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Abstract
Multi-Agent Pathfinding (MAPF) is the problem of
finding paths for multiple agents such that every
agent reaches its goal and the agents do not col-
lide. Most prior work on MAPF was on grids, as-
sumed agents’ actions have uniform duration, and
that time is discretized into timesteps. We propose
a MAPF algorithm that does not rely on these as-
sumptions, is complete, and provides provably op-
timal solutions. This algorithm is based on a novel
adaptation of Safe interval path planning (SIPP), a
continuous time single-agent planning algorithm,
and a modified version of Conflict-based search
(CBS), a state of the art multi-agent pathfinding al-
gorithm. We analyze this algorithm, discuss its pros
and cons, and evaluate it experimentally on several
standard benchmarks.

1 Introduction
Multi-Agent Pathfinding (MAPF) is the problem of finding
paths for multiple agents such that every agent reaches its
goal and the agents do not collide. MAPF has topical ap-
plications in warehouse management [Wurman et al., 2008],
airport towing [Morris et al., 2016], autonomous vehicles,
robotics [Veloso et al., 2015], and digital entertainment [Ma
et al., 2017b]. While finding a solution to MAPF can be
done in polynomial time [Kornhauser et al., 1984], solving
MAPF optimally is NP Hard under several common assump-
tions [Surynek, 2010; Yu and LaValle, 2013].

Nevertheless, AI researchers in the past years have made
substantial progress in finding optimal solutions to a growing
number of scenarios and for over a hundred agents [Sharon
et al., 2015; Sharon et al., 2013; Wagner and Choset, 2015;
Standley, 2010; Felner et al., 2018; Barták et al., 2017;
Yu and LaValle, 2013]. However, most prior work assumed
that (1) time is discretized into time steps, (2) the duration
of every action is one time step, and (3) in every time step
each agent occupies exactly a single location. These simpli-
fying assumptions limit the applicability of MAPF algorithm
in real-world applications. In fact, most prior work performed
empirical evaluation only on 4-connected grids.

∗Contact Author

Actions Agent

N.U. Cont. Ang. Vol. Opt. Dist.

CBS-CL [Walker et al., 2017] 3 7 7 7 7 7
M* [Wagner and Choset, 2015] 3 7 3 7 3 7
E-ICTS [Walker et al., 2018] 3 7 3 3 3 7
MCCBS [Li et al., 2019] 7 7 7 3 3 7
POST-MAPF [Ma et al., 2017a] 3 3 3 3 7 7
ORCA [Snape et al., 2011] 3 3 3 3 7 3
ALAN [Godoy et al., 2018] 3 3 3 3 7 3
dRRT* [Dobson et al., 2017] 3 3 3 3 7 3
AA-SIPP(m) [Yakovlev and Andr-
eychuk, 2017]

3 3 3 3 7 7

TP-SIPPwRT [Liu et al., 2019] 3 3 3 3 7 7
CCBS 3 3 3 3 3 7

Table 1: Overview: MAPF research beyond the basic setting.

We propose Continuous-time conflict-based search
(CCBS), a MAPF algorithm that does not rely on any of
these assumptions and is sound, complete, and optimal.
CCBS is based on a customized version of Safe interval
path planning (SIPP) [Phillips and Likhachev, 2011], a
continuous-time single-agent pathfinding algorithm, and an
adaptation of Conflict-based search (CBS) [Sharon et al.,
2015], a state-of-the-art multi-agent pathfinding algorithm.

CCBS relies on the ability to accurately detect collisions
between agents and to compute the safe intervals of each
agent, that is, the minimal time an agent can start to move
over an edge without colliding. In our experiments, we
used a closed-loop formulae for collision detection and a
discretization-based approach for safe-interval computations.
The results show that CCBS is feasible and outputs lower cost
solutions compared to previously proposed algorithms. How-
ever, since CCBS considers agents’ geometry and continuous
time, it can be slower than grid-based solutions, introducing
a natural plan cost versus planning time tradeoff.

