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Abstract
Though there has been an extensive body of work
on efficiently solving computational problems for
static Dung’s argumentation frameworks (AFs), lit-
tle work has been done for handling dynamic AFs
and in particular for deciding the skeptical accep-
tance of a given argument. In this paper we devise
an efficient algorithm for computing the skeptical
preferred acceptance in dynamic AFs. More specif-
ically, we investigate how the skeptical acceptance
of an argument (goal) evolves when the given AF is
updated and propose an efficient algorithm for solv-
ing this problem. Our algorithm, called SPA, relies
on two main ideas: i) computing a small portion of
the input AF, called “context-based” AF, which is
sufficient to determine the status of the goal in the
updated AF, and ii) incrementally computing the
ideal extension to further restrict the context-based
AF. We experimentally show that SPA significantly
outperforms the computation from scratch, and that
the overhead of incrementally maintaining the ideal
extension pays off as it speeds up the computation.

1 Introduction
Abstract argumentation has emerged as one of the major
fields in Artificial Intelligence [Bench-Capon and Dunne,
2007; Rahwan and Simari, 2009]. In particular, abstract argu-
mentation frameworks (AFs) [Dung, 1995] are a simple, yet
powerful formalism for modelling disputes between two or
more agents. The formal meaning of an AF is given in terms
of argumentation semantics, which intuitively tell us the sets
of arguments (called extensions) that can collectively be used
to support a point of view in a discussion.

Although the idea underlying AFs is very simple and intu-
itive, most of the argumentation semantics proposed so far
suffer from a high computational complexity [Dunne and
Wooldridge, 2009; Dunne, 2009; Kröll et al., 2017]. In par-
ticular, skeptical reasoning under the well-known preferred
semantics—one of the most popular semantics [Caminada et
al., 2016]—is in the second level of the polynomial hierarchy.
Efficient algorithms for AFs have been deeply investigated
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in the literature, as witnessed by the International Competi-
tion on Computational Models of Argumentation (ICCMA) 1.
One of the more challenging tasks of ICCMA is deciding the
skeptical preferred acceptance of a given argument (goal).

However, ICCMA competition as well as most research
have focused on ‘static’ frameworks, whereas in practice
AFs are dynamic systems [Baumann and Brewka, 2010;
Baumann, 2011; Falappa et al., 2011; Oikarinen and Woltran,
2011; Charwat et al., 2015]. In fact, an AF often represents
a temporary situation, as new arguments and attacks can be
added/retracted to take into account new available knowl-
edge. For instance, for disputes among users of online social
networks [Kökciyan et al., 2017], arguments/attacks are con-
tinuously added/retracted by users to express their point of
view in response to the last moves made by the adversaries.

Recently, the definition of evaluation algorithms taking
into account such dynamic aspects has received an increasing
attention, as in these situations incremental computation tech-
niques could greatly improve performance [Liao et al., 2011;
Baroni et al., 2014; Alfano et al., 2017; Bistarelli et al.,
2018a]. In this regard, a new track focusing on solvers pro-
cessing dynamic AFs have been recently proposed for the
next edition of ICCMA competition [Bistarelli et al., 2018b].

In this paper, we propose an algorithm for incrementally
solving the following computational task: Given an AF A0, a
goal argument g whose skeptical preferred acceptance w.r.t.
A0 is known, and an update u, decide whether g is skeptical
preferred accepted w.r.t. the updated AF u(A0), that is, de-
cide if g belongs to every preferred extension of u(A0). Thus,
we explore how to efficiently and incrementally solve the IC-
CMA computational task DS-pr [Thimm and Villata, 2017].
Contributions. We make the following contributions:
• Given an update and an argument, we identify a set of

arguments, called supporting set, which contains all the
arguments whose acceptance status may change after the
update and propagate up to the goal argument.
• Given the supporting set, we define the concept of

context-based AF that allows us to compute the skep-
tical preferred acceptance of an argument by focusing
on a smaller AF containing the supporting set as well as
additional arguments and attacks representing auxiliary
information on the external context.

1http://argumentationcompetition.org
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• We introduce SPA, an incremental algorithm for com-
puting the Skeptical Preferred Acceptance of a goal
within a dynamic AF. It enables the computation on
context-based AFs by means of (non-incremental) state-
of-the-art AF solvers. Our solution relies on incremen-
tally maintaining the ideal extension of the given AF.
However, to show the relevance of using the ideal ex-
tension, we also consider a simpler version of our algo-
rithm (called SPA-base) which does not consider the
information provided by the ideal extension.

• We perform a thorough experimental analysis showing
the effectiveness of our approach, even in the case of sets
of updates applied simultaneously. We compare both
SPA and SPA-base with the solver that won the IC-
CMA’17 competition for the computational task DS-pr
as well as between them. Both SPA and SPA-base sig-
nificantly beat the computation from scratch, and SPA
performs better than SPA-base on average.

To the best of our knowledge, this is the first paper address-
ing the problem of efficiently and incrementally computing
skeptical acceptance for dynamic AFs.

