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Abstract

Knorr et al. (2011) formulated a three-valued for-
malism for the logic of Minimal Knowledge and
Negation as Failure (MKNF) and proposed a well-
founded semantics for hybrid MKNF knowledge
bases (KBs). The main results state that if a hy-
brid MKNF KB has a three-valued MKNF model,
its well-founded MKNF model exists, which is
unique and can be computed by an alternating fix-
point construction. In this paper, we show that
these claims are erroneous. We propose a classi-
fication of hybrid MKNF KBs into a hierarchy and
show that its innermost subclass is what works for
the well-founded semantics of Knorr et al. Fur-
thermore, we provide a uniform characterization
of well-founded, two-valued, and all three-valued
MKNF models, in terms of stable partitions and the
alternating fixpoint construction, which leads to up-
dated complexity results as well as proof-theoretic
tools for reasoning under these semantics.

1 Introduction
Motivated by the Semantic Web and other applications, re-
searchers have studied ways to combine rules with descrip-
tion logics (DLs), and in general with decidable first-order
theories or external reasoning sources (e.g., [Bruijn et al.,
2007; Eiter et al., 2005; Kaminski et al., 2015; Motik and
Rosati, 2007; 2010; Rosati, 2006; Vennekens et al., 2010;
Yang et al., 2011]).

Of various approaches, the formalism of hybrid MKNF
KBs [Motik and Rosati, 2010] is considered a powerful, dom-
inating knowledge representation language developed for this
purpose. A hybrid MKNF KBK consists of two components,
K = (O,P), where O is a DL knowledge base and P is a
collection of MKNF rules based on the stable model seman-
tics. One critical issue centers around combining open and
closed world reasoning for targeted applications. This issue
is addressed in [Motik and Rosati, 2010] by seamlessly inte-
grating rules with DLs under two-valued MKNF structures.

∗This paper is an extended abstract of the article [Liu and You,
2017] in Artificial Intelligence, 252: 123-138, 2017.

Knorr et al. [Knorr et al., 2011] formulate a three-valued
logic of MKNF, define the notion of well-founded MKNF
model as the least defined three-valued MKNF model, and
show that, if a hybrid MKNF knowledge base K is MKNF-
consistent, i.e.,K has at least one three-valued MKNF model,
then the well-founded MKNF model for K uniquely exists
and can be computed by an alternating fixpoint construction.

In this work, we show that (i) an MKNF-consistent hybrid
MKNF knowledge base may have a well-founded MKNF
model (as defined in [Knorr et al., 2011]), which cannot be
computed by the alternating fixpoint construction; and (ii) an
MKNF-consistent hybrid MKNF knowledge base may have
three-valued MKNF models none of which is the least de-
fined, since they are not comparable by undefinedness. These
insights lead to a classification of hybrid MKNF knowledge
bases into a hierarchy, where the innermost subclass is pre-
cisely what is intended by the well-founded semantics.

The powerful notion of three-valued MKNF models moti-
vates the question whether there is a simpler, more intuitive
notion to express these models. Inspired by the notion of par-
tial stable models in logic programming [Przymusinski, 1990;
You and Yuan, 1994], we introduce the notion of stable par-
titions and show a one-to-one correspondence between them
and three-valued MKNF models. We further show that the
alternating fixpoint construction has another, somewhat un-
expected, proof-theoretic utility: we can guess-and-verify
whether a partial partition is stable by computing alternat-
ing fixpoints and by performing a consistency test. This algo-
rithm can be applied to compute three-valued MKNF models,
as well as two-valued ones. As a result, our work provides
a uniform characterization of well-founded, two-valued, and
all three-valued MKNF models in terms of stable partition. It
also leads to updated complexity results as well as reasoning
tools for deciding three-valued entailment for hybrid MKNF.

2 Three-Valued Formalism for MKNF
The logic of MKNF [Lifschitz, 1991] is proposed by Lifs-
chitz as a unifying framework for nonmonotonic formalisms.
MKNF formulas are built from first-order formulas and two
modal operators, K and not, for closed world reasoning.

Let Σ = (Σc,Σf ,Σp) be a first-order signature, where Σc,
Σf , and Σp are sets of constants, function symbols, and pred-
icate symbols containing equality ≈, respectively. A first-
order atom P (t1, . . . , tn) is an MKNF formula, where P is
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a predicate and ti are first-order terms. If no variables occur
in such an atom, it is called ground. If ϕ and ϕ′ are MKNF
formula, then ¬ϕ, ∃x : ϕ, Kϕ, notϕ, and ϕ ∧ ϕ′ are MKNF
formulas. The symbols ∨, ⊃, ∀ are interpreted as usual.