We are not the first to study MAPF beyond its basic set-
ting. However, to the best of our knowledge, CCBS is the
first MAPF algorithm that can handle non-unit actions dura-
tion, continuous time, non-grid domains, agents with a vol-
ume, and is still optimal and complete. Table 1 provides an
overview of how prior work on MAPF relates to CCBS. A
more detailed discussion is given in the related work section.

2 Problem Definition
We consider cooperative pathfinding for non-point translat-
ing non-rotating agents in 2D workspaces. All agents are
assumed (1) to be of the same shape and size, (2) to move
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with the same (constant) speed, and (3) to be constrained to
the same roadmap of the environment, i.e. there is a single
graph G = (V,E) whose vertices correspond to locations
agents can occupy (and wait in them) and edges correspond
to straight-line trajectories the agents traverse when moving
from one location to the other. Inertial effects are neglected
and agents start/stop moving instantaneously. Duration of a
move is translation speed times the length of the edge. Du-
ration of a wait action can be any positive real number. Prior
work referred to this setting as MAPFR [Walker et al., 2018].

Note that the CCBS algorithm we propose in this work is
not limited to assumptions (1), (2), and (3) described above,
e.g., it can handle agents moving with different speeds, using
different roadmaps, and having complex shapes and sizes. We
make these assumptions only to simplify exposition.

A plan for an agent i is a sequence of actions πi such that if
i executes this sequence of actions then it will reach its goal.
A set of plans, one for each agent, is called a joint plan. A so-
lution to a MAPFR is a joint plan such that if all agents start
to execute their respective plans at the same time, then all
agents will reach their goal locations without colliding with
each other. In this work we focus on finding cost-optimal
solutions. To define cost-optimality of a MAPFR solution,
we first define the cost of a plan πi to be the sum of the du-
rations of its constituent actions. Several forms of solution
cost-optimality have been discussed in MAPF research. Most
notable are makespan and sum of costs (SOC), where the
makespan is the max over the costs of the constituent plans
and SOC is their sum. The problem we address in this work
is to find a solution to a given MAPFR problem that is optimal
w.r.t its SOC, that is, no other solution has a lower SOC.

3 CBS with Continuous Times
Next, we introduce CCBS and provide relevant background.
CBS [Sharon et al., 2015] is a complete and optimal MAPF
solver, designed for standard MAPF, i.e., where time is dis-
cretized and all actions have the same duration. It solves a
given MAPF problem by finding plans for each agent sepa-
rately, detecting conflicts between these plans, and resolving
them by replanning for the individual agents subject to spe-
cific constraints. The typical CBS implementation considers
two types of conflicts: a vertex conflict and an edge conflict.
A vertex conflict between plans πi and πj is defined by a tu-
ple 〈i, j, v, t〉 and means that according to these plans agents
i and j plan to occupy v at the same time t. An edge con-
flict is defined similarly by a tuple 〈i, j, e, t〉, and means that
according to πi and πj both agents plan to traverse the edge
e ∈ E at the same time, from opposite directions.

A CBS vertex-constraint is defined by a tuple 〈i, v, t〉 and
means that agent i is prohibited from occupying vertex v at
t. A CBS edge-constraint is defined similarly by a tuple
〈i, e, t〉, where e ∈ E. To guarantee completeness and op-
timality, CBS runs two search algorithms: a low-level search
algorithm that finds paths for individual agents subject to a
given set of constraints, and a high-level search algorithm that
chooses which constraints to add.

CBS: Low-Level Search. The low-level search in CBS can
be any pathfinding algorithm that can find an optimal plan

for an agent that is consistent with a given set of CBS con-
straints. To adapt single-agent pathfinding algorithms such as
A∗ to consider CBS constraints, the search space must also
consider the time dimension since a CBS constraint 〈i, v, t〉
blocks location v only at a specific time t. For MAPF prob-
lems, where time is discretized, this means that a state in this
single-agent search space is a pair (v, t), representing that the
agent is in location v at time t. Expanding such a state gen-
erates states of the form (v′, t + 1), where v′ is either equal
to v, representing a wait action, or equal to one of the loca-
tions adjacent to v. States generated by actions that violate
the given set of CBS constraints, are pruned. Running A∗ on
this search space will return the lowest-cost path to the agent’s
goal that is consistent with the given set of CBS constraints,
as required. This adaptation of textbook A∗ is very simple,
and indeed most papers on CBS do not report it and just say
that the low-level search of CBS is A∗.