2 Preliminaries
We assume the existence of a set Arg of arguments. An (ab-
stract) argumentation framework [Dung, 1995] (AF) is a pair
〈A,Σ〉, where A⊆ Arg is a set of arguments, and Σ⊆ A×A is
a binary relation over A whose elements are called attacks.

Example 1 (Running example). Figure 1(a) shows the graph
of the AF AF0 = 〈A0,Σ0〉 where A0 = {a,b,c, . . . ,l} and Σ0
includes, among others, attacks (a,b), (b,a), and (c,d). �

Given an AF 〈A,Σ〉 and arguments a,b ∈ A, we say that a
attacks b iff (a,b) ∈ Σ, and that a set S⊆ A attacks b iff there
is a ∈ S attacking b. We use S+ = {b | ∃a ∈ S : (a,b) ∈ Σ} to
denote the set of arguments attacked by S.

Moreover, we say that S⊆ A defends a iff ∀b ∈ A such that
b attacks a, there is c ∈ S such that c attacks b.

A set S ⊆ A of arguments is said to be: (i) conflict-free if
there are no a,b ∈ S such that a attacks b; (ii) admissible if it
is conflict-free and it defends all its arguments.

An argumentation semantics specifies the criteria for iden-
tifying a set of arguments that can be considered “reasonable”
together, called extension. A preferred extension of an AF A
is a maximal (w.r.t. ⊆) admissible set of A . The ideal exten-
sion of A is the biggest (w.r.t. ⊆) admissible set of A which
is contained in every preferred extension of A .

It is well-known that every AF admits exactly one ideal ex-
tension which is contained in the intersection of the preferred
extensions, which are at least one [Dung et al., 2007].

Example 2. The preferred extensions of AF0 are Epr =
{a,d,f,h,j,l} and E′pr = {b,d,f,h,k}, while the ideal ex-
tension of AF0 is Eid = {d,f,h}. �

Given an AF A = 〈A,Σ〉 and an argument g ∈ A, we say
that g is skeptically accepted w.r.t. A under the preferred se-
mantics iff for each preferred extension E of A it holds that
g ∈ E. In the following, we use SAA (g) to denote the skepti-
cal acceptance (either true or false) of g w.r.t. AF A .
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Figure 1: (a) AF AF0, (b) CBAF(+(h,d),AF0, Eid ,c)

Example 3. For AF AF0 of our running example, we have
that the arguments skeptically accepted are d, f, and h. Thus,
SAAF0(d) is true, and so is for SAAF0(f) and SAAF0(h), while
for any other argument x, SAAF0(x) =false. �

Fact 1. Let A be an AF, E the ideal extension of A , and g
an argument of A . If g ∈ E then SAA (g) =true. On the other
hand, if g ∈ E+ then SAA (g) =false.

2.1 Updates
Performing an update on an AF A0 means modifying it into
an AF A by adding or removing arguments or attacks.

We use +(a,b), with a,b ∈ A0 and (a,b) 6∈ Σ0, (resp.
−(a,b), with (a,b) ∈ Σ0) to denote the addition (resp. dele-
tion) of an attack (a,b), and u(A0) to denote the application
of update u =±(a,b) to AF A0 (where ± means either + or
−). Applying an update u to an AF A0 implies that the ex-
tensions prescribed by a given semantics, as well as the set of
arguments that are skeptical accepted, may change.

Example 4. Continuing with our running example, let u =
+(h,d). The ideal extension of u(AF0) is {f,h}, while the pre-
ferred extensions are {a,f,h,j,l} and {b,f,h,k}. Thus, only
f and h are skeptically accepted w.r.t. u(AF0). �

As for the addition (resp. deletion) of a set of isolated argu-
ments (i.e., arguments not adjacent to any other argument in
the graph), it is easy to see that if A is obtained from A0
through the addition (resp. deletion) of a set S of isolated
arguments, then every argument in S is trivially skeptically
accepted (resp., not accepted) w.r.t. A . Indeed, if E0 is an
extension for A0, then E = E0∪S (resp. E = E0 \S) is an ex-
tension for A containing every (resp., none) argument in S.
Of course, if arguments in S are not isolated, for addition we
can first add isolated arguments and then add attacks involv-
ing these arguments, while for deletion we can first delete all
attacks involving arguments in S. Thus we do not consider
these kinds of updates in the following, and focus on the ad-
dition and deletions of attacks.

2.2 Notation for reachability and other useful
concepts

Given an AF A = 〈A,Σ〉 and an argument x, we use
Reach

A
(x) to denote the set of arguments that are reachable

from x in the AF A . Moreover, we use Reach−1
A (x) to denote

the set of arguments from which x is reachable in A . For in-
stance, for the AF AF0 = 〈A0,Σ0〉 of our running example (see
Figure 1(a)), we have that ReachAF0(d)= {d,c,g,h,i}, and
Reach−1

AF0
(h) = A0 \ {i,j,k,l}. We write Reach

A
(x) = /0 and

Reach−1
A (x) = /0 if x is not in A .
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We use H(A ,u) to denote the larger AF between A and
u(A ), that is, H(A ,u) is (i) the updated AF u(A ) if u is
an addition update (it includes the attack added through u),
(ii) the original AF A if u is a deletion (the removed attack
is still considered in H(A ,u)). For instance, if u = +(h,d)
then H(AF0,u) = 〈A0,Σ0 ∪{(h,d)}〉, while H(AF0,u) = AF0
for any deletion update u.

