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Abstract

In this paper, we study coalition formation in he-
donic games through the fairness criterion of envy-
freeness. Since the grand coalition is always envy-
free, we focus on the conjunction of envy-freeness
with stability notions. We first show that, in sym-
metric and additively separable hedonic games, an
individually stable and justified envy-free partition
may not exist and deciding its existence is NP-
complete. Then, we prove that the top responsive-
ness property guarantees the existence of a Pareto
optimal, individually stable, and envy-free parti-
tion, but it is not sufficient for the conjunction of
core stability and envy-freeness. Finally, under bot-
tom responsiveness, we show that deciding the ex-
istence of an individually stable and envy-free par-
tition is NP-complete, but a Pareto optimal and jus-
tified envy-free partition always exists.

1 Introduction

Coalition formation plays a major role in our social, eco-
nomic, or politic life. In examples as diverse as academic re-
search or labor unions, individuals (agents) perform activities
in groups (coalitions) rather than on their own. In coalition
formation with hedonic preferences, or hedonic games, each
agent’s preference over the set of coalitions only concerns the
coalitions that she joins. The outcome of such game is a set
of disjoint coalitions of all agents (partition). A natural ques-
tion is which coalitions are expected to form based on agents’
preferences. The main criterion to analyze this question is
stability, for which many notions have been discussed in the
literature (see handbook chapter Aziz and Savani [2016]).

Introduced by Foley [1967], envy-freeness is a notion of
fairness which has a broad range of applicability. This no-
tion has received considerable attention in resource allocation
[Chevaleyre er al., 2006]. Since envy-freeness can be triv-
ially achieved (by not allocating any resources), the central
issue in resource allocation is the study of envy-free outcomes
that additionally satisfy efficiency or feasibility requirements.
Contrary to other well-studied fairness notions, e.g. maxmin
or proportionality, envy-freeness does not require to compare
inter-personnal preferences, and thus, it can be meaningfully
expressed in ordinal settings like hedonic games.
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In hedonic games, a partition is said to be envy-free if no
agent prefers another agent’s coalition. Similarly to resource
allocation, envy-freeness is always trivially achieved by the
grand coalition and the partition of singletons. Since these
two partitions are not always relevant, requiring only envy-
freeness may not be restrictive enough. Hence, it makes sense
to impose additional requirements, like stability or feasibility,
in conjunction with envy-freeness. However, only a couple
of works have done so in hedonic games, Aziz et al. [2013b]
and Ueda [2018], following two different directions: The first
paper considers envy-freeness in conjunction with stability
and efficiency requirements. The second one restricts the set
of feasible partitions and formulates justified envy-freeness, a
stronger fairness notion motivated by matching theory.

Following the first direction, we investigate the conjunc-
tion of envy-freeness with stability or efficiency notions in
three subclass of hedonic games where some level of stability
is guaranteed: additively separable hedonic games (ASHG)
which form a natural subclass, and fop or bottom respon-
sive hedonic games which encompass well-studied hedonic
games with realistic interpretations, e.g., friend-enemy ori-
ented hedonic games [Dimitrov et al., 2006] or B-hedonic
games [Cechldrovéd and Romero-Medina, 2001].

1.1 Our Contribution

First, we propose a natural weakening of justified envy-
freeness and explore the implications between stability and
envy-freeness notions (Figure 1). In symmetric ASHGs, we
strengthen results from Aziz er al. [2013b], by proving that
an individually stable and justified envy-free partition may
not exist and deciding its existence is NP-complete. We also
show that a Pareto optimal and justified envy-free partition
may not exist. In top responsive hedonic games, we pro-
pose the Extended Top Covering Algorithm which returns a
Pareto optimal, individually stable, and envy-free partition.
In bottom responsive hedonic games, we show that deciding
the existence of an individually stable and envy-free partition
is NP-complete, but a Pareto optimal and justified envy-free
partition is guaranteed. Table 1 summarizes our results.

Note that the partition of singletons is always envy-free and
individually rational. Hence, our paper settles the existence
of partitions satisfying any conjunction of stability and envy-
freeness notions from Figure 1, in the three class at hand.
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General Symmetric/Mutual

IS+JEV: NP-c (Prop.1, Th.1)
PO+JEV: 7 (Prop.2)

ASHG

PO+IS+EF: P (Th.2)

TR CSiEE: 3 (Prop.3) SSNS+EF: 3 (Th.3)
BR PO+JEF: 3 (Th.5) —
SBR o IS+EF: NP-c (Prop.4, Th.4)

CS/PO+WIEF: 7 (Prop.4/5)

Table 1: Summary of the results. TR, BR, and SBR refer to top,
bottom, and strong bottom responsiveness. 3 and 3 means that the
desired partition always exists and may not exist. P and NP-c stand
for polynomial computation and NP-complete existence problem.

