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Abstract

Understanding properties of deep neural networks
is an important challenge in deep learning. Deep
learning networks are among the most successful
artificial intelligence technologies that is making im-
pact in a variety of practical applications. However,
many concerns were raised about ‘magical’ power
of these networks. It is disturbing that we are really
lacking of understanding of the decision making
process behind this technology. Therefore, a natural
question is whether we can trust decisions that neu-
ral networks make. One way to address this issue is
to define properties that we want a neural network to
satisfy. Verifying whether a neural network fulfills
these properties sheds light on the properties of the
function that it represents. In this work, we take the
verification approach. Our goal is to design a frame-
work for analysis of properties of neural networks.
We start by defining a set of interesting properties
to analyze. Then we focus on Binarized Neural Net-
works that can be represented and analyzed using
well-developed means of Boolean Satisfiability and
Integer Linear Programming. One of our main re-
sults is an exact representation of a binarized neural
network as a Boolean formula. We also discuss how
we can take advantage of the structure of neural
networks in the search procedure.

1 Introduction
Deep neural networks have become ubiquitous in machine
learning with applications ranging from computer vision to
speech recognition and natural language processing. Neural
networks demonstrate excellent performance on many practi-
cal problems, often beating specialized algorithms for these
problems, which led to their rapid adoption in industrial appli-
cations. With such a wide adoption, important questions arise
regarding our understanding of the decision making process of
these neural networks: Is there a way to analyze deep neural
networks? Can we explain their decisions? How robust are
these networks to perturbations of inputs? How critical is the
choice of one architecture over an other? Recently, a new line
of research on understanding neural networks has emerged that

looks into a wide range of such questions, from interpretabil-
ity of neural networks to verifying their properties [Bau et
al., 2017; Szegedy et al., 2014; Pulina and Tacchella, 2010;
Huang et al., 2017; Katz et al., 2017; Cheng et al., 2017b;
Narodytska et al., 2017; Leofante et al., 2018].

There are a number of ways to analyze a neural network.
One way is to query the network directly, e.g. analyzing of
important parts of the input using numerical optimization tech-
niques, extracting interpretable information from the network,
e.g. using decision trees, and approximating the network with
a simpler function [Simonyan et al., 2013; Ribeiro et al., 2016;
Koh and Liang, 2017; Frosst and Hinton, 2017]. These ap-
proaches scale to large networks. However, they fail to provide
formal guarantees about properties of the network. An alterna-
tive approach is based on formal verification techniques. The
idea is to encode the network and the property we aim to verify
as a formal statement, using ILP, SMT or SAT, for example. If
the encoding provides an exact representation of the network
then we can study any property related to this network, e.g.
how sensitive the network is to perturbations of the input.

In this work we focus on an important class of neural net-
works: Binarized Neural Networks (BNNs) [Hubara et al.,
2016]. These networks have a number of important features
that are useful in resource constrained environments, like em-
bedded devices or mobile phones. Firstly, these networks are
memory efficient, as their parameters are primarily binary.
Secondly, they are computationally efficient as all activations
are binary, which enables the use of specialized algorithms for
fast binary matrix multiplication. These networks have been
shown to achieve performance comparable to traditional deep
networks that use floating point precision [Hubara et al., 2016].
Recently, BNNs have been deployed for various embedded
applications ranging from image classification [McDanel et
al., 2017] to object detection [Kung et al., 2017].

We start by discussing a set of interesting properties of neu-
ral network, including properties that relate inputs and outputs
of the network, e.g. robustness and invertibility, and properties
that relate two networks, like network equivalence. We discuss
how binarized neural networks can be represented as Boolean
or ILP formulas and how the properties that we identify can
be represented in the same formalism. Finally, we consider
main challenges that we face in using decision procedures in
reasoning about BNNs and how we can potentially address
them by exploiting the strutural properties of neural networks.
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2 Neural Networks
Notation. We denote [m] = {1, . . . ,m}. Vectors are in
column-wise fashion, denoted by boldface letters. For a vector
v ∈ Rm, we use (v1, . . . , vm) to denote its m elements.