We use Π(S,A ) to denote the restriction of AF A = 〈A,Σ〉
to a subset S ⊆ A of its arguments [Baroni et al., 2005], that
is Π(S,A ) = 〈S, Σ∩(S×S)〉. For instance, if S = {c,d} then
Π(S,AF0) = 〈{c,d},{(c,d),(d,c)}〉.

Finally, given A1 = 〈A1,Σ1〉 and A2 = 〈A2,Σ2〉, we denote
as A1tA2 = 〈A1∪A2,Σ1∪Σ2〉 the union of the two AFs.

3 Supporting Set
In this section, we introduce the novel concept of support-
ing set which intuitively consists of the set of arguments that
needs to be taken into account in order to determine the skep-
tical acceptance of an argument of interest after performing
an update. We provide a parametric definition of supporting
set that will enable the characterization of different portions
of a given AF, called context-based AFs, that will be used
for two different purposes: (i) recompute the skeptical accep-
tance of a goal w.r.t. the updated AF, and (ii) recompute the
ideal extension of the updated AF.

Before defining the supporting set, we introduce the aux-
iliary notion of steadiness of an argument. Given an AF
A = 〈A,Σ〉, the ideal extension E of A , and an update
u =±(a,b), we first define E(u) as the subset of E consisting
of the arguments which are not reachable from b in A , i.e.,
E(u) = {z | z ∈ E,z 6∈ Reach

A
(b)}. Intuitively, the acceptance

status of the arguments in E(u) is not affected by u as they are
not reachable from it. Then, the set of steady arguments for
u = ±(a,b) w.r.t. A is defined as StdA (u) = (E(u))+ \ {b},
i.e., the arguments attacked by E(u) in A and that will be
still attacked by E(u) in u(A ). Argument b is not included
in StdA (u) as it may be no longer attacked by a ∈ E(u) af-
ter performing u = −(a,b); however, it will be considered
for positive updates in Definition 1. For the AF AF0 of our
running example, where Eid = {d,f,h}, if u = +(h,d) then
Eid(u) = {f} and StdAF0(u) = {e,g} ⊆ E+

id = {c,e,g,i}.
Thus, if an argument is steady for update u w.r.t. AF A

then its acceptance status does not depend on u, though it is
reachable from an argument of u. Steady arguments limit the
portion of the AF to be examined to define the supporting set.
Definition 1 (Supporting set). Let A = 〈A,Σ〉 be an AF,
u = ±(a,b) an update, E the ideal extension of A , and g
an argument in A. Let

– Sup0(u,A ,E,g) =


/0 if u =+(a,b)∧b ∈ (E(u))+;
/0 if b 6∈ Reach−1

H(A ,u)(g);
{b} otherwise.

– Supi+1(u,A ,E,g)=Supi(u,A ,E,g)∪{y | ∃(x,y)∈ Σ s.t.
x∈ Supi(u,A ,E,g) ∧y∈Reach−1

H(A ,u)(g)∧y 6∈ StdA (u)}.
Let n be the natural number such that Supn(u,A ,E,g) =
Supn+1(u,A ,E,g). The supporting set Sup(u,A ,E,g) is:

Sup(u,A ,E,g) = Supn(u,A ,E,g)∩Reach−1
G (g) (1)

where G = Π(Supn(u,A ,E,g),H(A ,u)) is the restriction of
H(A ,u) to Supn(u,A ,E,g).

Finally, when g is not specified, the supporting set, denoted
as Sup(u,A ,E,?), is defined as Sup(u,A ,E,g) except that
all the checks concerning Reach−1 are omitted.

Intuitively, Sup(u,A ,E,g) consists of the arguments
whose status may change after performing an update u and
such that their change can imply a change of the status of g.

The supporting set is iteratively defined by n + 1 steps
(n ≤ |A|), each of them consisting of the addition of at least
a non-steady argument attacked by the set built at the pre-
vious step and allowing to reach the goal g (if specified).
More in detail, Sup(u,A ,E,g) for u = ±(a,b) and g con-
sists of the arguments that (i) can be reached from b with-
out using any steady argument y; and (ii) allow to reach g in
H(A ,u) by using only the arguments in Supn(u,A ,E,g). In
fact, Equation (1) entails that an argument of Supn(u,A ,E,g)
will be in Sup(u,A ,E,g) only if it can reach g in the restric-
tion of H(A ,u) to Supn(u,A ,E,g)—the other arguments in
Supn(u,A ,E,g) are not needed to determine the acceptance
status of g, and thus they are pruned by Equation (1).

