the robot arm frame R, we apply the previously de-
tected best transform T, a fixed pre-calibrated transform
Trc from the camera frame C to the robot arm tooltip frame
T, and the transform given by the robot state T’z between
the tooltip frame 7 and the robot arm frame R:

PR,object = T’RT . TTC “Teo - PO,objecl- (1)

3 Pose Searching

Our goal is to construct a vertical tower consisting of irreg-
ularly shaped objects from a subset S of available objects
0; € § C O, where O denotes the complete set of given
objects. Within the set S, we want to find the best object and
its target pose. The search space is twofold: discrete object
space and continuous pose space. To find a stable pose on
a vertical stack, our pose searching method places each ob-
ject o; on the top object of the existing stack in a dynamic
simulation using a physics engine. For evaluating each ob-
ject’s ‘goodness‘ with a certain pose p;, we introduce a cost
function that maximizes the support polygon S;’s area A; of
the newly placed object o; and minimizes other considerable
parameters, such as kinetic energy. Throughout this process,
several initial poses are tested with fixed initial positions but
randomized orientations. We are sampling our initial orien-
tations randomly, to keep the problem viable in large prob-
lem sets, where a holistic pose sampling would become in-
tractable. The returned cost value is interchangeable among
available objects in S, thus we find the best object o* with the
best pose p*.

3.1 Valid Contact Pose Search

To find a valid contact pose, we set the object to an initial
pose in simulation that is close to the existing stack, but not
yet touching it. The initial pose pini,; of a new object 0; € O
consists of its initial position ri; and its initial orientation
init,;- The initial position is set with an offset from the cen-
troid C; of the last placed object’s support polygon S; along
the normal direction n; of S; (see Fig. 2). To obtain the initial
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Figure 2: (1) The initial position riy,; of object o; is set along the
normal direction n; of S; of the previously placed object 0;. (2) We
apply an attraction force F' to object o; to get contact points between
the two objects.

pmmurr, i

_R; :normal of S;

V; :thrust line direction
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of oi

X
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Figure 3: (3): Projection P] of the Center of Mass (CoM) position
P; onto the support polygon S;. (4): Contact pose Pcontact,s resulting
from the valid pose search algorithm.

orientation, the detected object orientation is rotated around a
randomized axis with the random angle 6 € [—0yi¢, Oinic]-

For evaluating physical stability of object o;, it is a valid
approach to analyze whether P/, the projection of the CoM
position P; onto the support polygon S;, is inside the support
polygon or not (see Fig. 3). In order to find a valid support
polygon S; for an irregularly shaped object o;, we consider
the contact points of the object to other objects. The assumed
contact situations are simple; either on a flat surface for the
first stack, or contact points between two rigid body objects
with parallel contact normals.

To assure that pipi;,; results in a valid contact pose Pconact, s
we apply an attraction force F along the thrust line direction
vector v; to the object o; (see Fig. 2). During this process,
we continuously check whether the projection P/ of the CoM
position lies within the support polygon (see Fig. 3). As soon
as the number of contacts Neoniet(P;) between o; and the ex-
isting stack is at least three (see Fig. 3), the resulting pose
Peontact,i 1S evaluated by o;’s kinetic energy FExin(Pcontact,i)
with a threshold value Exinsable. By evaluating the kinetic
energy, we limit the viable set of poses to the ones that cause
minimal motion of the existing stack.

3.2 Contact Pose Refinement

We assign a cost to each valid contact pose Peontact,i t0 com-
pare its ‘goodness’ in terms of a robust object pose, which
allows further stacking. Therefore, we maximize the area of
the support polygon S; as well as minimize the kinetic en-
ergy Fiin, and surface normal deviation from the thrust line n;
for reducing sheer forces. To robustly find the support poly-
gon S; from the sparse contacts between o; and the existing
stack, contacts over several simulation update steps are col-
lected and simplified [Alliez et al., 2016], [Karavelas, 2016].

Given the area A; of the support polygon S;, the kinetic
energy Ekin(Pcontact,i ), the dot product ||n; - v;||, where v; is
the thrust line direction vector, the length ||rp, p, || between P;
and the CoM of the previously stacked object P;, we define
the cost function as

f(pcontact,i) = wlAZ‘_l + wQEkin(pcomact,i)
+wsllrp,p |l + walni - vill, ()
S.t. wy >0Vvjel,....4

where w; are manually selected weights of the individual cost
function components.