We define the supervised image classification problem that
we focus on. We are given a set of training images drawn
from an unknown distribution ν over Zn, where n represents
the “size” of individual images. Each image is associated
with a label generated by an unknown function L : Zn → [s],
where [s] = {1, . . . , s} is a set of possible labels. During
the training phase, given a labeled training set, the goal is to
learn a neural network classifier that can be used for inference:
given a new image drawn from the same distribution ν, the
classifier should predict its true label. During the inference
phase, the network is fixed. In this work, we study properties
of such fixed networks generated post training. Let X denote
the domain from which inputs are drawn. For example, in the
case of images, X = Zn.

3 Analysis of Neural Networks
In this section, we define several important properties of neural
networks, ranging from robustness to properties related to
network structure. We consider a general feedforward neural
network denoted by F. Let F(x) represent the output of F on
input x and `x = L(x) be the ground truth label of x. For
example, x can be an image of a bus and `x its ground truth
label, i.e. ‘bus’.

3.1 Robustness
Robustness is an important property that guards the network
against tampering of its outcome by perturbing the inputs.
Robustness is by far the most researched notion in formal
methods literature of verification of neural networks [Katz
et al., 2017; Huang et al., 2017; Cheng et al., 2017a; Bunel
et al., 2017; Fischetti and Jo, 2017]. It is also known as
vulnerability to adversarial attacks in the neural networks
literature [Szegedy et al., 2014; Goodfellow et al., 2015].
We make two simplifications compared to the related work.
First, we look at the robustness property in the context of
the classification problem. However, these definitions can be
extended to networks with richer outputs. Second, we consider
the L∞ norm to measure distance for simplicity. [Leofante et
al., 2018] give a survey of neural networks properties from the
formal verification point of view in the general case.

There are two forms of robustness that are widely consid-
ered in the literature: global and local robustness. Global
robustness means that for any valid input, there is no small
perturbation that can change the decision of the network on
this input. Global robustness is a strong property that is chal-
lenging to verify for many applications.

Definition 1 (Global Robustness). A feedforward neural net-
work F is globally ε-robust if for any x, x ∈ X and τ ,
‖τ‖∞ ≤ ε we have that F(x+ τ) = `x.

Local robustness is a property that is defined for a single
input x. It is a much weaker property that can be efficiently
checked for small realistic inputs.

Definition 2 (Local Robustness). A feedforward neural net-
work F is locally ε-robust for an input x, x ∈ X , if there does
not exist τ , ‖τ‖∞ ≤ ε, such that F(x+ τ) 6= `x.

There are many variants of robustness that can be posi-
tioned between local and global robustness. One example
is to define a relaxation of the global robustness property by
allowing a violation of the property on a small fraction of
inputs, that comes from the notion of universal adversarial
attacks [Moosavi-Dezfooli et al., 2016].

3.2 Invertibility
Invertibility of the neural network is an interesting prop-
erty that recently was considered in the verification litera-
ture [Ehlers, 2017; Korneev et al., 2018]. The main idea is to
explore a set of inputs that map to a given output. For example,
what the inputs of the network are (if exist) that map to a given
output. In general, we need to define declarative constraints
on the inputs otherwise a lot of noisy images will be generated.
Let C(X ) denote the constrained domain of inputs. These
constraints come from the practical application.

Definition 3 (Local Invertibility). A feedforward neural net-
work F is locally invertible for an output s if there exists x,
x ∈ C(X ), such that F(x) = s.

A related problem here is how to enumerate multiple, prefer-
ably diverse by some measure, inputs of the network that map
to a given output.

3.3 Network Equivalence
We consider is equivalence of networks. Informally, two net-
works F1 and F2 are equivalent if they generate same outputs
on all inputs drawn from the domain X .

Definition 4 (Network Equivalence). Two feedforward neural
networks F1 and F2 are equivalent if for all x ∈ X , F1(x) =
F2(x).

An important case of using network equivalence is cer-
tifying a network alteration. Consider a scenario where a
part of the trained network has been altered to form a new
network. This change could arise due to model reduction op-
erations that are commonly performed on deep networks to
make them amenable to execution on resource-constrained
devices [Reagen et al., 2017] or they could arise from other
sources of noise including adversarial corruption of the net-
work. The question now is whether the altered network is
equivalent to the original network?

Next we consider a class of networks that we focus on in
this work.