When no argument g is specified, the set Sup(u,A ,E,?)
is built by ignoring condition (ii) above. It is easy to see
that, for any argument g, Sup(u,A ,E,g)⊆ Sup(u,A ,E,?)⊆
Reach

A
(b), where b is the argument in the update u =

±(a,b). Moreover, Sup(u,A ,E,g) may be empty even if g ∈
Reach

A
(b). Finally, if Sup(u,A ,E,g) 6= /0 then the arguments

of at least one path from b to g belong to Sup(u,A ,E,g).
Example 5 (Supporting set for u = +(h,d)). For
the goal c, we have that Sup0(u,AF0,Eid ,c) = {d},
Sup1(u,AF0,Eid ,c) = {c,d}, and Sup2(u,AF0,Eid ,c) =
{c,d} (the latter does not contain g since g ∈ StdAF0(u)).
Thus, Sup(u,AF0,Eid ,c) = {c,d} as both c and d allow to
reach c in the restriction of the updated AF to {c,d}. Reason-
ing analogously, we have that Sup(u,AF0,Eid ,?) = {c,d}.

Consider now what happens for the goal h. Again
Sup0(u,AF0,Eid ,h) = {d}, and Sup1(u,AF0,Eid ,h) =
Sup2(u,AF0,Eid ,h) = {c,d}. However, Sup(u,AF0,Eid ,h) =

/0 as {c,d}∩Reach−1
G (h) = /0, where G = Π({c,d},u(AF0)).

Also for the goal a, we have that Sup(u,AF0,Eid ,a) = /0. �

Theorem 1. Let A0 = 〈A0,Σ0〉 be an AF, E0 the ideal exten-
sion of A0, u = ±(a,b) an update, A = u(A0) the updated
AF, and x an argument in A0. Therefore, if Sup(u,A0,E0,x) =
/0 then SAA (x) = SAA0(x).
Example 6. Continuing with Example 5, since
Sup(u,AF0,Eid ,h) = /0 we can conclude that SAu(AF0)(h) =
SAAF0(h) =true. Similarly, since Sup(u,AF0,Eid ,a) = /0 then
SAu(AF0)(a) = SAAF0(a) =false. �

4 Context-Based Argumentation Frameworks
The supporting set has been used so far to determine whether
the status of the goal does not need to be recomputed. In
this section, starting from the supporting set, we define a
restriction of the AF which will be used to compute the
status of the goal after an update. More specifically, given
the supporting set Sup(u,A ,E,g) (resp. Sup(u,A ,E,?)),
we define the context-based AF CBAF(u,A ,E,g) (resp.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

20



CBAF(u,A ,E,?)). Moreover, while CBAF(u,A ,E,?) will
be used to incrementally compute the ideal extension of the
updated AF (with the aim of checking if one of the conditions
of Fact 1 holds), CBAF(u,A ,E,g) will be used to compute
the skeptical acceptance SAu(A )(g) w.r.t. the updated AF.

Given an AF A = 〈A,Σ〉, its ideal extension E, and a set
S ⊆ A, we use Nodes(A ,S,E) to denote the set of the nodes
x ∈ A such that there are a node y ∈ S and a path from x to y
in A such that all nodes in the path except y do not belong
to E ∪E+ (i.e., they are undecided, using the labelling termi-
nology [Baroni et al., 2011]). Analogously, Edges(A ,S,E)
is the set of edges (x,z) ∈ Σ such that there are y ∈ S and a
path from x to y in A containing (x,z) such that all nodes in
the path except y do not belong to E ∪E+. Essentially, if S is
the supporting set, to determine the status of nodes in S we
must also consider all nodes and attacks occurring in paths
(of any length) ending in S whose nodes outside S are unde-
cided. The motivation to also consider “undecided” paths is
that some of the undecided arguments occurring in such paths
could belong to (or be attacked by) some preferred extension
and, therefore, together they could determine a change in the
status of nodes in S.

Definition 2 (Context-Based AF). Let A = 〈A,Σ〉 be an AF,
u = ±(a,b), E the ideal extension of A , and x either an ar-
gument in A or the symbol ?. Let S = Sup(u,A ,E,x). The
context-based AF of A w.r.t. u and x is CBAF(u,A ,E,x) =
Π(Sup(u,A ,E,x),u(A ))tT1tT2 where:

• T1 is the union of the AFs 〈{c,d},{(c,d)}〉 s.t. (c,d) is
an attack of u(A ) and c 6∈ Sup(u,A ,E,x), c ∈ E, and
d ∈ Sup(u,A ,E,x);

• T2 = 〈Nodes(u(A ),S,E), Edges(u(A ),S,E)〉.
Example 7. For AF0, where Eid = {d,f,h}, and u =+(h,d),
we have seen in Example 5 that Sup(u,AF0,Eid ,c) = {c,d}.
Thus CBAF(u,AF0,Eid ,c) = 〈{c,d},{(c,d),(d,c)}〉 t T1 t
T2 where: T1 = 〈{h,d},{(h,d)}〉 since h ∈ Eid does not
belong to Sup(u,AF0,Eid ,c) while d ∈ Sup(u,AF0,Eid ,c);
and T2 = 〈{a,b,c},{(a,b), (b,a),(a,c),(b,c)}〉 since there
are paths starting from the undecided arguments a and b
({a,b} 6⊆ (Eid ∪E+

id )) and ending in c ∈ Sup(u,AF0,Eid ,c).
Thus, CBAF(u,AF0,Eid ,c) is the AF shown in Figure 1(b).

