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Abstract

Collaborative privacy-preserving planning (CPPP)
is a multi-agent planning task in which agents need
to achieve a common set of goals without reveal-
ing certain private information. CPPP has gained
attention in recent years as an important sub area
of multi agent planning, presenting new challenges
to the planning community. In this paper we de-
scribe recent advancements, and outline open prob-
lems and future directions in this field.

We begin with describing different models of pri-
vacy, such as weak and strong privacy, agent pri-
vacy, and cardinality preserving privacy. We then
discuss different solution approaches, focusing on
the two prominent methods — joint creation of a
global coordination scheme first, followed by inde-
pendent planning to extend the global scheme with
private actions; and collaborative local planning
where agents communicate information concerning
their planning process. In both cases a heuristic is
needed to guide the search process. We describe
several adaptations of well known classical plan-
ning heuristic to CPPP, focusing on the difficulties
in computing the heuristic without disclosing pri-
vate information.

1 Introduction

Designing autonomous agents that act collaboratively is an
important goal. A fundamental requirement of such collabo-
ration is to plan for multiple agents acting to achieve a com-
mon set of goals. Collaborative privacy-preserving planning
(CPPP) is a multi-agent planning task in which agents need
to achieve a common set of goals without revealing certain
private information [Brafman and Domshlak, 2008]. In par-
ticular, in CPPP an individual agent may have a set of private
facts and actions that it does not share with the other agents.
CPPP has important motivating examples, such as planning
for organizations that outsource some of their tasks.

Figure 1 illustrates a logistics example of a CPPP problem
in which the agents are trucks tasked with delivering pack-
ages. Trucks collaborate by loading and unloading packages
in agreed logistics centers (marked by rectangles). Each truck
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Figure 1: A logistics example, where trucks deliver packages be-
tween logistics centers, denoted by squares. Each agent ¢ controls
truck t; and covers a set of cities. The cities are denoted by circles,
each labeled by a pair ¢, j where ¢ is the agent that covers this city
and j is the local city index. Logistics centers can be entered by
several agents, serving as collaboration sites.

has also a set of locations where only it can load and unload
from (marked by circles). Whether a package is in a logistics
center is of interest to multiple agents, and is thus public. All
other information is private, such as the location of the indi-
vidual trucks, and the location of the packages when they are
not in a logistics center.

There are two main approaches for solving CPPP [Torrefio
et al., 2017]. First, the agents can jointly create a high
level plan, composed only of public actions. Then the in-
dividual agents extend this high level scheme to a fully
detailed multi-agent plan [Brafman and Domshlak, 2008;
Brafman and Domshlak, 2013; Tozicka et al., 2014; Jakubuv
et al., 2015]. Alternatively, each agent can run a distributed
forward search to find a multi-agent plan directly, informing
other agents of their progress [Nissim and Brafman, 2014].
In both cases, a heuristic may be needed to guide the search
process [Maliah ez al., 2017; Stolba and Komenda, 2017]. In-
deed, research has suggested adaptations of several classical
planning heuristics into the CPPP, focusing mainly on avoid-
ing the disclosure of private information through the heuristic
computation.

In this paper we review research on CPPP, focusing on ad-
vancements, as well as on open challenges and interesting fu-
ture directions. We discuss different models of privacy, exam-
ine important algorithmic advancements, and explain current
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heuristic computations.

2 Privacy Preserving Planning

An MA-STRIPS problem [Brafman and Domshlak, 2013] is
represented by a tuple (P, {A;}¥_,, I, G) where:

e [k is the number of agents.

e P is afinite set of primitive propositions (facts).
e A; is the set of actions agent ¢ can perform.

o ] is the start state.

e (5 is the goal condition.

Each action a = (pre(a), eff (a)) is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of primitive propositions and literals,
respectively. A state is a truth assignment over P. G is a con-
junction of facts. a(s) denotes the result of applying action a
to state s. A plan ™ = (a1, ..., a) is a solution to a planning
task iff G C ag(...(a1(I)...).