Let Σ be a signature and ∆ a nonempty set called a uni-
verse. A first-order interpretation I over Σ and ∆ is defined
as usual, with an additional condition that for each element
α ∈ ∆, the signature Σ is required to contain a special con-
stant nα, called a name, such that nIα = α.

An MKNF structure is a triple (I,M,N), where I is a
first-order interpretation over ∆ and Σ, and M and N are
nonempty sets of first-order interpretations over ∆ and Σ.
Given an MKNF structure (I,M,N), two-valued satisfiabil-
ity of an MKNF formula is defined as follows:

(I,M,N) |= P (t1, . . . , tn) iff (t
I
1, . . . , t

I
n) ∈ P I

(I,M,N) |= ¬ϕ iff (I,M,N) 6|= ϕ

(I,M,N) |= ϕ1 ∧ ϕ2 iff (I,M,N) |= ϕ1 and (I,M,N) |= ϕ2

(I,M,N) |= ∃x : ϕ iff (I,M,N) |= ϕ[nα/x] for some α ∈ ∆

(I,M,N) |= Kϕ iff (J,M,N) |= ϕ for all J ∈M
(I,M,N) |= notϕ iff (J,M,N) 6|= ϕ for some J ∈ N

Let ϕ be an MKNF formula. An MKNF interpretation
M over a universe ∆ is a nonempty set of first-order inter-
pretations over ∆, and M satisfies ϕ, denoted M |= ϕ, if
(I,M,M) |= ϕ for each I ∈ M . An MKNF interpretation
M is a two-valued MKNF model of ϕ if (i) M |= ϕ, and (ii)
∀M ′ s.t. M ′ ⊃M , (I ′,M ′,M) 6|= ϕ for some I ′ ∈M ′.

The notion of the MKNF structure is extended to that of
three-valued MKNF structure (I,M,N ), which consists of
a first-order interpretation, I , and two pairs,M = 〈M,M1〉
andN = 〈N,N1〉, of sets of first-order interpretations, where
M1 ⊆ M and N1 ⊆ N . From 〈M,M1〉, we can identify
three truth values for modal K-atoms in the following way:
Kϕ is true w.r.t. 〈M,M1〉 if ϕ is true in all interpretations in
M ; it is false if it is false in at least one interpretation in M1;
and it is undefined otherwise. For not-atoms, a symmetric
treatment w.r.t. 〈N,N1〉 is adopted. Let {t,u, f} be the set
of truth values true, undefined, and false with the order f <
u < t, and let the operator max (resp. min) choose the
greatest (resp. the least) element with respect to this ordering.
A three-valued MKNF formula is evaluated as follows:

(I,M,N )(P (t1, . . . , tn)) =

{
t iff (tI1, . . . , t

I
n) ∈ P I

f iff (tI1, . . . , t
I
n) 6∈ P I

(I,M,N )(¬ϕ) =


t iff (I,M,N )(ϕ) = f

u iff (I,M,N )(ϕ) = u

f iff (I,M,N )(ϕ) = t

(I,M,N )(ϕ1 ∧ ϕ2) = min{(I,M,N )(ϕ1), (I,M,N )(ϕ2)}

(I,M,N )(ϕ1 ⊃ ϕ2) =

{
t iff (I,M,N )(ϕ2) ≥ (I,M,N )(ϕ1)

f otherwise

(I,M,N )(∃x : ϕ) = max{(I,M,N )(ϕ[α/x])|α ∈ ∆}

(I,M,N )(Kϕ) =


t iff (J, 〈M,M1〉,N )(ϕ) = t for allJ ∈M
f iff (J, 〈M,M1〉,N )(ϕ) = f for someJ ∈M1

u otherwise

(I,M,N )(notϕ) =


t iff (J,M, 〈N,N1〉)(ϕ) = f for some J ∈ N1

f iff (J,M, 〈N,N1〉)(ϕ) = t for all J ∈ N
u otherwise

A (three-valued) MKNF interpretation pair (M,N) con-
sists of two MKNF interpretations, M and N , with ∅ ⊂ N ⊆

M . An MKNF interpretation pair satisfies an MKNF formula
ϕ, denoted (M,N) |= ϕ, iff (I, 〈M,N〉, 〈M,N〉)(ϕ) = t
for each I ∈ M . If M = N , then the MKNF interpretation
pair is called total. If there exists an MKNF interpretation
pair satisfying a formula ϕ, then ϕ is said to be consistent (or
satisfiable); otherwise ϕ is inconsistent.

