Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Flexible Representative Democracy: An Introduction with Binary Issues

Ben Abramowitz' and Nicholas Mattei?

'Rensselaer Polytechnic Institute, Troy, NY, USA
2Tulane University, New Orleans, LA, USA

abramb @rpi.edu, nsmattei @tulane.edu

Abstract

We introduce Flexible Representative Democracy
(FRD), a novel hybrid of Representative Democ-
racy (RD) and Direct Democracy (DD), in which
voters can alter the issue-dependent weights of a
set of elected representatives. In line with the liter-
ature on Interactive Democracy, our model allows
the voters to actively determine the degree to which
the system is direct versus representative. How-
ever, unlike Liquid Democracy, FRD uses strictly
non-transitive delegations, making delegation cy-
cles impossible, preserving privacy and anonymity,
and maintaining a fixed set of accountable elected
representatives. We present FRD and analyze it us-
ing a computational approach with issues that are
independent, binary, and symmetric; we compare
the outcomes of various democratic systems us-
ing Direct Democracy with majority voting and full
participation as an ideal baseline. We find through
theoretical and empirical analysis that FRD can
yield significant improvements over RD for emu-
lating DD with full participation.

1 Introduction

Since the Athenian Ecclesia in 595 BCE Direct Democ-
racy (DD) as an ideal collective decision making scheme has
loomed large in the western imagination [Dunn, 1995]. While
DD may be desirable it becomes impractical at scale as it
places too much burden on individual decisions makers: ev-
eryone must be well-informed on every issue and available to
vote [Green-Armytage, 2015]. In addition to the attention re-
quirements, voters are also required to know and be able to ar-
ticulate their preferences at the time of every vote. While pref-
erences and preference learning are large research areas in
Al [Domshlak er al., 2011] every voter may not have enough
knowledge, information, time, energy, or incentive to partici-
pate, particularly when issues are numerous or complex.
Given the prohibitive costs of implementing a large-scale
DD in both human and agent societies, we often resort to rep-
resentation, relying upon a set of proxies to decide on the
voters’ behalf. Countries have parliaments, companies have
elected boards, and groups of agents select leaders to rep-
resent them [Yu et al., 2010]. Sets of representatives have

been used in many contexts and disciplines to reduce the
computation and communication burden of decision makers.
The Computational Social Choice (COMSOC) community
[Brandt er al., 2016] has produced a large body of research
on how to select and weight representatives. Indeed, using
multi-winner voting [Skowron et al., 2016], we can view the
winners as a set of exemplars that may be used to decide some
downstream application.Often it is beneficial to elect fixed
committees which meet certain axiomatic criteria. For exam-
ple, committees should be proportional and have justified rep-
resentation of the voters [Aziz et al., 2017]. Intuitively, these
difficulties in electing committees carry through to the set-
ting of Representative Democracy (RD) where the commit-
tee makes decisions in the interest of the voters/agents who
elect them. This setting was studied by Skowron [2015] who
proved that when we want to optimize for the sum of voters
who are represented on each issue the k-Median rule optimal.

Since DD can be impractical and RD comes with inher-
ent tradeoffs and limitations, hybridizations of the two have
arisen under the umbrella of Interactive Democracy. Coupled
with modern communication technologies, a large number of
proposed democratic decision making systems have been pro-
posed, and Interactive Democracy has become an important
area of research and application for AI [Brill, 2018]. Perhaps
the most popular version of this today is Liquid Democracy
(LD); which has received significant attention in the political
science [Green-Armytage, 2015], Al [Kahng et al., 2018] and
agents communities [Brill and Talmon, 20181, and has been
implemented in both corporate [Hardt and Lopes, 2015] and
political settings [Blum and Zuber, 2016].

In contrast to existing proposals, our model of Flexible
Representative Democracy (FRD) maintains a set of expert
representatives while allowing voters to guarantee their own
representation without raising the voters’ minimum required
burden. In an FRD voters elect a set of representatives to
serve a term during which they decide the outcomes over a
set of issues. Each voter, by default, allocates a fraction of
their voting power to each member of the committee. If this
allocation is uniform and we stop here, we are left with the
traditional model of RD where each representative has equal
power. However, for each issue under consideration in FRD,
the voters may deviate from this default by delegating their
voting power to any subset of the committee. If all voters use
their option to delegate on each issue, as long as there is at
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least one representative who agrees with each voter’s view,
the outcome perfectly recovers DD. Voters have both the elec-
tion and the flexible delegation option as tools for achieving
representation and holding representatives accountable.

In an FRD, voters have great flexibility in determining how
they are represented and the mandated disclosure of represen-
tatives’ votes guarantees that an attentive voter can be fully
informed about how their voting power will be and was used.
For example, the day after the election an inattentive voter
might choose a few elected representatives they trust, appor-
tion the power of their vote to these few for all future issues
and pay no attention until the next election. A more attentive
voter might alter their allocations on an issue-by-issue basis
as issues arise, reacting to representatives’ votes. In general,
voters determine the granularity with which they privately ex-
press their preferences over issues via the representatives. In
addition, in an FRD voters may or may not be permitted to
vote directly on the issues, depending upon the application.

Contributions. We introduce Flexible Representative
Democracy (FRD), a new model of Interactive Democracy
which transitions, at the discretion of the voters, between
RD and DD. FRD solves standing issues in the literature
on Interactive Democracy including maintaining a fixed,
elected committee to generate legislation, making delegation
cycles impossible, and preserving voter anonymity. We
analyze our model theoretically using independent, binary,
symmetric issues. We show that electing an optimal set of
representatives is hard for any large-scale RD no matter the
voting rule, thus motivating the use of flexible delegations.
Thus, we demonstrate the theoretical ability of delegations
under FRD to overcome the limitations of RD, providing
empirical results demonstrating that FRD outperforms both
RD and Proxy Voting for representing the majority will.