4 Binarized Neural Networks
A binarized neural network (BNN) is a feedforward net-
work where weights and activations are predominantly bi-
nary [Hubara et al., 2016]. It is convenient to describe the
structure of a BNN in terms of composition of blocks of lay-
ers rather than individual layers. Each block consists of a
collection of linear and non-linear transformations. Blocks are
assembled sequentially to form a BNN.
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Structure of kth Internal block, BLKk : {−1, 1}nk → {−1, 1}nk+1 on input xk ∈ {−1, 1}nk

LIN y = Akxk + bk , where Ak ∈ {−1, 1}nk+1×nk and bk ∈ Rnk+1

BN zi = αki

(
yi−µki
σki

)
+ γki , where y = (y1, . . . , ynk+1), and αki , γki , µki , σki ∈ R. Assume σki > 0.

BIN xk+1 = sign(z) where z = (z1, . . . , znk+1) ∈ Rnk+1 and xk+1 ∈ {−1, 1}nk+1

Structure of Output Block, O : {−1, 1}nd → [s] on input xd ∈ {−1, 1}nd

LIN w = Adxd + bd, where Ad ∈ {−1, 1}s×nd and bd ∈ Rs
ARGMAX o = argmax(w), where o ∈ [s]

Table 1: Structure of internal and outputs blocks, which stacked together form a binarized neural network. In the training phase, there might be
an additional hard tanh layer after batch normalization. Ak and bk are parameters of the LIN layer, whereas αki , γki , µki , σki are parameters
of the BN layer. µ’s and σ’s correspond to mean and standard deviation computed in the training phase. The BIN layer is parameter free.
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Figure 1: A schematic view of a binarized neural network. The
internal blocks also have an additional hard tanh layer.

Internal Block. Each internal block (denoted as BLK) in
a BNN performs a series of transformations over a binary
input vector and outputs a binary vector. While the input and
output of a BLK are binary vectors, internal layers of BLK
can produce real-valued intermediate outputs. A common
construction of an internal BLK (taken from [Hubara et al.,
2016]) is composed of three main operations:1 a linear trans-
formation (LIN), batch normalization (BN), and binarization
(BIN). Table 1 presents the formal definition of these trans-
formations. The first step is a linear (affine) transformation of
the input vector. The linear transformation can be based on a
fully connected layer or a convolutional layer. The linear trans-
formation is followed by a scaling which is performed with
a batch normalization operation [Ioffe and Szegedy, 2015].
Finally, binarization is performed using the sign function to
obtain a binary output vector. Figure 1 shows two BLKs con-
nected sequentially.

Output Block. The output block (denoted as O) produces
the classification decision for a given image. It consists of two
layers (see Table 1). The first layer applies a linear (affine)
transformation that maps its input to a vector of integers, one
for each output label class. This is followed by a ARGMAX
layer, which outputs the index of the largest entry in this vector
as the predicted label.
Network of Blocks. BNN is a deep feedforward network
formed by assembling a sequence of internal blocks and an out-
put block. Suppose we have d− 1 blocks, BLK1, . . . ,BLKd−1
that are placed consecutively, so the output of a block is an
input to the next block in the list. Let xk be the input to BLKk

1In the training phase, there is an additional hard tanh layer
after batch normalization layer that is omitted in the inference
phase [Hubara et al., 2016].

and xk+1 be its output. The input of the first block is the input
of the network. We assume that the input of the network is a
vector of integers, which is true for the image classification
task if images are in the standard RGB format. Note that these
integers can be encoded with binary values {−1, 1} using a
standard encoding. Therefore, we keep notations uniform for
all layers by assuming that inputs are all binary. The output of
the last layer, xd ∈ {−1, 1}nd , is passed to the output block
O to obtain the label.
Definition 5 (Binarized Neural Network). A binarized neural
network BNN : {−1, 1}n → [s] is a feedforward network that
is composed of d blocks, BLK1, . . . ,BLKd−1,O. Formally,
given an input x,

BNN(x) = O(BLKd−1(. . .BLK1(x) . . .)).

5 Progress in Formal Analysis of BNNs
We overview results that we have obtained so far on analysis
of BNNs [Narodytska et al., 2017; Korneev et al., 2018].