CBS: High-Level Search. The high-level search algorithm
in CBS works on a Constraint Tree (CT), which is a bi-
nary tree, in which each node represents a set of CBS con-
straints imposed on the agents and a joint plan consistent
with these CBS constraints. For a CT node N , we denote
its constraints and joint plan by N.constraints and N.Π, re-
spectively. A CT node N is generated by first setting its con-
straints (N.constraints) and then computing N.Π by running
the low-level solver, which finds a plan for each agent sub-
ject to the constraints relevant to it in N.constraints. If N.Π
does not contain any conflict, then N is a goal. Else, one of
the CBS conflicts 〈i, j, x, t〉 (where x is either a vertex or an
edge) in N.Π is chosen and two new CT nodes are generated
Ni and Nj . Both nodes have the same set of constraints as
N , plus a new constraint: Ni adds the constraint 〈i, x, t〉 and
Nj adds the constraint 〈j, x, t〉. CBS searches the CT in a
best-first manner, expanding in every iteration the CT node
N with the lowest-cost joint plan.

3.1 From CBS to CCBS
CCBS follows the CBS framework. The main differences be-
tween CCBS and CBS are:

• To detect conflicts, CCBS uses a geometry-aware colli-
sion detection mechanism.

• To resolve conflicts, CCBS uses a geometry-aware
unsafe-interval detection mechanism.

• CCBS adds constraints over pairs of actions and time
ranges, instead of location-time pairs.

• For the low-level search, CCBS uses a version of SIPP
adapted to handle CCBS constraints.

Next, we explain these differences in details.

Conflict Detection in CCBS
In CCBS, agents can have any geometric shape and agents’
actions can have any duration. Therefore, conflicts can occur
between agents traversing different edges, as well as vertex-
edge conflicts, which occurs when an agent moving along
an edge collides with an agent waiting at a vertex [Li et al.,
2019]. Thus, a CCBS conflict is defined as conflicts between
actions. Formally, a CCBS conflict is a tuple 〈ai, ti, aj , tj〉,
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Figure 1: Our running example: a MAPFR problem with 3 agents.

representing that if agent i executes ai at ti and agent j exe-
cutes aj at tj then they will collide.

Collision detection for arbitrary-shaped moving objects is a
non-trivial problem extensively studied in computer graphics,
computational geometry and robotics [Jiménez et al., 2001].
For the setting used in our experiments, there is a fast closed-
loop collision detection mechanism [Guy and Karamouzas,
2015]. In general, CCBS as a MAPF algorithm is agnostic to
the exact collision detection procedure used.

Resolving Conflicts in CCBS
The high-level search in CCBS runs a best-first search like
regular CBS, selecting in every iteration a leaf N of the CT
that has the joint plan with the smallest cost. The collision
detection mechanism checks if N is a goal node. If not, the
high-level search expands N by choosing one of the CCBS
conflicts 〈ai, ti, aj , tj〉 detected in N.Π and generating two
new CT nodes, Ni and Nj . To compute the constraints to add
to Ni and Nj , CCBS computes for each action its unsafe in-
tervals w.r.t the other action. The unsafe interval of action ai
w.r.t. action aj is the maximal time interval starting from ti in
which performing ai will create a collision with performing
aj at time tj . CCBS adds to Ni the constraint that agent i
cannot perform ai in its unsafe interval w.r.t to aj , and adds
to Nj the constraint that agent j cannot perform aj in its un-
safe interval w.r.t to ai. For example, consider the MAPFR

problem illustrated in Figure 1. There are three disk-shaped
(r=0.5) agents, a1, a2, and a3, where A, E, and G are their
starts and I , J , and D are their goals, respectively. In the first
CT node, the plans for a2 and a3 are E → F → I → J and
G→ H → C → D, respectively. There is a conflict between
the second actions in both plans, i.e., 〈(F, I), 2, (H,C), 2〉 is
a conflict. The unsafe interval for a2 is [2, 3.74) and for a3 is
[2, 3.31). CCBS will generate two new CT nodes: one with
the additional constraint 〈a2, (F, I), [2, 3.74)〉 and one with
the additional constraint 〈a3, (H,C), [3, 3.31)〉.