Also, CBAF(u,AF0,Eid ,?) = CBAF(u,AF0,Eid ,c). �

In general, CBAF(u,A ,E,g) is a subgraph of
CBAF(u,A ,E,?) since Sup(u,A ,E,g)⊆ Sup(u,A ,E,?).

Theorem 2. Let A0 = 〈A0,Σ0〉 be an AF, E0 the ideal exten-
sion of A0, u = ±(a,b) an update, A = u(A0) the updated
AF, and x an argument in A0. Thus, if Sup(u,A0,E0,x) 6= /0
then x is skeptically accepted w.r.t. A iff it is skeptically ac-
cepted w.r.t. the context-based AF CBAF(u,A0,E0,x).

Example 8. Continuing from Example 7, we can conclude
that argument c is not skeptically accepted w.r.t. the updated
AF u(AF0) because it is not skeptically accepted w.r.t. the
context-based AF CBAF(u,AF0,Eid ,c) of Figure 1(b) whose
preferred extensions are {a,h} and {b,h} (only h is scepti-
cally accepted w.r.t. the context-based AF). �

Theorem 3. Let A0 = 〈A0,Σ0〉 be an AF, E0 the ideal ex-
tension of A0, u = ±(a,b) an update, and A = u(A0) the

updated AF. Then, the ideal extension E of A is such that
E = (E0 \Sup(u,A0,E0,?))∪E ′, where E ′ is the ideal exten-
sion of the context-based AF CBAF(u,A0,E0,?).
Example 9. Continuing from Example 7, the ideal extension
{f,h} of u(AF0) is equal to ({d,f,h} \ {c,d})∪{h} where
{h} is the ideal extension of CBAF(u,AF0,Eid ,?). �

5 Incremental Computation
The results of Theorems 1 and 2, along with those of Theo-
rem 3 and Fact 1, allow us to define SPA (see Algorithm 1)
to decide the skeptical acceptance of a goal g w.r.t. an AF
A0 updated by u = ±(a,b). Given the initial skeptical ac-
ceptance SAA0(g) of g and the ideal extension E0 of A0, both
SAu(A0)(g) and the ideal extension E of the updated AF u(A0)
are incrementally computed, thus enabling consecutive invo-
cations of the algorithm to perform sequences of updates.

Algorithm SPA works as follows. First, the supporting set
S? = Sup(u,A0,E0,?) is computed at Line 1, and using Theo-
rem 3 the ideal extension E of the updated AF is computed by
invoking an external solver ID-Solver(Aid), computing the
ideal extension of the context-based AF CBAF(u,A0,E0,?)
(Line 3). Then, using Fact 1, if g belongs to E, then g is skep-
tically accepted and the algorithm returns true along with
the ideal extension of the updated AF (Line 5). Similarly,
if g belongs to the set of arguments attacked by an argu-
ment in E, then g is not skeptically accepted and the algo-
rithm returns false along with E (Line 7). Otherwise, the set
Sg = Sup(u,A0,E0,g) is built (it can be efficiently done by
starting from S?), and it is checked if it is empty. If this is
the case, using Theorem 1, we can conclude that the accep-
tance status of g does not change after the update (Line 10).
Otherwise, the context-based AF is built at Line 11 and, us-
ing Theorem 2, the skeptical acceptance of g is recomputed
by invoking an external solver SA-Solver(Asa,g) which tells
us if g is skeptically accepted w.r.t. the context-based AF
CBAF(u,A0,E0,g) (Line 12).
Theorem 4. If ID-Solver and SA-Solver are sound and
complete, for any goal g Algorithm 1 computes SAu(A0)(g)
w.r.t. the updated AF u(A0) and the ideal extension of u(A0).
SPA-base: A version of SPA not using the ideal exten-
sion. SPA-base is obtained from SPA by skipping lines 1–
7 of Algorithm 1 and assuming E0 = /0 at lines 8 and 11 to
compute Sg and Asa respectively. Also, no ideal extension
is returned (i.e., E =⊥). Notice that, similarly to SPA-base,
SPA does not use the information provided by the initial ideal
extension when E0 = /0, though SPA always incrementally
computes the ideal extension of the updated AF.

Multiple Updates
The application of a set U of updates can be reduced to per-
forming a single attack update as follows. Let A = 〈A,Σ〉 be
an AF, and
• Σ+ = {(a1,b1), ...,(an,bn)} ⊆ (A×A)\Σ, and
• Σ− = {(a′1,b′1), ...,(a′m,b′m)} ⊆ Σ

such that Σ+ ∩ Σ− = /0 be two sets of attacks. Let U =
{+(ai,bi) |(ai,bi)∈ Σ+}∪{−(a j,b j) |(a j,b j)∈ Σ−} be a set
of updates. We define A U = 〈AU ,ΣU 〉 where:
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Algorithm 1 SPA(A0,g,SAA0(g),u,E0)

Input: AF A0 = 〈A0,Σ0〉, argument g ∈ A0,
skeptical acceptance SAA0(g) of g w.r.t. A0,
update u =±(a,b), ideal extension E0 of A0.