An MKNF interpretation pair (M,N) is a three-valued
MKNF model of an MKNF formula ϕ if (i)(M,N) |= ϕ,
and (ii) for all MKNF interpretation pairs (M ′, N ′) with
M ⊆ M ′ and N ⊆ N ′, where at least one of the inclu-
sions is proper and M ′ = N ′ if M = N , ∃I ′ ∈ M ′ s.t.
(I ′, 〈M ′, N ′〉, 〈M,N〉)(ϕ) 6= t.

Let (M1, N1) and (M2, N2) be MKNF interpretation pairs.
We define an order of knowledge as: (M1, N1) �k (M2, N2)
iff M1 ⊆ M2 and N1 ⊇ N2. Then, a well-founded MKNF
model of an MKNF formula ϕ is defined as a partial MKNF
model (M,N) such that (M1, N1) �k (M,N) for all three-
valued MKNF models (M1, N1) of ϕ.

3 Well-Founded Semantics for Hybrid MKNF
A hybrid MKNF KB K = (O,P) consists of a decidable
description logic (DL) knowledge base O, translatable into
first-order logic, and a rule base P , a finite set of rules with
modal atoms. The work of [Knorr et al., 2011] focuses on
nondisjunctive rules (also see [Motik and Rosati, 2007]).

An MKNF rule r is of the form KH ← KA1, . . . ,KAm,
notB1, . . . , notBn, where Hi, Ai, and Bj are function-free
first-order atoms. KH , {KAi}, and {notBi} are called
the head (denoted Hd(r)), the positive body (Bd+(r)), and
the negative body (Bd−(r)), respectively, and let Bd(r) =
Bd+(r) ∪ Bd−(r). A rule is positive if it contains no not-
atoms and P is positive if all rules in it are positive.

Following [Motik and Rosati, 2010], we assume that
MKNF rules are DL-safe; thus we can assume that rules are
already grounded, if not said otherwise.

For the interpretation of a hybrid MKNF KB K = (O,P),
a transformation π(K) = Kπ(O) ∧ π(P) is performed to
transform O into a first-order formula and rules into a con-
junction of first-order implications to make each of them co-
incide syntactically with an MKNF formula. Namely,

π(r) = ∀~x : (KH ⊂ KA1 ∧ . . . ∧KAm ∧ notB1 ∧ . . . ∧ notBn)
π(P) =

∧
r∈P π(r), π(K) = Kπ(O) ∧ π(P)

where ~x is the vector of free variables in r. In the sequel, we
may just identify K with π(K) and P with π(P).
Definition 1. LetK = (O,P) be a hybrid MKNF KB. KA(K)
is the smallest set that contains all ground K-atoms occurring
in P and modal atom Kφ if notφ occurs in P . A (partial)
partition of KA(K) is a pair (T, P ), where T ⊆ P ⊆ KA(K).
A partition of the form (T, T ) is called exact.

We may overload the operator KA: given a set of modal
atoms S, define KA(S) = {Kφ |Kφ ∈ S or notφ ∈ S}.

Intuitively, T contains true modal K-atoms and P contains
possibly true modal K-atoms. Thus, the complement of P is
the set of false modal K-atoms and P\T the set of undefined
modal K-atoms.

The objective knowledge S ⊆ KA(K) is the set of first-
order formulas OBO,S = {π(O)} ∪ {ξ | Kξ ∈ S}.
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There is a close relationship between partial partitions and
MKNF interpretation pairs.
Definition 2. That a partition (T, P ) of S ⊆ KA(K) is in-
duced by an MKNF interpretation pair (M,N) is defined as:
(i) Kξ ∈ T iff ∀I ∈ M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = t; (ii)
Kξ 6∈ P iff ∀I ∈ M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = f , and
(iii) Kξ ∈ P\T iff ∀I ∈M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = u.