Privacy-preserving MA-STRIPS extends MA-STRIPS by
defining sets of variables and actions as private, known only
to a single agent. private;(P) and private;(A;) denote the
variables and actions, respectively, that are private to agent
1. public(P) is the set of public facts in P. public;(A4;), the
complement of private;(A4;) w.r.t. A;, is the set of public ac-
tions of agent . Some preconditions and effects of public
actions may be private, and the action obtained by removing
these private elements is called its public projection, and it is
known to other agents. When a public action is executed, all
agents are aware of the execution, and view the public effects
of the action. The goals can be public, but can also be pri-
vate to a single agent, posing an additional challenge to the
planing process.

An agent is aware only of its local view of the problem,
that is, its private actions and facts, its public actions, the pub-
lic facts, and the public projection of the actions of all other
agents. That is, for public actions of other agents, the agent’s
local view contains only the public preconditions and effects
of these actions.

In the logistics example in Figure 1, the set of facts P rep-
resents the location of two packages and six trucks. Each
truck has three actions: move, load, and unload, correspond-
ing to moving between locations, loading a package and un-
loading it. Trucks can only drive along the edges in Figure 1.
Agents are heterogeneous and their range is restricted, such
that location ¢, j can only be reached using truck ¢. The rect-
angles are logistic centers visited by multiple trucks that load
or unload packages.

Trucks are owned by different companies that do not want
to share their locations and coverage (the locations that a
truck can reach) with other companies. Thus, all the facts
representing the location of trucks are private, while the facts
representing whether a package is at a logistic center are pub-
lic. Only the load/unload actions at the logistic centers are
public, whereas the move actions are private for each agent,
as well as loading and unloading at private locations.

One can consider an alternative to the public-private di-
chotomy, where facts are shared only among a subset of
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agents. For example, in Figure 1, whether package p; is at
E is private to the subset of agents {4,5,6}. These facts are
called subset-private, as they are private to a subset of agents,
with public facts being a special case, where the subset con-
tains all agents.

The above definitions can perhaps be simplified. Specifi-
cally, it is unclear whether one truly needs to define both pub-
lic actions and public facts. It may well be that all actions can
be private, some facts can be public, and agents need only be
aware when the value of public fact changes. Such a model
can be more compact, but it is unclear whether it has the same
representational power as the current privacy preserving MA-
STRIPS model.

It is also interesting to explore extensions of this basic
problem definition. Most specifically, the above definitions
assume that each agent operates in a classical setting. It
is interesting to explore other possibilities, such as non-
deterministic action effects, or partial observability. In both
cases, the agent’s local plans cannot be represented as a se-
quential plan, but rather as plan trees or graphs. In some
cases the global public plan must also be represented as a
plan graph. Under these settings, new algorithms must be de-
veloped or adapted from the relevant planning areas.

3 Privacy Models

An algorithm is privacy-preserving, if it provably does not
“reveal private information”. Much of the research on
privacy-preserving planning considered revealing private in-
formation only if the information is explicitly communicated
to another agent. For example, if an agent publishes during
planning that it intends to bring a truck ¢ to a private location
loc, then clearly the agent has revealed the existence of this
private location, as well as an ability to achieve the private
fact (at t loc), breaking the privacy constraint. However, if the
agent only publishes that it can achieve a private fact with the
obfuscated name p, then it is unclear what private informa-
tion has been revealed. Thus, some privacy-preserving MA-
STRIPS planners are built on obfuscating the private informa-
tion they publish by applying some cryptographic tool [Luis
and Borrajo, 2014; Borrajo and Fernandez, 2015].

Brafman [2015] shows that the above form of privacy is
weak, in the sense that there is no well formed constraint on
what other agents can infer from the information available
to them. For example, if the public plan consists of agent ¢
picking up a package and the pickup action requires a truck to
be present at the location of the package, then all agents now
know that 7 controls at least one truck. Brafman considered
a stronger form of privacy, where a fact or a specific value
of a fact is strongly private if other agents cannot deduce its
existence from the available information.