2 Model and Preliminaries

We primarily consider three democratic decision systems: Di-
rect Democracy (DD), Representative Democracy (RD), and
our model: Flexible Representative Democracy (FRD). Given
a set of voters V with preferences over the alternatives for
each issue in a set of issues S, we represent their collective
preferences by a preference profile Pys. In DD, a decision
rule Rs takes the Pys as input maps them to a set of out-
comes over the issues Opp; Rs(Pys) — Opp. !

By contrast, in RD voters’ preferences on the issues may
never be directly elicited. Rather, voters report their prefer-
ences over a set of candidates C. We denote the collective
preferences of the voters over the candidates by the elec-
toral profile Py¢c. An election rule Rg (i.e. multi-winner
voting rule) is then used to aggregate these preferences and
select a subset of candidates D to serve as representatives,
Re(Pye) — D C C. In a standard RD, a decision rule is
then applied to the public preferences of the representatives
over the issues Pps to determine the set of outcomes on all
issues Orp; Rs(Pps) — Ogp. Clearly, RD may produce
different outcomes than DD, and may leave accessible infor-
mation about voter preferences unsolicited and unused.

"More generally, different decision rules could be used on differ-
ent issues within a single DD, RD, or FRD.

In FRD, as with RD, the voters elect a set of representa-
tives Re(Pyc) — D C C. However, for every issue, a divis-
ible unit of voting power is given to each voter rather than to
each representative. Automatically after the election, the vot-
ers’ issue-specific votes are distributed among the representa-
tives according to some default distribution mechanism. Sub-
sequently, every voter has the option to alter how their voting
power is assigned to the representatives and may change this
for any subset issues at once or on an issue-by-issue basis. We
refer to this process of deviating from the default and actively
allocating voting power to representatives as delegation. Del-
egations are not permanent and may be altered before an issue
is decided. We let le represent the voting power allocated

by voter v; € V to candidate ¢; € C on issue s' € S, yield-
ing a collective matrix of weights . In FRD, a decision rule
‘Rs is then applied to the representatives’ preferences taking
these weights into account Rs (W, Pps) — Oprp. If voters
have the option to vote directly on issues rather than having
their voting power only distributed to representatives (e.g.,
more similar to LD), W and Pps can be augmented to allow
voters to “delegate” to themselves.

2.1 Model Specification

We restrict our attention to a simple type of FRD. Our ob-
jective is to compare the extent to which RD and FRD can
emulate DD, which we hold as “optimal.” We consider a set-
ting with symmetric, binary issues so each issue s € S has
two possible outcomes O € {0, 1}, and there are 2" possi-
ble outcome vectors over |S| = r of the form O € {0,1}".
We assume all issues are independent, this is a simplifying
assumption that circumvents issues raised in judgment aggre-
gation [List and Puppe, 2009], though an important direction
for future work. Without loss of generality, we label each of
the alternatives preferred by the (weak) majority of voters 1
and the other 0, breaking ties randomly (when N is even).
Thus, the ideal majoritarian outcome over the issues is {1}".

Each voter in the set of voters V = {vy,...,un} has a
preferred alternative v} € {0, 1} for every issue s* in the set
of issues S = {s',...,s"}. We let vector 7; = {v},...,v}}
represent the preferred outcome of voter v; over the issues,
resulting in the collective profile Pys = {7} : v; € V}. Sim-
ilarly, when we have representatives, we represent the prefer-
ence profile of the candidates as Pcs = {¢; : ¢; € C} where
candidate ¢; has preferred outcome ¢; € {0,1}".

We define the agreement between any two outcome vectors
01,05 of length r as L(O1,02) =1 -+ 37 0] — O4],
i.e., the fraction of issues for which the outcomes are the
same. When comparing to an ideal set of outcomes (i.e.
Opp), this is the number of issues decided “correctly.” We
will often refer to the agreement between a voter and candi-
date L(¥;, ¢;) as well as the agreement between the outcomes
of different democratic systems, i.e. L(Opp, Orp).

We consider three possible ways voters might express their
preferences over the candidates: approvals, total orderings,
and normalized weights. We make an assumption about these
preferences to give RD the greatest chance of maximizing
L(Opp,Orp): we assume each voters’ preferences over the
candidates are induced by their agreement. When voters sub-
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mit approval ballots, we assume v; approves of ¢; if and only
if L(7;,¢) > /2. When voters report total orderings (),
we assume they order all candidates so that ¢; >; cp only
if L(vj, ¢;) > L(vj, cp,) where ties are broken privately (e.g.
randomly). When voters report their preferences as normal-
ized weights, wé» = L(vjvcz)/z%ec L(vj,cn).