After assigning the cost to the valid contact pose Pcontact,i»
gradient descent is performed for searching the local opti-
mum pose Pi, ; until the cost converges. To compute the
gradient, the contact pose Pcontact,; 1S perturbed with a small
pose step dp.

After finding a local optimum pose pj; ., ;» @ new random-
ized rotation is assigned to the initial pose pinn,i and the pro-
cess is repeated until = local solutions are found. The pose
with minimum cost is selected as a solution p; for object o;.
We iterate the entire process over all objects of the available
subset S, returning the best object o* with the best pose p*.

4 Experimental Setup

To show the applicability and repeatability of the presented
pose searching and object detection methods, we imple-
mented the algorithms, using a robot arm to perform au-
tonomous dry-stacking as in Figure 1. The goal is to create a
vertical tower out of randomly placed irregularly shaped ob-
jects whose mechanical and geometric properties are known.

4.1 Experimental Setup

We use a set of six natural lime stones as objects because they
have challenging properties for the stacking task, they are of
irregular shape and have low friction coefficients. The ob-
ject’s geometric shape were previously scanned and the point
cloud and mesh model were scaled to a reasonable resolution
of 500 mesh faces. The weight, CoM position, and moment of
inertia of each stone were measured and added to the geomet-
ric model description. The friction coefficient was estimated
with a low value of p5one = 0.1 and uniformly applied to all
stones. For manipulating the objects, we use a robotic arm
equipped with a three-finger gripper as depicted in Figure 4.
The object detection is performed with an RGB-D depth cam-
era mounted on the robot arm. A force-torque sensor mounted
at the attaching point of the gripper is used to detect impact
during the placement of the object.

5396



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Force -Torque
Sensor

L

Operation Station

RGB-D Camera

Figure 4: An overview of the used hardware setup: a ROBO-
TIQ 3-finger gripper, a FT150 force torque sensor, and an In-
tel®RealSense™ SR300 RGB-D camera are attached to a UR10
arm.
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Figure 5: The cost of the selected target pose of an individual stone
for all eleven runs at each level of the stack. A higher cost indicates a
less preferable target pose. "+’ denotes a successful stacking, failed
attempts are represented with a ’o’. Each color corresponds to an
individual run.

The work-flow of autonomously creating a vertical stack of
arbitrarily placed stones is shown in Figure 1. This task is per-
formed by continuously executing a loop consisting of object
detection, pose searching and object manipulation. The stack-
ing task is terminated once the pose searching no longer finds
a feasible solution from the available objects or the stacking
was not successful.

4.2 Results

The robotic system performed the vertical stacking task
in eleven consecutive runs with an alternating set of four
stones!. In two of these runs, the system succeeded to con-
struct a stack out of all four available stones. In six cases the
system was able to vertically stack three stones, but failed to
place the fourth stone, and in three cases the system did not
succeed to stack the third stone. The average cost where the
robot failed to place the object was 2.5 times higher than the

"Watch the accompanying video: https:/www.youtube.com/
watch?v=bXz52KMGUng
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average cost of the last pose the system was able to success-
fully stack. This shows that these poses were already iden-
tified as less favourable compared to the ones that were suc-
cessfully stacked. If the cost at a previous step is high, the
probability increases that the following stone placement will
fail. See for example the high cost of the second stone in run
6 and 7 (see Figure 5).

On average, a trial to construct a vertical stack lasted
271.0s, where the main fraction of this time (61 %) is spent
for the manipulation task that includes path planning, arm and
gripper motion.

5 Conclusion

In this paper, we introduced an autonomous robotic system
that constructs a balancing vertical tower out of irregularly
shaped stones without using extra materials. Its work-flow
consists of a continuous loop with object detection, target
pose search, physical manipulation, and evaluation. We pre-
sented an object detection pipeline suited to localize irregu-
larly shaped objects in a scene and a target pose searching al-
gorithm, based on a physics engine, to generate stable stacks.
The proposed algorithms were implemented and tested on a
robotic system (a fixed platform in a controlled environment
with a flat terrain, and pre-scanned objects). The system
showed to be able to perform stacking tasks autonomously
and thus validating the proposed pose searching algorithm.

Aiming at more practical situations, we want to focus on
construction with unseen objects. This involves the segmen-
tation of unknown objects in a scene and their handling with
incomplete information. Solving this can either be achieved
by creating object models in the construction process or by
applying techniques where we do not require a specific rep-
resentation of the object, as shown in [Breyer et al., 2018]
for grasping objects. We plan to extend this work to place
objects including force-torque sensor readings. Furthermore,
we want to create more complex target shapes, such as arches
or walls.
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