Output: skeptical acceptance SAu(A0)(g) of g w.r.t. u(A0),
ideal extension E of u(A0).

1: Let S? = Sup(u,A0,E0,?)
2: Let Aid = CBAF(u,A0,E0,?)
3: Let E = (E0 \S?)∪ ID-Solver(Aid)
4: if g ∈ E then
5: return 〈true, E〉
6: if g ∈ E+ then
7: return 〈false, E〉
8: Let Sg = Sup(u,A0,E0,g)
9: if Sg is empty then

10: return 〈SAA0(g),E〉
11: Let Asa = CBAF(u,A0,E0,g)
12: return 〈SA-Solver(Asa,g), E〉

• AU = A ∪ {xi,yi | +(ai,bi)∈U} ∪{x′j,y′j | −(a j,b j)∈
U} ∪ {v,w,w′}, where all xi,yi, x′j,y

′
j, w, w′, and v are

new arguments not occurring in A, and
• ΣU =(Σ\Σ−)∪{(ai,xi),(xi,yi),(yi,bi) |+(ai,bi)∈U}∪
{(a j,x′j),(x

′
j,y
′
j),(y

′
j,b j) | − (a j,b j) ∈U}∪{(w,yi) | +

(ai,bi) ∈U}∪{(w′,y′j) | − (a j,b j) ∈U} ∪{(w,w′)}.
Proposition 1. Let A0 = 〈A0,Σ0〉 be an AF, and U a set of
updates. Let A be the AF obtained from A0 by performing
all updates in U on it. Then,

• E = EU ∩A0 is the ideal extension of A iff EU is the
ideal extension of +(v,w)(A U ).

• Given an argument g of A0, SAA (g) = SA+(v,w)(A U )(g).

6 Implementation and Experiments
We have implemented a C++ prototype and compared our in-
cremental technique with ArgSemSAT [Cerutti et al., 2014],
the solver that won the last ICCMA competition for the task
DS-pr of determining the skeptical preferred acceptance.

Datasets and Methodology
We used benchmarks from the DS-pr track of ICCMA’17,
that is, the dataset A2 consisting of 50 AFs with a number
of arguments |A| ∈ [61, 20K] and a number of attacks |Σ| ∈
[97, 358K], and the dataset A3 consisting of 100 AFs with
|A| ∈ [39, 100K] and |Σ| ∈ [72, 1.26M].

For each AF A0 in the dataset, we randomly selected an
update u (or a set U of updates), and an argument g. Then, we
computed SAu(A0)(g) by using 1) SPA, that is Algorithm 1
where ID-Solver is pyglaf [Alviano, 2017] and SA-Solver is
ArgSemSAT; 2) SPA-base where only ArgSemSAT is used;
and 3) ArgSemSAT (from scratch).

For AF A0, update u, and argument g, let tA and tB be
the amount of time required by SPA and SPA-base, respec-
tively, to compute SAu(A0)(g). Let tS be the time required
by ArgSemSAT to compute SAu(A0)(g) from scratch. Then,
the improvements of SPA and SPA-base over ArgSemSAT
are defined as tS

tA
and tS

tB
, respectively. Thus, an improvement
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Figure 2: (Experiment 1). Improvement of SPA and SPA-base over
ArgSemSAT on datasets A2 (left-hand side) and A3 (right-hand side)
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Figure 3: (Experiment 2). Improvement of SPA and SPA-base over
ArgSemSAT on AFs from datasets A2 and A3 having (a) a number
of arguments in [160,200]; (b) an average degree in [5,10]
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Figure 4: (Experiment 3). Improvement of SPA over ArgSemSAT
for 10 updates (LHS) and 100 updates (RHS). Dashed gray lines are
improvements for 10 and 100 updates applied sequentially

equal to x means that the incremental computation is x times
faster than the computation from scratch.