For DD, we only consider the simple majority rule as
our decision rule Rs as our issues are binary and sym-
metric. For our representative systems we compare several
common, anonymous election rules R¢ with a fixed, odd
committee size k, i.e., D C C where |D| = k. All rules
considered in our simulations are deterministic other than
randomized tie-breaking. In the setting where voters sub-
mit approval ballots, we consider Approval Voting and Re-
weighted Approval Voting (AV, RAV). When voters submit
their preferences over candidates as total orderings, we con-
sider Single-Transferrable Vote (STV), Borda, k-Median, and
Chamberlin-Courant (CC). When voters submit their ballots
as normalized weights over the candidates, we consider the
rule which selects the k candidates who receive the largest
total weight. Lastly, we compare these rules to selecting k
representatives uniformly at random from the candidates. We
refer the reader to Brandt er al. [2016] and Skowron [2015]
for complete definitions. We assume that the preferences of
candidates do not change before or after they are elected as
representatives. Without loss of generality, let the winning
candidates be the lowest k indexed {c1, . . ., ¢x } such that rep-

resentative d; € D is candidate ¢; and d; = ¢j.

Given a set D of k representatives, we want to evaluate
the capability of this set to represent the majority will of the
voters, i.e., recover the outcome of DD with full voter turnout.
Hence, we define coverage and majority agreement as metrics
to evaluate these systems. Let k% and &}, represent the number
of representatives who prefer alternatives 1 and 0 on issue s°
respectively, such that ki + ki = k.

e The majority agreement on a set of issues is the frac-
tion of issues on which the majority of representatives
agree with the majority of voters (ki > % > ki). This
quantity is >,y 4 L(Ogp, Obp).

e The coverage of a set of issues is the fraction of issues

covered on which at least one representative agrees with
the voter majority (0 < k%).

We allocate each voter one divisible vote for each inde-
pendent issue, maintaining the principle of “one person, one
vote.” By default, each voter’s unit of voting power is dis-
tributed uniformly among the representatives on each issue
so W} = N/k initially for each of the k candidates and r is-
sues (exactly as in RD). However, various distributions from
the literature on voting power [Shapley and Shubik, 1954;
Banzhaf III, 1964] and Proxy Voting [Alger, 2006] are worth
consideration in the future. We do not consider abstentions by
representatives nor voter, i.e., a voter assigns less than a full
vote across representatives, and we do not permit voters to
vote directly on the issues. Hence, the total voting power held
by the representatives remains /V collectively for all issues.

For our purposes, the total weight W} assigned to repre-
sentative d; on issue s’ is the sum of the voting power they
receive from default and delegation, > j W;l Consequently,

the total weight assigned to representatives who agree with
the voter majority is X{ = > di—1 W}. In this paper our
decision rule for FRD is weighted majority with random tie
breaking: O = 1if X{ > N/2, O = 0if X! < N/2, and
O' = 1 with probability /2 if Xi = N/2.

We assume that all voters are incisive on all issues. A voter
is incisive if they only delegate voting power to representa-
tives who agree with their preferred alternative. Similarly, we
refer to delegations as being incisive if they exhibit this prop-
erty on an issue. We relax the assumption of incisive voters
in our simulations and consider voters who delegate only to
their most preferred candidate(s) or divide their delegation
evenly across their approved set. Relaxing these assumptions
are important directions for future work discussed in the full
version of this paper [Abramowitz and Mattei, 2018].

Example 1. Consider an FRD instance with issues s and
$2, three voters, and three representatives. Below, the solid
arrows from voter to representative indicate delegations, and
any voter without an arrow defaults on that issue. The voter
and representative preferences are given in the tables above
and below the agents; both delegations are incisive.

Issue s' Issue s>
vil1)1]0 1/1]0
Vj |v1| V2 | U3 V1| V2| V3
dy |dy |ds|ds dy |ds|ds
dil1/1]0 110]0
WiBaPE [

X1 =4/3 < N/2 X2 =5/3> N/2

On issue s', the representative majority agrees with the voter
majority, so RD would yield Ok, = 1 as desired. How-
ever; since only the voter in the minority (vi = 0) delegates,
the weighted majority of representatives now decides the out-
come in favor of the voter minority (Xi < N/2). Hence, FRD
can make the outcomes worse than RD as measured against
DD in some cases. This can occur if the number of voters in
the minority is large, the number of representatives who agree
with the voter minority is large, and the voters in the minority
delegate at a higher rate than the voters in the majority.

On issue s% the representative majority disagrees with
the voter majority so the RD outcome (without delegations)
would be 011? p = 0. Looking again at the figure we see the
delegations flip the result to what would be achieved by DD
(X2 > N/2). Hence, FRD can improve the outcomes over RD
as measured against DD. Fortunately, for both issues, if any
two or all of the voters delegate incisively, the outcome will
always agree with the voter majority.

3 Related Work

Miller [1969], inspired by Tullock [1967] and the idea of
shareholder proxy voting, suggested an interactive demo-
cratic system for legislation which could take place at scale
using computers. Miller lamented the lack of flexibility in tra-
ditional Representative Democracy and sought to remedy this
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using a dynamic system of proxies, although he admitted this
was not conducive to creating legislation. Soon after, [Shu-
bik, 1970] warned that electronic systems may accelerate the
legislative process in undesirable ways and suggested holding
every referendum twice to guarantee time for sufficient public
deliberation. Our use of a fixed, elected set of representatives
answers Miller’s question of how to produce legislation, and
rather than holding redundant referenda we make representa-
tives’ votes public and then give the voters sufficient time to
deliberate and alter their delegations.

Before the dawn of the internet, [Tullock, 1992] revisited
his ideas from [Tullock, 1967] in a proposal that motivates
the default and delegation mechanisms in FRD. The notion
of the default distribution is similar to that proposed by Al-
ger [2006], which suggests that the weights of representa-
tives be based on the preferences of voters expressed in the
election, but these weights are fixed during their term. By
contrast, in FRD the weight of each representative on each
issue is not strictly determined by the election. Cohensius et
al. [2017] took an analytical approach to studying a Proxy
Voting model close to that of Alger [2006] for decision mak-
ing with no election, infinite voters, spatial preferences, and
that agents lie in a metric space.