SIPP for Planning with CCBS Constraints
The low-level solver of CCBS is based on SIPP, which is a
single-agent pathfinding algorithm designed to handle con-
tinuous time and moving obstacles. SIPP computes for every
location v ∈ V a set of safe intervals, where a safe interval
is a maximal contiguous time interval in which an agent can
stay or arrive at v without colliding with a moving obstacle.
A safe interval is maximal in the sense that extending it to ei-
ther direction yields a collision. The key observation in SIPP
is that the number of safe intervals is finite and often small.

To find a plan, SIPP runs an A∗-based algorithm, searching in
the space of (location, safe interval) pairs. SIPP is complete
and returns time-minimal solutions.

To adapt SIPP to be used as a low-level solver of CCBS, we
modify it so actions that violate the constraints are prohibited,
as follows. Let 〈i, ai, [ti, tui )〉 be a CCBS constraint imposed
over agent i. To adapt SIPP to plan for agent i subject to this
constraint, we distinguish between two cases:
ai is a move action. Let v and v′ be the source and target
destinations of ai. If the agent arrives to v in time step t ∈
[ti, t

u
i ) then we remove the action that moves it from v to v′

at time t, and add an action that represents waiting at v until
tui and then moving to v′.
ai is a wait action. Let v be the vertex in which the agent is
waiting in ai. We forbid the agent from waiting at v in the
range [ti, t

u
i ) by splitting the safe intervals of v accordingly.

For example, if v is associated with a single safe interval:
[0,∞), then splitting it to two intervals [0, ti] and [tui ,∞).1

To demonstrate these two modifications to SIPP, con-
sider again the MAPFR problem in Figure 1. As men-
tioned above, in the root CT node there is a conflict between
a2 and a3, and one of the constraints added to resolve it
〈a2, (F, I), [2, 3.74)〉. This is a constraint over a move action,
and thus we replace the action that moves a2 from F to I with
an action that waits for a duration of 1.74 in F and then moves
to I . The optimal plan for a2 under this constraint is indeed
to use the modified action. However, this plan has a conflict
with the a1 (green), which has the plan A → B → F → I .
To resolve it, the constraint added to a2 is 〈a2, (F, F ), [3, 4)〉.
This is a wait action, and so we split safe intervals of F from
the default [0,∞) to two safe intervals: [0, 3] and [4,∞).

Lemma 1. Running the adapted SIPP described above with
a set of CCBS constraints C1, . . . Cm returns the lowest-cost
path that satisfies these constraints.

The correctness of Lemma 1 follows from SIPP’s optimal-
ity and the fact that our adaptations only prohibit moves that
directly break the given CCBS constraint. A formal proof is
omitted due to space constraints.

3.2 Theoretical Properties
Next, we prove that CCBS is sound, complete, and optimal.
Our analysis is based on Lemma 1 and the notion of a sound
pair of constraints, defined by Atzmon et al. [2018].

Definition 1 (Sound Pair of Constraints). A pair of con-
straints is sound iff in every optimal solution it holds that at
least one of these constraints hold.

Lemma 2. For any CCBS conflict 〈ai, ti, aj , tj〉 and cor-
responding unsafe intervals [ti, t

u
i ) and [tj , t

u
j ) the pair of

CCBS constraints 〈i, ai, [ti, tui )〉 and
〈
j, aj , [tj , t

u
j )
〉

is a
sound pair of constraints.

Proof. By contradiction, assume that there exists ∆i ∈
(0, tui − ti] and ∆j ∈ (0, tuj − tj ] such that perform ai at
ti + ∆i and aj at tj + ∆j does not create a conflict. That is,
〈ai, ti + ∆i, aj , tj + ∆j〉 is not a conflict.

1Note that the first interval includes ti. This is because while the
agent cannot perform wait action in ti, it can perform a move action.
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By definition, of tuj :

∀t ∈ [tj , t
u
j ) : 〈ai, ti, aj , t〉 is a conflict.