By “deducing the existence” of a private fact, we mean that
regardless of the reasoning power of the agents, they cannot
infer the existence of a strongly private fact from the avail-
able information. The information available to an agent is (1)
its local view of the problem, (2) the messages between the
agents during planning, and (3) the sequence of public actions
(of all agents) in the resulting plan. A multi-agent planning
algorithm is said to be strongly privacy preserving if the only
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information that agents can deduce, following the execution
of the algorithm, is information that is implied by the public
projection, their local view, and the public part of the solu-
tion [Brafman, 2015].

While appealing, achieving such a strong form of privacy
may be difficult. In fact, only two algorithms proven so far
have this strict form of privacy: Secure MAFS [Brafman,
2015] and two special variants of PSM [Tozicka et al., 2017].
Even these algorithms preserve this form of privacy only un-
der restrictive conditions. For example, secure MAFS was
shown to preserves strong privacy in a short list of specific
domains (logistics, satellites, rovers), having unit action cost
and when the heuristic function ignores the private state.

Thus, using more informed heuristics that we later discuss,
may violate the strong privacy of Secure MAFS. The current
planners that preserve strong privacy are either inefficient or
incomplete [Tozicka er al., 2017; Stolba et al., 2016b]. Ineffi-
ciency in this context is that for any MA-STRIPS problem, all
public solutions to all local views must be computed before a
solution is returned. Tozicka et al. [2017] suggested to con-
sider cases where an algorithm maintains strong privacy for a
class of problems.

Researchers have offered other definitions of privacy aside
from the two extreme cases of weak and strong privacy.
Maliah et al. [2016a] suggest that an agent should only be
aware of neighboring agents that modify a subset-private fact
that the agent uses as precondition or effect. An algorithm
preserves agent privacy if no agent can infer the existence
of another agent with which it does not share subset-private
facts. For example, in our running example, agent 6 should
be unaware of the existence of agents 1,2, 3.

Alternatively, Maliah et al. [2016c] suggest that agents
may be aware of the types of objects that other agents ma-
nipulate, but not of their cardinality. In the logistics exam-
ple above, even though all agents may be aware that trucks
carry packages between cities, they should not be aware of
the number of trucks, or the number of cities that trucks travel
between. An algorithms preserves cardinality privacy if no
agent can infer the number of private objects controlled by
another agent. In our running example, no agent should know
whether 5 covers 2 or 3 cities.

Finally, instead of designing binary privacy criteria, one
can consider more refined privacy metrics, that quantify the
amount of leaked information [Stolba ef al., 2018]. For ex-
ample, in distributed search [Maheswaran et al., 2006] one
often quantifies information loss using the entropy over the
possible state space. In that case, it may be possible for an
application designer to sacrifice some privacy in favor of effi-
ciency, such as the ability to scale up to larger problems.

4 Algorithmic Approaches

There are two major approaches to planning in CPPP
[Torrefio et al., 2017]. The first approach begins by com-
puting a public plan, which is known as a coordination
scheme [Nissim et al., 2010; Brafman and Domshlak, 2013;
Torreno et al., 2014]. Then, the agents independently extend
the public plan into a complete plan by adding private actions.
In this extension each agent attempts to achieve the precondi-
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tions of its own public actions in the public plan.

For example, in the GPPP planner [Maliah et al., 2017],
agents search for a coordination scheme jointly over a re-
laxed planning problem. The agents decide together on a pub-
lic state to expand. Then, each agent reports to other agents
the set of public states that it can reach from the expanding
state. To reduce the computational burden, the agents report
the states they can achieve in a delete relaxation of the prob-
lem. Thus, it may well be that when finding a plan, this plan
cannot be extended to a complete valid plan, and the agents
must backtrack.