The hallmark of interactive democracies like FRD and Liq-
uid Democracy is that rather than adjudicating whether a di-
rect or representative system is better for achieving some ob-
jective and asserting it by fiat, the extent to which the system
is direct or representative is itself a function of the “will of the
voters”. Currently, Liquid Democracy is the most well-known
and well-studied form of Interactive Democracy, and has been
studied from an algorithmic perspective as a decision-making
process in the AT and COMSOC literature [Brill and Talmon,
2018; Kahng et al., 2018; Bloembergen et al., 2018; Christoff
and Grossi, 2017] and elsewhere [Green-Armytage, 2015;
Blum and Zuber, 2016; Brill, 2018; Hardt and Lopes, 2015].2
Unlike Liquid Democracy, FRD does not allow transitive del-
egations nor delegations to another voter, thereby violating
the second axiom proposed by Green-Armytage [2015]. Frac-
tional delegations in FRD serve a similar function to that of
the virtual committees proposed by Green-Armytage [2015],
although in theory FRD could incorporate virtual committees
as well as other mechanisms for delegating voting power.

The design of FRD is largely based on work in proba-
bilistic voting, binary aggregation, statistical decision the-
ory, and computational social choice. In particular, work
on the optimal weighting of experts [Baharad et al., 2012;
Nitzan and Paroush, 2017; Grofman and Feld, 1983; Nitzan
and Paroush, 1982; Ben-Yashar and Nitzan, 1997], the Con-
dorcet Jury Theorem [Grofman et al., 1983], variable elec-
torates [Feld and Grofman, 1984; Smith, 1973; Paroush and
Karotkin, 1989], and optimal committee sizes [Auriol and
Gary-Bobo, 2012; Karotkin and Paroush, 2003; Magdon-
Ismail and Xia, 2018]. In FRD, one can view the voter del-
egations as a pseudo-tie breaking mechanism for the rep-
resentatives or, conversely, see the default distribution as a
way to dampen the variance in the outcome in that may oc-

2Also see B. Ford, Delegative Democracy at http://brynosaurus.
com/deleg/deleg.pdf.

cur DD when the set of participating voters is small or bi-
ased. Another view is that electing representatives is analo-
gous to a compression algorithm [Rodriguez and Steinbock,
2004], which is the algorithmic version of John Adams’s al-
leged intuition that the representatives should be a micro-
cosm of the population (taken from [Alger, 2006]). In this
view, the delegations in FRD are analogous to a decompres-
sion mechanism where a higher delegation rate reduces the
“loss” of representation. Our evaluations are similar to those
of Skowron [2015], however, in their model the quality of the
committee is measured as the sum of the voter proportion be-
ing represented for each issue, while we focus only on the
total number of issues correct according to DD.

4 Difficulties of Representative Democracy

Electing good committees is hard. In fact, electing a set of
representatives which maximizes majority agreement on bi-
nary issues is NP-Hard even if we know the view of every
voter on every issue. The easier problem of maximizing cov-
erage is also NP-Hard. We refer to the problems of selecting
k representatives to maximize coverage and majority agree-
ment as Max k-Coverage and Max k-Majority Agreement, re-
spectively. Note that if the majority view of the voters were
known, coverage could be approximated deterministically in
polynomial time within a factor of 1 — 1/e by a greedy al-
gorithm, and this bound is tight [Feige, 1998]. The proofs for
our complexity results can be found in the full version of this
paper [Abramowitz and Mattei, 2018].

Theorem 2. Max k-Coverage: If the candidates’ preferences
and the outcome preferred by the majority of voters are known
for every issue, selecting the subset of candidates that maxi-
mizes the number of issues covered is NP-hard.

Proof. We show a reduction from the NP-Hard problem of
MAX K-COVER [Garey and Johnson, 1979; Feige, 1998]
to Max k-Coverage. In MAX K-COVER, given a set U =
{x1,...,2,} of r points, a collection Z = {z!,..., 2™} of
subsets of U, and an integer k£ we must select k£ subsets from
Z such that their union has maximum cardinality. Given an
instance (U, Z, k) of MAX K-COVER we create an instance of
Max k-Coverage as follows. For every point x; € U create an
issue s* and for every subset 2! € Z create a candidate c;. For
all points x; and subsets 2l if z; € 2! then let cf = 1, oth-
erwise let ¢; = 0. Let k be the number of representatives we
will elect. There is a one-to-one correspondence between the
number of issues covered by our & representatives and the car-
dinality of the corresponding subsets in the original instance;
any set of k candidates that maximizes coverage corresponds
exactly to a collection of & subsets in our MAX K-COVER in-
stance whose union has maximum cardinality. O

The hardness of achieving coverage even in the unrealistic
case where the voter majority is known for every issue sup-
ports the idea that voters should be able to vote directly when
the issues are binary to ensure the majority will is always re-
coverable. Or, at the very least, a dummy candidate with no
default power should be created automatically on any binary
issue for which the representatives are unanimous. Note that
adding such a candidate automatically can only improve the
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outcome, as it can only change the outcome of the majority
of voters delegate to the dummy.

Theorem 3. Max k-Agreement: If the candidates’ prefer-
ences and the outcome preferred by the majority of voters are
known for every issue, selecting the subset of k candidates
whose majority agrees with the voter majority on the greatest
number of issues is NP-hard.