∀t ∈ [tj + ∆j , t
u
j ) : 〈ai, ti + ∆j , aj , t〉 is a conflict.

By definition of ∆i and ∆j :

〈ai, ti + ∆i, aj , tj + ∆j〉 is not a conflict

Therefore, ∆i < ∆j . Similarly, by definition of tui :

∀t ∈ [ti, t
u
i ) : 〈ai, t, aj , tj〉 is a conflict.

∀t ∈ [ti + ∆i, t
u
i ) : 〈ai, t, aj , tj + ∆i〉 is a conflict.

Therefore, by definition of ∆i and ∆j we have that ∆j < ∆i,
which leads to a contradiction.

Theorem 1. CCBS sound, complete, and is guaranteed to
return an optimal solution.

Proof. Soundness follows from performing conflict detection
on every joint plan. Completeness and optimality is due to
Lemma 2 and Atzmon et al.’s [2018] proof for k-robust CBS.
In details, let N be a CT node with children N1 and N2, gen-
erated by the sound pair of constraints C1 and C2, respec-
tively. π(N) denotes all joint plans that satisfyN.constraints.
Since C1 and C2 is a sound pair of constraints, it holds that
π(N) = π(N1) ∪ π(N2). Thus, splitting a CT node does not
loose any valid joint plan. Due to Lemma 1 and the fact that
the CT is searched in a best-first manner over the cost and
adding constraints can only increase cost, we are guaranteed
that CCBS returns an optimal solution.

4 Practical Aspects
The analysis above relies on having accurate collision detec-
tion and unsafe interval detection mechanisms. That is, a col-
lision is detected iff one really exists, and the maximal unsafe
interval is used for every given pair of actions. However, con-
structing such accurate mechanisms is not trivial. There are
various ways to detect collisions between agents with volume
in a continuous space, including closed-loop geometric com-
putations as well as sampling-based approaches. See Jiménez
et al. [2001] for an overview and [Tang et al., 2014] for an
example of a particular collision detection procedure. For the
constant velocity disk-shaped agents we used in our experi-
ments, there exists a closed-loop accurate collision detection
mechanism described in [Guy and Karamouzas, 2015].

Computing the unsafe interval of an action w.r.t to another
action also requires analyzing the kinematics and geometry
of the agents. However, unlike collision detection, which
has been studied for many years and can be computed with
a closed-loop formula in some settings, to the best of our
knowledge no such closed loop formula are known for com-
puting the unsafe intervals. A general method for comput-
ing unsafe intervals is to apply the collision detection mech-
anism multiple time, starting from ti and incrementing by
some small ∆ > 0 until the collision detection mechanism
reports that the unsafe interval is done. This approach is lim-
ited in that the resulting unsafe interval may be larger than the
real unsafe interval.

4.1 Conflict Detection and Selection Heuristics
As noted above, conflict detection in CCBS is more complex
than in regular CBS. Indeed, in our experiments we observed
that conflict detection took a significant portion of time. To
speed up the conflict detection, we only checked conflicts
between actions that overlap in time and may overlap geo-
metrically. In addition, we implemented two heuristics for
speeding up the detection process. We emphasize that these
heuristics do not compromise our guarantee for soundness,
completeness, and optimality.

The first heuristic we used, which we refer to as the past-
conflicts heuristic, keeps track of the number of times con-
flicts have been found between agents i and j, for every pair
of agents (i, j). Then, it checks first for conflicts between
pair of agents with a high number of past conflicts. Then,
when a conflict is found the search for conflicts is immedi-
ately halted. That found conflict is then stored in the CT node,
and if that CT node will be expanded then it will generate CT
nodes that are aimed to resolve this conflict. This implements
the intuition that pairs of agents that have conflicted in the
past are more likely to also conflict in the future.