Let K = (O,P) be a positive hybrid MKNF knowledge
base. We define the operator TK on subsets S of KA(K) :

TK(S) = {Hd(r) | r ∈ P, ∀KA ∈ Bd+(r),KA ∈ S} ∪
{Kξ ∈ KA(K) |OBO,S |= ξ}

AsP is positive, TK is monotonic and thus it possesses a least
fixpoint, which can be computed by the sequence 〈T iK〉∞i=0,
where T 0

K = ∅, and T i+1
K = TK(T iK), for all i ≥ 0. Let us

denote the least fixpoint of operator TK by lfp(TK).
Following [Knorr et al., 2011], we define two antitonic op-

erators ΓK and Γ ′K for the computation of the least fixpoint
of TK′ , where K′ is a positive hybrid MKNF KB obtained by
two different transformations from K. Let S ⊆ KA(K). The
MKNF transform of K relative to S, denoted K/S, is defined
by K/S = (O,P/S), where P/S is obtained from P by (i)
deleting each rule r in P such that KA(Bd−(r))∩S 6= ∅, and
(ii) deleting Bd−(r) from each remaining rule r.

To avoid potential conflicts between a DL knowledge base
and rules, the MKNF-coherent transform, denoted K//S, is
defined by K//S = (O,P//S), where P//S is the same as
P/S, except that the condition (i) of the transform K/S is
changed to: deleting each rule r such that KA(Bd−(r))∩S 6=
∅ or OBO,S |=¬H , where Hd(r)=KH .

Since in both cases of K/S and K//S the resulting rule
base is positive, a least fixpoint in each case exists. Let us
define ΓK(S) = lfp(TK/S) and Γ ′K(S) = lfp(TK//S). Then,
we can construct two sequences Pi and Ni, as follows:

P0 = ∅, . . . ,Pn+1 = ΓK(Nn), . . . ,Pω =
⋃

Pi

N0 = KA(K), . . . ,Nn+1 = Γ ′K(Pn), . . . ,Nω =
⋂

Ni

(1)

The increasing sequence Pi is intended to compute modal
K-atoms that are true, while the decreasing sequence Ni com-
putes modal K-atoms that are possibly true, and at the end we
reach a fixpoint pair (Pω,Nω), called alternating fixpoint pair
of K, where Pω = ΓK(Nω) and Nω = Γ ′K(Pω).
Definition 3. Let K = (O,P) be a hybrid MKNF knowledge
base. If the alternating fixpoint pair (Pω,Nω) is a partition
of KA(K), it is then called the well-founded partition of K.

4 Well-Founded Semantics Reclassified
Let us first cite the relevant theorems of [Knorr et al., 2011]
that are under discussion here.
• Claim (1) (Theorem 1 in [Knorr et al., 2011]) If K is

an MKNF-consistent hybrid MKNF KB, then a well-
founded MKNF model exists, and it is unique.
• Claim (2) (Theorem 2 in [Knorr et al., 2011]) Let K =

(O,P) be a hybrid MKNF KB, Pω the fixpoint of Pi,
and Nω the fixpoint of Ni. K is MKNF-inconsistent iff
Γ ′K(Pω) ⊂ ΓK(Pω) or Γ ′K(Nω) ⊂ ΓK(Nω), or O is
inconsistent.

• Claim (3) (Theorem 4 in [Knorr et al., 2011]) Let
K = (O,P) be an MKNF-consistent hybrid MKNF KB
and (Pω,Nω) the well-founded partition of K. Then
(IP , IN ) is a three-valued MKNF model of K, where
(IP , IN ) = ({I | I |= OBO,Pω}, {I | I |= OBO,Nω}).

Below, we show two counterexamples to these claims.
Example 1. Let K = (O,P), where O = ¬c and P =
{Ka ← not b; Kb ← not a; Kc ← Ka}. It can be
verified that (M,M), where M = {{b}, {b, a}}, is a to-
tal three-valued MKNF model of K, and thus K is MKNF-
consistent. One can verify that the alternating fixpoint pair
of K, which is also the well-founded partition of K, is
(Pω,Nω) = (∅, {Ka,Kb}). From Γ ′K(Pω) = {Ka,Kb} and
ΓK(Pω) = {Ka,Kb,Kc}, we get Γ ′K(Pω) ⊂ ΓK(Pω). Then
by Claim (2) above, K is MKNF-inconsistent.