Proof. We prove the hardness of Max k-Majority Agree-
ment by polynomial-time reduction from our problem of
Max k-Coverage. Given an instance of Max k-Coverage
with input (§ = {st,...,s"},C = {c1,...,¢cm},Pes =
{c1,...,¢m}, k) we construct an instance of Max k-Majority
Agreement with input (S,C, Pcs, k) as follows. Create a set
of binary issues S = {§1,...,82,+1} and a set of candi-
dates C = {¢1,...,Cmyks1} Letk = 2k + 1. For I < m,
¢ =cifori <randé = 0forr < i < 2r+ 1. For
m<l<m+k+1,¢é =1foralli. Andforl =m+k+1,
Ef =0 for1 §randéf =1forr <i<2r+1.

D agrees with the voter majority on
{s™T, ... 2T} iff D contains {Cpi1,- -, Crmtkil)s
because this is the only way at least £k + 1 out of the
2k + 1 representatives can agree with the voter majority
on any of these issues. Therefore any set D C C of 2k + 1
representatives which maximizes majority agreement must
contain {41, - -+ Cmtkt1 -

Selecting candidates {Cp,41,- .-, Cm+k+1} provides ex-
actly k representatives who agree with the voter majority on
issues {s',...,s"}. Since we are selecting 2k + 1 represen-
tatives in total, on any of these first r issues we need only
1 more representative who agrees with the voter majority
on each issue to achieve majority agreement. Therefore, se-
lecting k additional representatives from {¢y, . .., ¢, } which
maximize coverage over issues {s!,...,s"}, maximizes the
majority agreement of the 2k + 1 representatives over S.
These k representatives are a one-to-one correspondence to
the k representatives in the solution to our original Max k-
Coverage problem. U

issues

Worse yet, even for small instances where the problem
is computationally tractable, there are pathological examples
for which truthful voters whose derived preferences over the
candidates are perfectly consistent with their preferences over
the issues will elect horrible representatives.

Theorem 4. No Condorcet-consistent election rule using ap-
provals or total orderings can approximate Max k-Majority
Agreement.

Our proof for Theorem 4 can be found in the full version of
this paper [Abramowitz and Mattei, 2018] and is derived from
an example found in [Anscombe, 1976] with 11 voters and 11
issues. This example is particularly pathological, because the
worst candidate gets elected over the best candidate.

The difficulty of achieving majority agreement between the
voters and candidates using the election alone - reinforced
by our simulations below - and the existence of pathological
cases even at small scales motivate the use of flexible delega-
tions. However, as we saw from Example 1, delegations are

not guaranteed to improve outcomes. We explore the poten-
tial benefits of such delegations in Section 5.

Simulation Results

We investigate the properties of coverage and majority agree-
ment as a function of the numbers of candidates, issues, and
committee size. In all our simulations, for all issues s* we let
vt =1 and ¢} = 1 with probability 3 for all voters and can-
didates. This means that all candidates and voters come from
the same populations, i.e., that they are both drawn from the
same distribution; relaxing this assumption is an interesting
direction for future work. In all of our runs, coverage was
1.0 for all combinations, hence we omit it from the graphs
in Figure 1. For all simulations we perform 50 iterations at
each datapoint and plot the mean (¢ < 0.002). For a first set
of simulations we included rules that have NP-hard winner
determination problems: CC and k-Median [Skowron, 2015].
We implemented these rules in Gurobi 8.1 and used a server
with 16 cores and 32GB of memory; taking nearly 24 hours to
generate results for a smaller setting (|C| up to 17). We found
that both CC and k-Median are outperformed by Weights,
STV, and AV at all settings and hence, we drop these rules
in our larger analysis.

For our larger simulations we hold |V| = 501 fixed as we
did not observe a strong dependence on the number of voters
as long as it was sufficiently larger than the number of candi-
dates. Turning first to Figure 1a we hold |C| = 60, |k| = 21
and vary |S| € {15,...,150} in steps of 15. We see that
for a small number of issues the AV, RAV, and the weighted
voting rule can be expected to select a committee with very
high majority agreement (0.8). However, as we add issues to
the docket, the voting rules seem to converge around 0.6. In
Figure 1b we fix |k| = 21,|S| = 150 and vary the number
of candidates between |C| € {21, ...,100} in steps of 5. We
observe again that AV, RAV, and weighted voting are the best
followed closely by STV. As we increase the number of can-
didates it is possible for rules to select committees with higher
majority agreement, but this number does not climb above
65%. Finally, in Figure 1c we hold |C| = 100,|S| = 150
and vary |k|. These simulations reinforce the idea that elect-
ing an ideal committee, i.e., one that obtains perfect majority
agreement, is a hard problem. In the next section we will ex-
plore how FRD can outperform RD and its dependence on the
comparative use of delegations by the majority and minority.

S Benefits of Flexibility

The flexibility of issue-specific delegations is the motivating
feature of FRD. We look at basic features of FRD in a deter-
ministic setting before considering probabilistic delegations.

5.1 Deterministic Delegation

A voter’s delegation is incisive if the voter only delegates to
representatives who agree with them on that issue. Observe
that if the representatives are unanimous with no direct vot-
ing or dummy candidates to guarantee coverage only one out-
come is possible, but as long as there is some dissent in the
committee FRD can take advantage and return decision mak-
ing power to the voters.
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Figure 1: Majority Agreement of the elected committee as a function of the number of issues, number of candidates, and committee size.
Across all treatments the weighted voting, approval voting, and RAV select the best committees as measured by majority agreement.