We have found this heuristic to be very effective in practice
for reducing the time allocated for conflict detection. Using
this heuristic, however, has some limitations. Prior work has
established that to intelligently choosing which conflict to re-
solve when expanding a CT node can have a huge impact on
the size of the CT and on the overall runtime [Boyarski et al.,
2015]. Specifically, Boyarski et al. [2015] introduced the no-
tion of cardinal conflicts, which are conflicts that resolving
them results increases the SOC. Semi-cardinal conflicts are
conflicts that resolving them by replanning for one of the in-
volved agents will increases the solution cost, but replanning
for the other involved agents do not increase solution cost.

For CBS, choosing to resolve first cardinal conflicts, and
then semi-cardinals, yielded significant speed ups [Boyarski
et al., 2015]. However, to detect cardinal and semi-cardinal
conflicts, one needs to identify all conflicts, while the advan-
tage of the heuristic is that we can halt the search for conflicts
before identifying all conflicts.

To this end, we proposed a second hybrid heuristic ap-
proach. Initially, we detect all conflicts and choose only car-
dinal conflicts. However, if a node N does not contain any
cardinal or semi-cardinal conflict, then for all nodes in the CT
subtree beneath it we switch to use the past-conflicts heuris-
tic. This hybrid approach worked well in our experiments,
but fully exploring this tradeoff between fast conflict detec-
tion and smart conflict selection is a topic for future work.

5 Experimental Results
We conducted experiments on grids, where agents can move
from the center of one grid cell to the center of another grid
cell. The size of every cell is 1 × 1, and the shape of every
agent is an open disk whose radius equals

√
2/4. This spe-

cific value was chosen to allow comparison with CBS, since
it is the maximal radius that allows agents to safely perform
moves in which agents follow each other.

To allow non-unit edge costs, we allowed agents to move
in a single move action to every cell located in their 2k neigh-
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SOC Success Rate

k 2 3 4 5 2 3 4 5

4 25.7 21.2 20.4 20.3 1.00 1.00 0.97 0.95
6 38.2 31.6 30.5 30.2 0.99 1.00 0.88 0.83
8 49.2 40.7 39.3 39.0 0.98 0.97 0.74 0.57
10 61.0 50.5 48.8 48.4 0.95 0.94 0.54 0.42
12 78.0 64.7 - - 0.94 0.86 - -
14 90.8 75.3 - - 0.88 0.64 - -
16 102.4 85.2 - - 0.76 0.53 - -
18 118.7 - - - 0.62 - - -
20 131.7 - - - 0.46 - - -

Table 2: Results for CCBS on 10× 10 open grid.

borhood, where k is a parameter [Rivera et al., 2017]. Mov-
ing from one cell to the other is only allowed if the agent
can move safely to the target cell without colliding with other
agents or obstacles, where the geometry of the agents and ob-
stacles are considered. The cost of a move corresponds to the
Euclidean distance between the grid cells centers.

5.1 Open Grids
For the first set of experiments we used a 10 × 10 open grid,
placing agents’ start and goal locations randomly. We run
experiments with 4, 5, . . . , 20 agents. For every number of
agents we created 250 different problems. Each problem was
solved with CCBS with k = 2, 3, 4, and 5. Table 2 shows the
results of this set of experiments. Every row shows results
for a different number of agents, as indicated on the left-most
column. The four right-most columns show the success rate,
i.e., the ratio of problems solved by the CCBS under a timeout
of 60 seconds, out of a total of 250 problems. Data points
marked by “-” indicate settings where the success rate was
lower than 0.4. The next four columns show the average SOC,
averaged over the problems solved by all CCBS instances that
had a success rate larger than 0.4.

The results show that increasing k yields solutions with
lower SOC, as expected. The absolute difference in SOC
when moving from k = 2 to k = 3 is the largest, and it
grows as we add more agents. For example, for problems
with 14 agents, moving from k = 2 to k = 3 yields an im-
provement of 15.5 SOC, and for problems with 16 agents the
gain of moving to k = 3 is 17.2 SOC. Increasing k further
exhibits a diminishing return effect, where the largest average
SOC gain when moving from k = 4 to k = 5 is at 0.5.