In the DPP planner [Maliah et al., 2016c], on the other
hand, the agents compute together a single agent projection
of the CPPP problem that captures the dependencies between
public actions. That is, which public actions facilitate the
execution of other public actions of that agent. In our run-
ning example, such a dependency exists between loading a
package at C' and unloading it at E. These dependencies are
computed using limited regression from the precondition of
a public action to the effects of other public actions. Given
this projection, one can compute a high level plan using a
standard classical planner. The projection is incomplete, and
it is hence possible that the generated public plan cannot be
extended to a complete plan, in which case DPP fails.

An alternative approach to computing a high level scheme
is to compute a complete plan directly. This can be done
by each agent running a distributed forward search algorithm
over its own action space, informing other agents of advance-
ments in the search process.

The first algorithm in this family is MAFs [Nissim and
Brafman, 2014] — a distributed algorithm in which every
agent runs a best-first forward search to reach the goal. Each
agent maintains an open list of states, and in every iteration
each agent chooses a state in the open list to expand, generat-
ing all its children and adding them to the open list (avoiding
duplicates). Whenever an agent expands a state that was gen-
erated by applying a public action, it also broadcasts this state
to all other agents. An agent that receives a state adds it to the
open list. For example, in Figure 1, when agent 1 unloads p;
at A, it broadcasts this state to all other agents. Agent 3 can
now use this state to load p; and transport it to logistic centers
B,C, and D. To preserve privacy, the private part of a state
is obfuscated when broadcasting it, e.g., by replacing the pri-
vate facts with some index, such that only the broadcasting
agent knows how to map this index to the corresponding pri-
vate facts. Once the goal is reached, the agent achieving the
goal informs all others, and the search process stops.

MAFS can be extended in several ways. The MADLA plan-
ner [Stolba and Komenda, 2017] augments MAFS with two
different open lists, one ordered by a local heuristic, while
the other ordered by a global heuristic. Maliah et al. [2016b]
compute macros — sequences of private actions bounded by
public actions — to expedite the local search process of the
agent. For example, in Figure 1, once agent 5 has found the
sequence of actions allowing it to transfer package p; from
D to FE, it can save this sequence as a macro, allowing agent
5 to apply this macro in all future explored states where the
package is at D, expediting the search process.

The Forward-Backward planner [Maliah er al., 2016a] at-
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tempts to send newly generated states only to agents that can
apply an action using the newly achieved facts. For example,
when unloading p; at E, agent 4 can report this only to agents
5 and 6. For completeness, though, states must also be sent to
other neighbors, but never to agents that do not share subset
private facts. This allows MAFS to achieve agent privacy.

The efficiency of CPPP planners can be evaluated through
basic operations, such as the amount of expansions, or wall
clock time, but it is also important to evaluate the amount
of required communication throughout the planning process,
and prefer algorithms that send less information.

When evaluating plan quality, we can compute the plan’s
makespan, assuming maximal parallel execution. For exam-
ple, in Figure 1, agents 1 and 2 can transfer packages p;
and ps concurrently. When computing makespan, agents ex-
ecute their private plans concurrently, and public action in-
duce necessary synchronization points. As CPPP is collab-
orative, one can also compute the total amount of resources
consumed during plan execution as another measure of plan
quality. Other properties, such as fairness in the distribution
of effort among agents, may also apply in some problems.

5 Computing Heuristics

Heuristic search is the main technique for both the joint pub-
lic plan scheme, as well as the distributed individual plans.
Hence, the computation of a useful heuristic is clearly an im-
portant consideration in CPPP research. As in classical plan-
ning, the heuristic functions must be both informative and
easy to compute, but in CPPP their computation must also
preserve the same level of privacy as the planning process.