We denote by Ni + N} = N the numbers of voters and
by ki + ki = k the numbers of candidates who agree and
disagree with the voter majority on issue s’, respectively.
We have labeled the majority view of the voters as 1, so
Vst € S : Ni > N/2 > N¢. The overall outcome of any
resolute democratic process over this set of issues is an out-
come vector O = {O',..., 0"} € {0,1}", and our ideal
outcome is {1}". Treating all issues equally and indepen-
dently, we seek to maximize ) ;o O'. Let A{ and \) be the
number of voters who delegate from the majority and minor-
ity respectively on issue s’, assuming they delegate incisively.
We drop the ¢ superscript below as we have a single issue.

Proposition 5. If all delegations are incisive and the repre-
sentatives are not unanimous (0 < ki < k), the outcome
is guaranteed to agree with the voter majority if the num-
ber of voters in the majority who delegate (A1) is greater

than % and the outcome will favor the minority if

k‘>\1+(N7)\1)(2k17k)
Ao > o .

5.2 Probabilistic Delegation

Here, instead of assuming that some fractions (aq, ) of
voters delegate we investigate what happens if each voter
chooses to delegate with some fixed individual probability.
These results gives us an idea of how motivated or attentive
voters must be to improve the outcome of FRD over RD. We
assume that all voter and candidate preferences are indepen-
dent for all issues.

As all issues are independent, we consider a single issue.
Suppose each voter v; € V chooses to delegate (deviate
from the default) with independent probability p; and that
all delegations are incisive. Let z; € [0, 1] be the amount
of power voter v; assigns to candidates who agree with the
voter majority (¢; = 1), either by delegation or default. If
v; defaults then x; = k1/k, if v; delegates incisively and is
in the voter majority (v;- = 1) then z; = 1, and if v; dele-
gates incisively and is in the voter minority then x; = 0. Let
X, = Evjev x; be the total power assigned to these can-

didates via both delegation and default. Let p = E[X;] =
Y10y + (1= py)h/k) + 30, (1 — pj)ki/i be the ex-
pected value of the total power assigned to representatives

who agree with the voter majority.

Theorem 6. Consider an FRD with an odd number of vot-
ers N, odd committee size k, and only incisive delegations.
Suppose each voter v; € V delegates with probability p;
on each issue such that yp > N/2. Then the probability that
the outcome agrees with the voter majority is bounded by

P(O — 1) >1-— e—(N—Q/;,)2/4N'

Proof. Recall that z; € [0, 1] is the amount of voting power
voter v; assigns to candidates who agree with the voter major-
ity on an issue and X; = Zvj <y Z;- Given some tie breaking
rule, we have that P(O = 1) = P(X; > N/2)+ P(O =
1|1X; = N/2) - P(X; = N/2). First we show that P(X; =
N/2) = 0, then we give a lower bound for P(X; > N/2).

Lemma 1. If N is odd, k is odd, and all delegations are inci-
sive, then no ties are possible.

Proof. Let o = k - x; where z; € [0,1] is the amount
of weight (voting power) voter v; assigns to candidates who
agree with the voter majority on an issue via default or dele-
gation. If v; defaults then :C; = ki, if v; delegates incisively
and is in the voter majority (v} = 1) then :v; = k, and if v;
delegates incisively and is in the voter minority then x; =0.
Therefore, Vj : « € {0,ky,k}. Let X1 = 3 o, @} and
Xy = Zvjev(k — ;). Then X7, X, are non-negative in-
tegers and X + X{; = kN. Since kN is odd, it must be
that X{ and X{, have opposite parity and so they cannot be
equal. Therefore X; = X1/k # Xy = Xo/k, meaning the total
amounts of weight delegated to the representatives on either
side of the issue cannot be equal, so no ties may occur. O

Given that no ties are possible, we have that P(O =
1) = P(X; > N/2). Remember that X; = Zvjev x;
where x; is the total weight that v; delegates to represen-
tatives who agree with the voter majority. If vé = 1 then
Elz;] = p; + (1 — pj)&, else if vt = 0 then Elz;] =
(1- pj)%. Let 4 = E[X1] be the expected total weight as-
signed to representatives who agrees with the voter majority,
then 1= 32,y (p + (1= 1)) ) + Xyimp(1 —pj) - We



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

—s— FRD: Incisive
FRD: Best Rep

0.9 --¥-- FRD: Best-3 Reps
é & FRD: Approve
4+ RD
308
()]
<
2
_§0.7
©
=
06 o N e T TR v |
05 20 40 60 80 100

Delegation Rate («)

Figure 2: Majority agreement of the various systems with DD when
the committee is selected using weighted voting.

now use the fact that P(X; > N/2) =1 — P(X; < N/2).
Let§ = (20 — N)/2u. If p > N/2, then 6 > 0. This al-
lows us to apply a Chernoff bound to derive our lower bound,
P(X; > N/2) = 1 - P(X; < N/2) = 1 - P(X; <
(I=06)pu)>1- e~ W /IN = 1 — ¢=(2u=N)*/4N O

This bound depends on the condition that . > N/2. This
assumption is only violated in rare cases when the minor-
ity is large, the majority delegates sparingly, and the rep-
resentatives are near evenly split. As an increasing number
of voters delegate incisively, we expect 4 — N; > N/2
regardless of k;. Naturally, as the delegation rate increases
(o — 1), we observe our lower bound approach the ideal

1 — e (@n=N)*/4N _, 1 To observe u < N/2, the voter
majority cannot be too large compared to the voter minority,
k1 must be smaller than or somewhat close to kg, and/or the
voters in the majority must be considerably more apathetic
towards delegation than voters in the minority.