Increasing k, however, has also the effect of increasing the
branching factor, which in turns means that path-finding be-
comes harder. Indeed, the success rate of k = 5 is signifi-
cantly lower compared to k = 4. An exception to this is the
transition from k = 2 to k = 3, where we observed a slight
advantage in success rate for k = 3 for problems with a small
number of agents. For example, with 6 agents the success rate
of k = 2 is 0.99 while it is 1.00 for k = 3. An explanation for
this is that increasing k also means that plans for each agent
can be shorter, which helps to speed up the search. Thus,
increasing k introduces a tradeoff w.r.t. the problem-solving
difficulty: the resulting search space for the low-level search
is shallower but wider. For denser problems, i.e., with more
agents, k = 2 is again better in terms of success rate, as more
involved paths must be found by the low-level search.

We also compared the performance of CCBS with k = 2

Figure 2: Example: CCBS for k=2 finds a better solution than CBS.

and a standard CBS implementation. CBS was faster than
CCBS, as its underlying solver is A∗ on a 4-connected grid,
detecting collisions is trivial, and it has only unit-time wait
actions. However, even for k = 2, CCBS is able to find better
solutions, i.e., solutions of lower SOC. This is because, an
agent may start to move after waiting less than a unit time
step. Figure 2 illustrates such a scenario. An animation of
this example is given in https://tinyurl.com/ccbs-vs-cbs2.

5.2 Dragon Age Maps
Next, we experimented with a larger grid, taken from the
Dragon Age: Origin (DAO) game and made available in
the movingai repository [Sturtevant, 2012]. We used the
den520d map, shown to the right of Table 3, which was
used by prior work [Sharon et al., 2015]. Start and goal states
were chosen randomly, and we create 250 problems for every
number of agents. Table 3 shows the results obtained for
CCBS with k = 2, 3, and 4, in the same format as Table 2.
The same overall trends are observed: increasing k reduces
the SOC and decreases the success rate.

5.3 Conflict Detection and Resolution Heuristics
In all the experiments so far we used CCBS with the hybrid
conflict detection and selection heuristic described earlier in
the paper. Here, we evaluate the benefit of using this heuristic.
We compared CCBS with this heuristic against the following:
(1) Vanilla: CCBS that chooses arbitrarily which actions to
check first for conflicts, (2) Cardinals: CCBS that identifies
all conflicts and chooses cardinal conflicts, and (3) PastConf:
CCBS that uses the past-conflicts heuristic to choose where to
search for conflicts first, and resolves the first conflict it finds.

Table 4 shows results for the den520d DAO map for 20
agents with k = 2, 3, and 4; and 25 agents with k=2 and k=3.
For every configuration we create and run CCBS on 1,000 in-
stances. The table shows the success rate (the row labelled
“Success”) and the average number of high-level nodes ex-
panded by CCBS (“HL exp.”). The results show that the pro-

SOC Success Rate

k 2 3 4 2 3 4

10 1,791 1,515 1,460 0.96 0.93 0.86
15 2,598 2,198 2,118 0.94 0.84 0.70
20 3,347 2,829 2,726 0.79 0.72 0.50
25 4,049 3,426 3,304 0.58 0.58 0.32

Table 3: Results for CCBS on the den520d DAO map.
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Vanilla PastConf Cardinals Hybrid

k=2
Agents=20

Success 0.72 0.74 0.75 0.82
HL exp. 765 712 453 452

k=3
Agents=20

Success 0.67 0.68 0.75 0.76
HL exp. 152 141 51 47

k=4
Agents=20

Success 0.39 0.4 0.48 0.50
HL exp. 564 516 232 270

k=2
Agents=25

Success 0.39 0.43 0.38 0.53
HL exp. 1762 1730 968 990

k=3
Agents=25

Success 0.44 0.45 0.60 0.61
HL exp. 313 270 81 72

Table 4: Comparing conflict detection and selection methods.

posed hybrid heuristic enjoys the complementary benefits of
PastConf and Cardinals, expanding as few CT nodes as Car-
dinals and having the highest success rate.

5.4 Comparison to E-ICTS
Finally, we compared the performance of CCBS and E-
ICTS [Walker et al., 2018], a MAPFR algorithm based on
the Increasing Cost Tree Search (ICTS) framework [Sharon
et al., 2013]. E-ICTS can handle non-unit edge cost, and
handles continuous time by discretizing it according to a min-
imal wait time parameter ∆. Figure 3 shows the success rate
of the two algorithms on open 10 × 10 grids with different
numbers of agents and k = 2, 3, 4, and 5. We thank the E-
ICTS authors who made their implementation publicly avail-
able (https://github.com/nathansttt/hog2).