In the figures, each data-point is the average of 10 runs, and
solid lines are obtained by linear regression.
Experiment 1. Figure 2 reports the improvement (log
scale) of SPA and SPA-base over ArgSemSAT on datasets
A2 (LHS) and A3 (RHS) for single updates versus the size
of the AFs, i.e., the number of attacks. Both SPA and SPA-
base significantly outperform the computation from scratch,
though the improvement decreases as the number of attacks
increases. This behavior, which is in line with that of algo-
rithms for computing argumentation semantics in the static
setting [Liao, 2013; Liao and Huang, 2013; Alfano et al.,
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2019], is analysed in Experiment 2. Considering the averages
of the improvements, SPA and SPA-base turn out to be 5 and
4 orders of magnitude faster than ArgSemSAT, respectively.
However, as this can be skewed by extremely large values of
improvements (e.g. 106), we also considered the medians of
improvements for SPA (32 on A2, 134 on A3) and SPA-base
(27 on A2, 40 on A3) (see dashed line in Figure 2), which
confirm the significance of the gain in efficiency. The experi-
ments show that SPA is generally faster than SPA-base, ex-
cept for a few AFs whose initial ideal extension is empty.
Experiment 2. We analysed the performances of SPA and
SPA-base by varying the number of attacks and keeping al-
most constant either the number of arguments or the average
degree (i.e., N. of attacks / N. of arguments). To this end,
we selected as many AFs as possible from the two datasets
having these properties. Figure 3 reports the improvement for
AFs having (a) a number of arguments in [160,200] and (b)
an average degree in [5,10]. Figure 3(a) shows that the per-
formance gets worse when the increasing of the number of
attacks is mainly due to the increasing of nodes’ degree (in
our experiment it varies from 1.5 to 40) and the AFs become
more and more dense. Figure 3(b) shows that when the aver-
age degree does not change significantly and the increasing
of the number of attacks is mainly caused by the increasing
of the number of arguments (in our experiment it has more
than doubled, from 2.4K to 5.4K), the improvement does not
decrease. This can be explained by looking at the ratio ρ be-
tween the size of the context-based AF and that of the initial
AF. Indeed, ρ increases from 4% to 95% when the average
degree of the input AFs varies from 2 to 40 in Figure 3(a).
On the other hand, for Figure 3(b), ρ is almost constant (i.e.,
in [60%,65%]). Thus, the performance gets worse when the
ratio between the size of the context-based AF and that of
the initial AF becomes very large because of the increasing
density of the initial AFs.
Experiment 3. Figure 4 reports the improvement of SPA
over ArgSemSAT on datasets A2 (LHS) and A3 (RHS) for 10
and 100 updates performed simultaneously. To preserve the
structure of the AFs in the datasets, we changed at most 1%
(resp., 10%) of the number of attacks for the AFs of A2 (resp.,
A3), that is, we considered AFs whose size is greater than 1K.
Figure 4 also reports the improvement for 1 update, as well
as for 10 and 100 updates applied sequentially, i.e., one after
another (see dashed lines). The results show that SPA remains
faster than the competitor even when 10 or 100 updates are
performed simultaneously. Moreover, despite the overhead of
the construction given before Proposition 1, applying updates
simultaneously is faster than applying them sequentially.

7 Conclusions and Future Work
There has been an extensive body of work on managing
changes in argumentation (a recent survey can be found
in [Doutre and Mailly, 2018]). Besides the works cited in
the introduction, other significant efforts coping with dynam-
ics aspects of AFs include [Baroni et al., 2005; Boella et al.,
2009; Cayrol et al., 2008; Amgoud and Vesic, 2012; Bisquert
et al., 2013]. Similarly to what is done in this paper, some ap-
proaches focused on local computation in dynamic AFs [Liao

et al., 2011; Baroni et al., 2014; Greco and Parisi, 2016a;
2016b; Alfano et al., 2017] but with the aim of recomputing
extensions. To the best our knowledge, this is the first paper
proposing an efficient technique for the incremental compu-
tation of skeptical acceptance in dynamic AFs.

We have proposed a new algorithm, called SPA, which in-
crementally computes the skeptical preferred acceptance by
maintaining the ideal extension (that can be considered the
best available short-cut to compute preferred extensions when
it is known [Dunne et al., 2016]). For a better understanding
of the relevance of computing the ideal extension, we have
also considered its simpler variant SPA-base which does not
rely on the ideal extension. Both algorithms outperform the
computation from scratch, and SPA is generally faster than
SPA-base. However, as the experiments showed, SPA may
be slower than SPA-base when the initial ideal extension
is empty. Thus, a first direction for future work is devising
heuristics to take advantages of both algorithms.

Analogously to classical AF solvers, our approach allows
us to determine the skeptical acceptance of a single argument.
However, the definition of supporting set and context-based
AF can be extended to sets of arguments—a way to do it is
using the union of the supporting sets to compute the context-
based AF. As a further line for future work, we plan to extend
our algorithm to take as input a set of arguments. In this direc-
tion, SPA always computes the ideal extension, which being
contained in every preferred extension, already provides ad-
ditional skeptical preferred arguments other than the goal.

Finally, we plan to extend our technique to other argumen-
tation semantics. In this regard, we point out that our tech-
nique can be used as it is for skeptical acceptance under the
semi-stable semantics, but a deeper investigation is needed
for extending the technique to deal with the stable semantics.

References
[Alfano et al., 2017] Gianvincenzo Alfano, Sergio Greco,

and Francesco Parisi. Efficient computation of extensions
for dynamic abstract argumentation frameworks: An incre-
mental approach. In IJCAI, pages 49–55, 2017.

[Alfano et al., 2019] Gianvincenzo Alfano, Sergio Greco,
and Francesco Parisi. On scaling the enumeration of
the preferred extensions of abstract argumentation frame-
works. In SAC, pages 1147–1153, 2019.

[Alviano, 2017] Mario Alviano. The pyglaf argumentation
reasoner. In ICLP, pages 2:1–2:3, 2017.

[Amgoud and Vesic, 2012] Leila Amgoud and Srdjan Vesic.
Revising option status in argument-based decision sys-
tems. J. Log. Comput., 22(5):1019–1058, 2012.

[Baroni et al., 2005] Pietro Baroni, Massimiliano Giacomin,
and Giovanni Guida. SCC-recursiveness: a general
schema for argumentation semantics. Artif. Intell., 168(1-
2):162–210, 2005.