Tighter bounds may be achieved when the delegation prob-
abilities are assumed to come from a particular distribution, or
the preferences of voters and candidates are assumed to come
from different distributions. It is an interesting open question
to see how the expected outcome is effected when voters have
different delegation probability distributions.

5.3 Simulated Delegations

We investigate the effect of the delegation rate « on the ability
of different systems to recover the DD outcome, i.e., majority
agreement. We use the same model to generate candidates
and voter preferences as used in Section 4. For our simulated
delegations we create instances with [V| = 301, |C| = 60,
|S| = 150, and k& = 21. We vary « € {0, 1.0} in increments
of 0.01 and for each setting of  we run 50 iterations. We plot
means in Figure 2 (o2 < 0.002).

In Figure 2 we can see the majority agreement for the
weighted voting committee selection rule for several delega-
tion types and delegation rates. Note that a majority agree-
ment of 1.0 means that the outcome of the system is iden-
tical to DD. We compare RD with four different delegation
schemes: (1) in Approve voters delegate to the representa-
tives of whom they approve and do not update; in Best Rep
voters delegate to their single most preferred representative

and do not update; in Best-3 Rep voters delegate equally to
their three most preferred members of the committee and do
not update; and finally in Incisive where voters delegate to a
single representative with whom they agree per issue.

Most surprising is how little delegations that are not ac-
tive and incisive help emulate DD. The Approve system is
perhaps closest to the proposal of Proxy Voting espoused by
Miller [1969] but does not improve RD in a meaningful way.
Hence, we can see that the issue-specific flexibility FRD al-
lows can be effectively used to achieve DD outcomes. An-
other striking result in Figure 2 is how drastically FRD can
improve majority agreement over RD when voters are highly
attentive. However, the high delegation rates required suggest
that FRD may be burdensome to voters; exploring other del-
egation models is an important future direction.

6 Conclusion

We introduced a novel system called FRD which transitions
smoothly, at the discretion of the voters, between direct and
representative democracy. We have shown theoretically and
empirically that FRD has the potential to overcome the short-
comings of other systems such as RD, LD, and Proxy Vot-
ing. An important point to remember is that in FRD, unlike
in LD: delegations are optional, and not an additional burden
imposed on the system or voters; in contrast to LD, voters in
FRD have greater certainty about how their vote will be cast
ahead of time; and delegation cycles are not possible. Further-
more, FRD maintains a fixed, elected set of accountable rep-
resentatives to produce legislation and hold public debates.
This committee of representatives does not need to expand
to guarantee proportional or justified representation. As Fig-
ure 2 demonstrates, the default distribution of voting power
in FRD prevents a small subset of active voters from entirely
determining the outcome as can happen in DD.

Our analysis makes best-case assumptions for RD: we as-
sume all issues are known before the election, all voters par-
ticipate in the election, candidate and representative prefer-
ences do not change, and voter preferences over candidates
are consistent with their preferences over the issues. Relax-
ing any of these assumptions strengthens the argument for
enabling flexible, issue-specific delegations. Flexible delega-
tion also minimizes the role that election rule plays in the
outcome. Extensions and future work including more real-
istic voter models, different candidate models, incorporating
aspects of judgement aggregation including removing the in-
dependence between issues, and different committee decision
rules, to name just a few, see Abramowitz and Mattei [2018].

Acknowledgments

Much of this work was completed while both authors were
working at IBM Research AI, Yorktown Heights, NY. We
would like to thank Nick Dalmasso and the anonymous re-
viewers for their guidance and input.

References

[Abramowitz and Mattei, 2018] B. Abramowitz and N. Mattei.
Flexible representative democracy: An introduction with binary
issues. arXiv preprint arXiv:11811.02921, 2018.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[Alger, 2006] D. Alger.
126(1/2):1-26, 2006.

[Anscombe, 1976] G.E.M. Anscombe. On frustration of the major-
ity by fulfilment of the majority’s will. Analysis, 36(4):161-168,
1976.

[Auriol and Gary-Bobo, 2012] E. Auriol and R. J. Gary-Bobo. On
the optimal number of representatives. Public Choice, 153(3-
4):419-445, 2012.

[Aziz et al.,2017] H. Aziz, M. Brill, V. Conitzer, E. Elkind,
R. Freeman, and T. Walsh. Justified representation in approval-
based committee voting. Social Choice and Welfare, 48(2):461—
485, 2017.

[Baharad er al., 2012] E. Baharad, J. Goldberger, M. Koppel, and
S. Nitzan. Beyond Condorcet: Optimal aggregation rules using
voting records. Theory and decision, 72(1):113-130, 2012.

[Banzhaf 11, 1964] J. F. Banzhaf III. Weighted voting doesn’t
work: A mathematical analysis. Rutgers L. Rev., 19:317, 1964.
[Ben-Yashar and Nitzan, 1997] R. C. Ben-Yashar and S. I. Nitzan.

The optimal decision rule for fixed-size committees in dichoto-

mous choice situations: The general result. International Eco-
nomic Review, pages 175-186, 1997.

Voting by proxy.  Public Choice,

[Bloembergen et al., 2018] D. Bloembergen, D. Grossi, and
M. Lackner. On rational delegations in liquid democracy. arXiv
preprint arXiv:1802.08020, 2018.