The results show that for k = 2 and k = 3, CCBS works
better in most cases, while E-ICTS outperforms CCBS for
k = 4 and k = 5. The reason for this is that as k increases,
more actions conflict with each other, resulting in a signif-
icantly larger CT. Developing pruning techniques for such
CT is a topic for future work. We also compared CCBS to
ICTS over larger dragon age maps. The results where that in
most cases E-ICTS solved more instances.

Given an accurate unsafe interval detection mechanism,
CCBS handles continuous time directly, and thus can return
better solutions than E-ICTS. However, the unsafe interval
detection mechanism we implemented did, in fact, discretize
time. Also, we used different implementations for CCBS and
E-ICTS. Thus, we do not presume to infer when each algo-
rithm is better. This is an open question even for basic MAPF.

CCBS is applicable beyond grid domains. To show this,
we created a roadmap with 878 vertices and 14,628 edges
based on the den520d DAO map using the OMPL library
(http://ompl.kavrakilab.org). For 250 problems with 10, 15,
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Figure 3: Success rate of CCBS and E-ICTS in 10×10 open grids.

and 20 agents, the success rate was 0.89, 0.60, and 0.22, with
SOC of 1,459, 2,082, and 2,688, respectively.

6 Related Work

AA-SIPP(m) is an any-angle MAPF algorithm based on SIPP
that adopts a prioritized planning approach [Yakovlev and
Andreychuk, 2017]. Ma et al. [2019] also used SIPP in a
prioritized planning framework for lifelong MAPF. Both al-
gorithms do not guarantee completeness or optimality. Multi-
Constraint CBS (MCCBS) is a CBS-based algorithm for
agents with a geometrical shape that may have different con-
figuration spaces [Li et al., 2019]. They assumed all ac-
tions have a unit duration and did not address continuous
time. CBS-CL is a CBS-based algorithm designed to han-
dle non-unit edge costs and hierarchy of movement abstrac-
tions [Walker et al., 2017]. It does not allow reasoning about
continuous time and does not return provably optimal solu-
tions. MAPF-POST is a post-processing step that adapts a
MAPF solution to different action durations that due to kine-
matic constraints [Hönig et al., 2017]. ORCA [Van Den Berg
and Overmars, 2005; Snape et al., 2011] and ALAN [Godoy
et al., 2018] are fast and distributed MAPF algorithms for
continuous space. None of these algorithms guarantee op-
timality. dRRT* is a sample-based MAPF algorithm de-
signed for continuous spaces [Dobson et al., 2017]. dRRT* is
asymptotically complete and optimal while CCBS is optimal
and complete, and is designed to run over a discrete graph.

Table 1 provides a differential overview of related work on
MAPF beyond its basic setting. Columns “N.U.”, “Cont.”,
“Ang.”, “Vol.”, “Opt.”, and “Dist.”, means support for non-
uniform action durations, actions with arbitrary continuous
duration, actions beyond the 4 cardinal moves, agents with a
volume (i.e., some geometric shape), returns a provably op-
timal solution, and distributed algorithm, respectively. Rows
correspond to different algorithms or family of algorithms.

7 Conclusion and Future Work

We proposed CCBS, a sound, complete, and optimal MAPF
algorithm that supports continuous time, actions with non-
uniform duration, and agents and obstacles with a geometric
shape. CCBS follows the CBS framework, using an adapted
version of SIPP as a low-level solver, and unique types of
conflicts and constraints in the high-level search. To the best
of our knowledge, CCBS is the first MAPF algorithm to pro-
vide optimality guarantees for such a broad range of MAPF
settings. Experimental evaluation highlighted that conflict
detection becomes a bottleneck when solving MAPFR prob-
lems. We suggested a hybrid heuristic for reducing this cost.
Future work may apply meta-reasoning to decide when and
how much to invest in conflict detection.
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