From (Pω,Nω) we get an MKNF interpretation pair

(IP , IN ) = ({I | I |= OBO,Pω}, {I | I |= OBO,Nω})
= ({∅, {a}, {b}, {a, b}}, {{a, b}})

which is not a three-valued MKNF-model of K, since for any
I , the three-valued MKNF structure (I, 〈IP , IN 〉, 〈IP , IN 〉)
evaluates [Kc,K¬c,Ka,Kb, not a, not b] to [f , t,u,u,u,u],
in which the last rule in P is not satisfied. Therefore, Claim
(3) is erroneous too.

For this example Claim (1) holds, as (M,M) is the only
three-valued MKNF model of K and it is thus least defined
and the well-founded MKNF model of K.
Example 2. Let us consider K = (O,P), where O = (a ⊃
h) ∧ (b ⊃ ¬h) and P = {Ka ← not b; Kb ← not a}. Con-
sider two partitions, ({Ka}, {Ka}) and ({Kb}, {Kb}). The
corresponding MKNF interpretation pairs turn out to be two-
valued MKNF models of K. Hence, K is MKNF-consistent.

The well-founded partition of K is (Pω,Nω) =
(∅, {Ka,Kb}). Applying the conditions in Claim (2), since
Γ ′K(Nω) = ΓK(Nω) = ∅, Γ ′K(Pω) = ΓK(Pω) = {Ka,Kb},
and O is consistent, no inconsistency is detected. That is,
for this example Claim (2) holds. But here, there is no
three-valued MKNF interpretation pair (M,N) for the well-
founded partition (∅, {Ka,Kb}), as OBO,{Ka,Kb} is unsat-
isfiable and thus N = ∅, while by definition a three-valued
MKNF interpretation pair must satisfy the condition ∅ ⊂
N ⊆M . As a result, for this example Claim (3) fails.

Since the above two-valued MKNF models are not com-
parable w.r.t. undefinedness and we can show that no other
three-valued MKNF models exist, Claim (1) fails too.

In general, we want our well-founded model to be mini-
mal, unique, and computable by an iterated construction, the
three properties that are typically associated with any notion
of a well-founded model in logic programming. The notion
of a well-founded MKNF model by Knorr et al. satisfies the
first two but not the third, while the alternating fixpoint con-
struction is not guaranteed to generate a partition that corre-
sponds to a three-valued MKNF model, even when such a
model exists. This suggests that we can pursue the correct
relationships between the concepts introduced in [Knorr et
al., 2011], which leads to a classification of hybrid MKNF
knowledge bases by a hierarchy of three classes, in addition
to the class of all hybrid MKNF knowledge bases.
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Definition 4. Let K = (O,P) be a hybrid MKNF KB and
(Pω, Nω) its alternating fixpoint pair.
• K is MKNF-consistent if K has a three-valued MKNF

model (the definition is unchanged).
• K is MKNF-strongly consistent if K has a well-founded

MKNF model.
• K is MKNF-coherent if ({I | I |= OBO,Pω}, {I | I |=
OBO,Nω}) is a three-valued MKNF model of K.

It can be shown that each class is a strict subset of the one
above it and the class of MKNF-coherent MKNF KBs is the
one intended by the well-founded semantics of Knorr et al.

5 Characterizations
We generalize the rule evaluation scheme of [Motik and
Rosati, 2010] from the two-valued case to the three-valued
one, with the goal of relating the rule evaluation by a (partial)
partition with the rule evaluation by a three-valued MKNF
structure. Let K = (O,P), let T and F be subsets of KA(K)
such that T ∩ F = ∅, and let r be a rule in P . The rule
r[K, T, F ] is obtained by replacing each modal atom Kξ
in r with t if Kξ ∈ T , with f if Kξ ∈ F , and with u
otherwise. Similarly, the rule r[not , T, F ] is obtained by
replacing each modal atom not ξ appearing in r with t if
Kξ ∈ F , with f if Kξ ∈ T , and with u otherwise. Finally,
r[T, F ] = r[not , T, F ][K, T, F ].

In all these cases, the result is simplified as follows:
• If the value of the head atom in a rule is equal to or

greater than the value of its body, then the rule is re-
placed by t←.
• If the value of the head atom in a rule is less than the

value of its body, then the rule is replaced by f ←.
The rule sets P[K, T, F ], P[not , T, F ], and P[T, F ] are

obtained by replacing each rule r in P , respectively, with
r[K, T, F ], r[not , T, F ], and r[T, F ]. We writeP[K, T, F ] =
t if each rule in P is of the form t←, or P = ∅; similarly, we
write P[K, T, F ] = f if P contains a rule of the form f ←.