[Blum and Zuber, 2016] C. Blum and C. 1. Zuber. Liquid democ-
racy: Potentials, problems, and perspectives. Journal of Political
Philosophy, 24(2):162-182, 2016.

[Brandt er al., 2016] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. D. Procaccia, editors. Handbook of Computational Social
Choice. Cambridge University Press, 2016.

[Brill and Talmon, 2018] M. Brill and N. Talmon. Pairwise liquid
democracy. In Proc. 27th IJCAI pages 137-143, 2018.

[Brill, 2018] M. Brill. Interactive democracy. In Proc. 17th AA-
MAS, pages 1183-1187, 2018.

[Christoff and Grossi, 2017] Zoé Christoff and Davide Grossi. Bi-
nary voting with delegable proxy: An analysis of liquid democ-
racy. In Proc. 16th TARK, pages 134-150, 2017.

[Cohensius et al., 2017] G. Cohensius, S. Mannor, R. Meir, E. A.
Meirom, and A. Orda. Proxy voting for better outcomes. In
Proc. 16th AAMAS, pages 858-866, 2017.

[Domshlak et al., 2011] C. Domshlak, E. Hiillermeier, S. Kaci, and
H. Prade. Preferences in AI: An overview. Al, 175(7):1037-1052,
2011.

[Dunn, 1995] J. Dunn. Democracy: The Unfinished Journey. Ox-
ford University Press, 1995.

[Feige, 1998] U. Feige. A threshold of In n for approximating set
cover. Journal of the ACM, 45(4):634-652, 1998.

[Feld and Grofman, 1984] S. L. Feld and B. Grofman. The accu-
racy of group majority decisions in groups with added members.
Public Choice, 42(3):273-285, 1984.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson. Com-
puters and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[Green-Armytage, 2015] J. Green-Armytage. Direct voting and
proxy voting. Constitutional Political Economy, 26(2):190-220,
2015.

10

[Grofman and Feld, 1983] B. Grofman and S. L. Feld. Determining
optimal weights for expert judgment. In Information Pooling and
Group Decision Making, pages 167-72, 1983.

[Grofman er al., 1983] B. Grofman, G. Owen, and S. L. Feld. Thir-
teen theorems in search of the truth. Theory and Decision,
15(3):261-278, 1983.

[Hardt and Lopes, 2015] S. Hardt and L. C. Lopes. Google votes:
A liquid democracy experiment on a corporate social network.
Technical Disclosure Commons, 2015.

[Kahng et al., 2018] A. Kahng, S. Mackenzie, and A. D Procaccia.
Liquid democracy: An algorithmic perspectiven. In Proc. 32nd
AAAL 2018.

[Karotkin and Paroush, 2003] Drora Karotkin and Jacob Paroush.
Optimum committee size: Quality-versus-quantity dilemma. So-
cial Choice and Welfare, 20(3):429-441, 2003.

[List and Puppe, 2009] C. List and C. Puppe. Judgment aggrega-
tion: A survey. In C. List and C. Puppe, editors, Handbook of
Rational and Social Choice, pages 457-482. Oxford University
Press, 2009.

[Magdon—lsmai] and Xia, 2018] M. Magdon-Ismail and L. Xia. A
mathematical model for optimal decisions in a representative
democracy. arXiv preprint arXiv:1807.06157, 2018.

[Miller, 1969] J. C. Miller. A program for direct and proxy voting
in the legislative process. Public Choice, 7(1):107-113, 1969.

[Nitzan and Paroush, 1982] S. Nitzan and J. Paroush. Optimal de-
cision rules in uncertain dichotomous choice situations. Interna-
tional Economic Review, pages 289-297, 1982.

[Nitzan and Paroush, 2017] S. Nitzan and J. Paroush. Collective de-
cision making and jury theorems. Oxford Handbook of Law and
Economics, pages 494-516, 2017.

[Paroush and Karotkin, 1989] J. Paroush and D. Karotkin. Robust-
ness of optimal majority rules over teams with changing size. So-
cial Choice and Welfare, 6(2):127-138, 1989.

[Rodriguez and Steinbock, 2004] M. A. Rodriguez and D. J. Stein-
bock. Societal-scale decision making using social networks.
arXiv preprint arXiv: ¢s/0412047, 2004.

[Shapley and Shubik, 1954] L. S. Shapley and M. Shubik. A
method for evaluating the distribution of power in a committee
system. American political science review, 48(3):787-792, 1954.

[Shubik, 1970] M. Shubik. On homo politicus and the instant ref-
erendum. Public Choice, 9:79-84, 1970.

[Skowron et al., 2016] P. Skowron, P. Faliszewski, and J. Lang.
Finding a collective set of items: From proportional multi-
representation to group recommendation. Al, 241:191-216,
2016.

[Skowron, 2015] P. Skowron. What do we elect committees for?
A voting committee model for multi-winner rules. In Proc. 24th
IJCAI, pages 1141-1147, 2015.

[Smith, 1973] J. H. Smith. Aggregation of preferences with vari-
able electorate. Econometrica: Journal of the Econometric Soci-
ety, pages 1027-1041, 1973.

[Tullock, 1967] G. Tullock. Toward a mathematics of politics. Uni-
versity of Michigan Press, 1967.

[Tullock, 1992] G. Tullock. Computerizing politics. Mathematical
and Computer Modelling, 16(8-9):59-65, 1992.

[Yueral., 2010] C.-H. Yu, J. Werfel, and R. Nagpal. Collective
decision-making in multi-agent systems by implicit leadership.
In Proc. 9th AAMAS, pages 1189-1196, 2010.