The adaptation of many classical planning heuristics to
CPPP has already been studied. The fast-forward (FF) heuris-
tic computes a planning delete relaxation graph. This can be
done in CPPP as well, where the agents jointly construct a
planning graph [Torreno et al., 2015; Stolba and Komenda,
2017]. At each iteration agents develop an internal relaxed
planning graph, starting from the public facts at the last layer.
Then, the agent report the newly achieved public facts, which
become the next layer of the global graph. This construc-
tion requires much collaboration and many messages for each
heuristic computation.

Other classical heuristics use a preprocessing phase to re-
duce the effort in computing heuristic values during planning.
For example, landmarks — facts that must be achieved in ev-
ery possible solution — are computed prior to planning using
a regression process. Then, one can estimate the heuristic
value of a state based on the amount of landmarks that need
to be achieved [Richter et al., 2008]. In CPPP, landmarks can
also be computed in a joint preprocessing phase [Maliah et
al., 2017]. In GPPP, agents decide on a landmark to develop
together. A landmark may be public, or private to an agent,
in which case other agents are only aware of its identifier.

Then, each agent can use regression to discover facts that
are required to achieve this landmark, which become new
landmarks, and are published to all agents. This process
continues until no new landmarks are discovered. For ex-
ample, in Figure 1, package p; must arrive at g1, which is a
private location for agent 6. This is a private landmark for

agent 6. Developing this landmark agent 6 reports a newly
found public landmark, that p; must arrive at logistic center
E. Now, developing this landmark, agents 4 and 5 discover
a disjoint landmark, that the package must be either at (5, 2)
or at (4,2). As these are both private landmarks, they report
just the indexes of the discovered landmark facts, and other
agents know only of the existence of this landmark.

Pattern databases (PDBs) are a second popular classical
planning heuristic that trades off preprocessing time to plan-
ning time [Edelkamp, 2001; Pommerening et al., 2013]. The
PDB contains a heuristic estimation for a state, based on pre-
computed solutions to a set of relaxed problems. PDBs can
also be computed for CPPP, where agents report costs of pro-
ducing public facts [Maliah er al., 2015]. For example, in
Figure 1, the PDB may contain the cost of transferring each
package by agent 5 between logistic centers D and E. The
relaxed problems in CPPP can be the private space of each
agent, and the PDB consists of the cost of achieving one pub-
lic fact given another public fact.

Instead of computing heuristics directly over the original
problem, one can create a projection of CPPP to a classical
single agent problem, and compute heuristics over the projec-
tion. On such simple projection is the local view of the agent,
consisting of its own private actions and facts, and the public
projections of actions of all other agents. However, this pro-
jection is extremely limited, ignoring essential information.
For example, the public action of agent 5 for unloading p; at
E has no public preconditions. In the view of other agents
it seems that agent 5 can unload p; at E without any previ-
ous actions, making it useless to plan to bring p; to logistic
center D. This results in a heuristic estimation which is a
gross under estimation. A projection that maintains the de-
pendency between bringing p; to D before it can be brought
to £ will be much more informative [Maliah et al., 2016c;
ToZicka et al., 2018]. Using such stronger projections one
can compute much more useful heuristic estimations.

Finally, most of the heuristics above may not be admissi-
ble, and are hence inadequate for optimal planning. Some
admissible heuristics such as LM-Cut and potential heuris-
tics were adapted to CPPP [Stolba et al., 2015; Stolba et al.,
2016a]. Still, optimal planning for CPPP has not yet received
sufficient attention from the community.

6 Conclusions

In this paper we have reviewed privacy preserving multi agent
planning (CPPP) — a problem setting that has gained much
attention from the planning community in recent years. We
discussed four different interesting topics in this area — the
structure of planning problems in this setting, the definition of
privacy, planning approaches and algorithms, and the compu-
tation of heuristic estimations.

For each topic we outlined the current trends, and dis-
cussed questions that are yet under investigated, with a sig-
nificant potential for future investigation.

We believe that CPPP provides both a realistic problem set-
ting, and a challenging ground for new development, and as
such, hope to see this area continuing to bloom with new ideas
and contributions.
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