We now define the important notion called stable partition.
Definition 5. Let K = (O,P) be a hybrid MKNF KB and
T ⊆ P ⊆ KA(K). (T, P ) is a stable partition of K if
(1) OBO,P is satisfiable;
(2) (i) ∀Kξ ∈ KA(K), if OBO,T |= ξ then Kξ ∈ T and

if OBO,P |= ξ then Kξ ∈ P ; and (ii) in addition,
P[T,KA(K) \ P ] = t; and

(3) for any other partition (T ′, P ′) with T ′ ⊆ T and P ′ ⊆
P , where at least one of the inclusions is proper,

(i) ∃Kξ ∈ KA(K) \ T ′, OBO,T ′ |= ξ, or ∃Kξ ∈
KA(K) \ P ′, OBO,P ′ |= ξ, or

(ii) P[not , T,KA(K) \ P ][K, T ′,KA(K) \ P ′] = f

The notion of a stable partition imitates that of three-valued
MKNF models by performing specific checks. Condition
(1) requires that the DL component O be consistent with
P , which guarantees the consistency of O with T (due to
T ⊆ P ). Condition (2) makes sure that (T, P ) "satisfy"
Kπ(O) as well as rules in P; in both cases we are able to

devise simple checks to achieve the goal. In (3), we minimize
the derivation of modal K-atoms by not allowing any smaller
T ′ and reduce the undefined by not permitting any smaller P ′,
so that (T ′, P ′) can still “satisfy" Kπ(O) on the one hand and
π(P) on the other.
Theorem 1. Let K = (O,P) be a hybrid MKNF KB..

(I) If an (MKNF) interpretation pair (M,N) is a three-
valued MKNF model of K, then the partition (T, P ) in-
duced by (M,N) is a stable partition of K.

(II) If a partition (T, P ) is a stable partition of K, then the
interpretation pair (M,N), where (M,N) = ({I | I |=
OBO,T }, {I | I |= OBO,P }), is a three-valued MKNF
model of K.

Given two partitions (T, P ) and (T ′, P ′), we define an or-
der of precision ⊆p as: (T, P ) ⊆p (T ′, P ′) if T ⊆ T ′ and
P ′ ⊆ P . As (T, P ) and (T ′, P ′) are partitions, they satisfy
T ⊆ P and T ′ ⊆ P ′; therefore (T, P ) ⊆p (T ′, P ′) expresses
T ⊆ T ′ ⊆ P ′ ⊆ P . Intuitively, the pair (T ′, P ′) is more
precise (in fact, no less precise) than (T, P ) in terms of truth
and falsity of modal atoms, and is an approximation to the
full precisions, which are exact partitions (Q,Q) such that Q
is in between T ′ and P ′. This is the familiar notion of ap-
proximation given in [Denecker et al., 2004].

The order of precision ⊆p defined here for partitions is the
counterpart of the order of knowledge �k defined for MKNF
interpretation pairs. We thus can define a hierarchy for hy-
brid MKNF knowledge bases, similar to that of Def. 4, but
this time based on the properties of the precision order, and
establish the relevant relationships among its subclasses.

A major advantage of representing three-valued MKNF
models in terms of stable partitions is that it allows us to com-
pute three-valued MKNF models using a relatively straight-
forward guess-and-check approach - guess a partition (T, P )
and check whether (T, P ) is stable.
Theorem 2. Let K = (O,P) be a hybrid MKNF KB and
(T, P ) a partition of K. Then, (T, P ) is a stable partition iff
T = ΓK(P ), P = Γ ′K(T ), and OBO,ΓK(T ) is satisfiable.

The relationship given above sheds light on how to devise
a DPLL style solver for semantics based on two-valued/three-
valued MKNF models. It also leads to the following results.
Proposition 1. Let K be a nonground but DL-safe hybrid
MKNF KB, and assume that the entailment of ground liter-
als in the language of O is decidable with data complexity
C. Then, the data complexity of deciding whether a three-
valued MKNF model exists, or deciding whether a two-valued
MKNF model exists, is in NPPTime

C
. If C is tractable, the

same decision problem for both is NP-complete.
These results are consistent with those of [Knorr et

al., 2011; Motik and Rosati, 2010], except that the NP-
completeness result for deciding the existence of a three-
valued MKNF model is new.
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