5.1 Encoding of BNNs
Our first contribution is to propose an exact encoding of BNNs
as a Boolean formula in the sense that all valid pairs of inputs
and outputs of a given network are exactly solutions of the
Boolean formula. To the best of our knowledge, this is the first
work on verifying properties of deep neural networks using
an exact Boolean encoding of the network. Independently,
a similar encoding was proposed by [Cheng et al., 2017b].
As we mentioned above, while the input and the output of
each block are binary vectors, the intermediate values are real.
The key insight was that we should consider a composition of
functions rather than functions of individual layers separately.
Using this approach, we showed that a safe rounding can
be performed and the network can be encoded as a set of
reified cardinality constraints. In turn, these constraints can
be compactly encoded into a Boolean formula using one of
the commonly used encodings, e.g. we used the sequential
counters encoding [Sinz, 2005]. Hence, we can use powerful
SAT solvers to perform property verification.

5.2 Robustness of BNNs
We considered a problem of local robustness of BNNs. To be
able to verify this property, first, we encoded it as a Boolean
formula. Second, to check the feasibility of the approach we
performed a series of experiments on three small datasets,
MNIST and it variants. We trained a medium size binarized
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network to perform classification. Then we encoded it as a
Boolean formula and added the verification condition formula.
We showed that if the resulting formula is unsatisfiable then
the local robustness property holds for the input image.

For the majority of benchmarks we showed that the property
does not hold and a perturbation that leads to its violation
exists. However, for some benchmark images we showed that
these images are certifiably ε-robust.

The main lesson we learn from this work is that verifica-
tion of neural networks is a challenging problem for mod-
ern decision procedures. Even a medium size network with
an input of size 784 results in large formulas that are hard
to tackle using a SAT solver. One observation we made is
that we can exploit the structure of these encodings to solve
the resulting SAT formulas more efficiently based on the
idea of counterexample-guided search [Clarke et al., 2000;
McMillan, 2005; McMillan, 2003]. Namely, the SAT en-
coding follows the modular structure of the network. Let us
illustrate our approach with a simple network consisting of two
internal blocks and an output block as in Figure 1. Suppose
we want to verify the local robustness property of the network .
The network can be encoded as a conjunction of two Boolean
formulas: Gen (generator) that encodes the first block of the
network, and Ver (verifier) that encodes the rest of the net-
work. The Gen and Ver are embedded in a counterexample-
guided search procedure and they communicate via variables
shared by the two formulas. This allows us to guide the search
procedure and improve performance on some benchmarks.

5.3 Invertibility of BNNs
We considered the problem of invertibility of BNNs [Korneev
et al., 2018]. We started from a trained BNN that takes an
image of porous media and outputs a vector of parameters that
describe its physical properties. Images of porous media2 are
black and white images that represent an abstraction of the
physical structure. Solid parts are encoded as a set of con-
nected black pixels; a void area is encoded a set of connected
white pixels. The given BNN represents an approximation of
a partial differential equation solver for computing dispersion
coefficients for the given geometry of a porous medium.

We considered the problem of invertibility of a BNN: Given
an output vector, can we construct an input image subset to
some additional constraints? The physical meaning is to syn-
thesize a new porous media with the given set of properties
where properties are defined by the values of dispersion coeffi-
cients. In this work we demonstrated that invertibility problem
for BNNs can be encoded as an integer linear program where
all variables are integers and used ILP and SMT solvers to
tackle this problem. We were able to generate images for a
small dataset with 16 by 16 pixels images given 3 layered
neural network.

6 Future work
The area of the formal verification of neural networks is
just emerging [Pulina and Tacchella, 2010; Pulina and Tac-

2Specifically, we are looking at a transitionally periodic “unit
cell” of porous medium assuming that porous medium has a periodic
structure [Hornung, 1997].

chella, 2012; Bastani et al., 2016; Huang et al., 2017;
Katz et al., 2017; Bunel et al., 2017; Cheng et al., 2017a;
Dutta et al., 2017; Tjeng and Tedrake, 2017; Narodytska et
al., 2017; Leofante et al., 2018]. There are a number of in-
teresting research directions. First, it is important to build
new decision procedures that are tailored for solving problems
of verification of neural networks. For example, a promising
research direction is to take advantage of the modular structure
of neural networks that is naturally preserved in the encoding.
Second, we observe that so far research on verification of neu-
ral networks is focused on the discriminative problem, e.g. the
classification problem. However, to the best of our knowledge,
there is no work on analysing generative models formally,
like neural networks produced with the generative adversarial
framework [Goodfellow et al., 2014]. For example, we need
to understand what interesting properties to analyze for these
structures are. The third promising research direction is using
formal analysis to increase our understanding of the decision
making process of neural networks, for example, extracting
explanations that support neural network decisions.
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