[Baroni et al., 2011] Pietro Baroni, Martin Caminada, and
Massimiliano Giacomin. An introduction to argumen-
tation semantics. The Knowledge Engineering Review,
26(4):365–410, 2011.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

23



[Baroni et al., 2014] Pietro Baroni, Massimiliano Giacomin,
and Beishui Liao. On topology-related properties of ab-
stract argumentation semantics. A correction and exten-
sion to dynamics of argumentation systems: A division-
based method. Artif. Intell., 212:104–115, 2014.

[Baumann and Brewka, 2010] Ringo Baumann and Gerhard
Brewka. Expanding argumentation frameworks: Enforc-
ing and monotonicity results. In COMMA, pages 75–86,
2010.

[Baumann, 2011] Ringo Baumann. Splitting an argumenta-
tion framework. In LPNMR, pages 40–53, 2011.

[Bench-Capon and Dunne, 2007] Trevor J. M. Bench-Capon
and Paul E. Dunne. Argumentation in AI. Artif. Intell.,
171(10–15):619 – 641, 2007.

[Bisquert et al., 2013] Pierre Bisquert, Claudette Cayrol,
Florence Dupin de Saint-Cyr, and Marie-Christine
Lagasquie-Schiex. Characterizing change in abstract ar-
gumentation systems. In Trends in Belief Revision and Ar-
gumentation Dynamics, volume 48, pages 75–102. 2013.

[Bistarelli et al., 2018a] Stefano Bistarelli, Francesco Faloci,
Francesco Santini, and Carlo Taticchi. Studying dynamics
in argumentation with Rob. In COMMA, pages 451–452,
2018.

[Bistarelli et al., 2018b] Stefano Bistarelli, Lars Kotthoff,
Francesco Santini, and Carlo Taticchi. Containerisation
and dynamic frameworks in ICCMA’19. In SAFA Work-
shop co-located with COMMA, pages 4–9, 2018.

[Boella et al., 2009] Guido Boella, Souhila Kaci, and Leen-
dert W. N. van der Torre. Dynamics in argumentation with
single extensions: Abstraction principles and the grounded
extension. In ECSQARU, pages 107–118, 2009.

[Caminada et al., 2016] Martin W. A. Caminada, Wolfgang
Dvorák, and Srdjan Vesic. Preferred semantics as socratic
discussion. J. Log. Comput., 26(4):1257–1292, 2016.

[Cayrol et al., 2008] Claudette Cayrol, Florence Dupin
de Saint-Cyr, and Marie-Christine Lagasquie-Schiex.
Revision of an argumentation system. In KR, pages
124–134, 2008.

[Cerutti et al., 2014] Federico Cerutti, Massimiliano Gia-
comin, and Mauro Vallati. ArgSemSAT: Solving argumen-
tation problems using SAT. In COMMA, pages 455–456,
2014.

[Charwat et al., 2015] Günther Charwat, Wolfgang Dvorák,
Sarah Alice Gaggl, Johannes Peter Wallner, and Stefan
Woltran. Methods for solving reasoning problems in ab-
stract argumentation - A survey. Artif. Intell., 220:28–63,
2015.

[Doutre and Mailly, 2018] Sylvie Doutre and Jean-Guy
Mailly. Constraints and changes: A survey of abstract
argumentation dynamics. Argument & Computation,
9(3):223–248, 2018.

[Dung et al., 2007] Phan Minh Dung, Paolo Mancarella, and
Francesca Toni. Computing ideal sceptical argumentation.
Artif. Intell., 171(10-15):642–674, 2007.

[Dung, 1995] Phan Minh Dung. On the acceptability of ar-
guments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

[Dunne and Wooldridge, 2009] Paul E. Dunne and Michael
Wooldridge. Complexity of abstract argumentation. In
Argumentation in AI, pages 85–104. 2009.

[Dunne et al., 2016] Paul E. Dunne, Christof Spanring,
Thomas Linsbichler, and Stefan Woltran. Investigating the
relationship between argumentation semantics via signa-
tures. In IJCAI, pages 1051–1057, 2016.

[Dunne, 2009] Paul E. Dunne. The computational complex-
ity of ideal semantics. Artif. Intell., 173(18):1559–1591,
2009.

[Falappa et al., 2011] Marcelo A. Falappa, Alejandro Javier
Garcia, Gabriele Kern-Isberner, and Guillermo Ricardo
Simari. On the evolving relation between belief revision
and argumentation. The Knowledge Engineering Review,
26(1):35–43, 2011.

[Greco and Parisi, 2016a] Sergio Greco and Francesco
Parisi. Efficient computation of deterministic extensions
for dynamic abstract argumentation frameworks. In ECAI,
pages 1668–1669, 2016.

[Greco and Parisi, 2016b] Sergio Greco and Francesco
Parisi. Incremental computation of deterministic exten-
sions for dynamic argumentation frameworks. In JELIA,
pages 288–304, 2016.

[Kökciyan et al., 2017] Nadin Kökciyan, Nefise Yaglikci,
and Pinar Yolum. An argumentation approach for resolv-
ing privacy disputes in online social networks. ACM Trans.
Internet Techn., 17(3):1–22, 2017.
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