1.2 Related Work

In hedonic games, initiated by Banerjee er al. [2001] and Bo-
gomolnaia and Jackson [2002], the central question is to iden-
tify the conditions on preferences that guarantee stability. An
important contribution is Aziz and Brandl [2012] which clar-
ified the inclusions between well-studied stability concepts.
In fractional hedonic games, introduced by Aziz et al. [2014],
Brandl et al. [2015] showed that individually stable outcomes
may not exist, Bilo ez al. [2018] extensively studied Nash sta-
bility, and Monaco et al. [2018] explored Nash and core sta-
bility in a slightly modified setting. Concerning efficiency
notions, Aziz et al. [2013a] proposed an algorihm computing
Pareto optimal and individually rational partitions, and Elkind
et al. [2016] introduced the price of Pareto optimality.
Among many complexity results, Ballester [2004] showed
that deciding the existence of individually stable partitions
is NP-complete, and Peters and Elkind [2015] developed a
framework for proving NP-hardness of existence problems.
Envy-freeness has been extensively studied as a fairness
criterion in resource allocation. In ordinal settings, Brams et
al. [2003] analyzed conflicts between Pareto optimality and
envy-freeness. When the preferences are incomplete, Bou-
veret et al. [2010] proposed possible and necessary envy-
freeness. Justified envy-freeness is motivated in two-sided
matching theory, particularly in the school choice setting,
where Abdulkadiroglu and Sénmez [2003] argued that it
could lead to legal actions, and Fragiadakis er al. [2016] stud-
ied its compatibility with efficiency and strategy-proofness.

2 Preliminaries

Let N = {1,...,n} denote the sef of agents and N; denote
the set of all subsets of NV that contain agent i. A coalition
X C N is a subset of agents and X; denotes the set of all
subsets of X that contain agent 7. A partition 7 is a set of
disjoint coalitions, containing all agents. Let 7 () denote the
coalition to which agent ¢ belongs in w. A hedonic game
(N, P) is defined by a set of agents N and a preference profile
P = (3=;)icn. Each agent i has a preference, denoted =,
which is a weak order on the coalitions to which she belongs;
let >, and ~; respectively denote the strict preference and the
indifference relation derived from =;.
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Additively separable hedonic games (ASHG) form a natu-
ral class of hedonic game where each agent has a value for
any other agent and the utility that an agent derives from a
coalition is the sum of the values she has for its members.

Definition 1 (ASHG). A hedonic game ([V, =) is additively
separable if for each agent ¢ € N there exists a utility function
v; : N — R such that v;(i) = 0 and for any two coalitions
S, T e M, S =i T & ZjES Uz(]) > ZjET ’Ul(j)

An ASHG is symmetric if any two agents, i, j € N, asso-
ciate the same value to each other, i.e., v;(j) = v;(4).

Envy-freeness is a notion of fairness in which no agent has
envy toward another agent. Informally, a partition is envy-free
if no agent prefers another agent’s coalition over his own.

Definition 2 (Envy-freeness (EF)). In partition 7, agent ¢ has
envy toward an agent j with 7 (i) # 7 (j), if (#(j) \ {y}) U
{i} > w(i). Partition  is envy-free if no agent has envy.

Justified envy-freeness is a stronger notion of fairness, for-
mulated in hedonic games by Ueda [2018]. We propose a
natural weakening of justified envy. Agent ¢ has (weakly)
justified envy toward agent j if ¢ has envy toward j and each
agent in j’s coalition is (weakly) in favor of replacing j by .

Definition 3 (Justified envy-freeness (JEF)). In partition m,
i has justified envy toward j with 7(¢) # 7 (j), if ¢ has envy
toward j and for all j* € 7(5)\{j}, (v (5)\{5 }) U{i} > 7(5).
Partition 7 is justified envy-free if no agent has justified envy.
Definition 4 (Weakly justified envy-freeness (WJEF)). In
partition 7, agent 7 has weakly justified envy toward j with
7(i) #7(j), if 7 has envy toward j and for all j' € w(5)\ {7},
(m(5) \ {4}) U {3} =, m(j). Partition 7 is weakly justified
envy-free if no agent has weakly justified envy.

The following example illustrates these fairness notions.

Example 1. Consider a symmetric ASHG with four agents
{1,2,3,4} and values v;(2) = v2(3) = v3(1) = 2, v2(4) =
v3(4) = x, and v1(4) = —7. In this game, consider partition
{{1,2,3},{4}}. If x = 1 then agent 4 has envy toward agent
1, but not weakly justified envy. If x = 2 then 4 has weakly
justified envy toward 1, but not justified envy. Finally, if x =
3 then 4 has justified envy toward 1.

By definition, envy-freeness implies weakly justified envy-
freeness, which implies justified envy-freeness. Example 1
further shows that the opposite relations do not hold.

Below, we define stability concepts and Pareto optimality.
First, we say that partition 7’ is reachable from partition 7

by a set of agents H, denoted 7 A, 7' if foralli,j € N\
Hi#j: w(i) =7(j) &' (i) =7'(j).

Definition 5 (Stability/Pareto optimality). For a specific con-
cept X, we say that partition 7 is X if there exists no X
deviation, where an X deviation is defined as follows:

e Individually rational (IR): agent i such that {i} >; 7(4).

e Individually stable (IS): agent i and coalition X € 7 U {0}
such that X U {¢} >; (i) and forall j € X, X U {i} =; X.
e Strong individually stable (SIS): partition 7’ and set of
agents H such that 1) 7 A, 7', 2) forall i € H, n'(i) >
7(i), and 3) forall i € H, forall j € n'(i), n'(j) =; n(j).
e Nash stable (NS): agent i and coalition X € 7 U {0} such
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Figure 1: Implications between stability and envy-freeness notions.

that X U {i} >=; m(i).

o Strong Nash stable (SNS): partition 7" and set of agents H
such that 1) 25 7/ and 2) for all i € H, 7' (i) =; (4).

e Strict strong Nash stable (SSNS): partition 7’ and set of

agents H such that 1) 7 A, 7', 2) foralli € H, 7'(i) =
7 (i), and 3) there exists ¢ € H such that 7/ (¢) =; w(i).

e Core stable (CS): coalition X C N such that for all
i€ X, X »=; m(i).

e Strict core stable (SCS): coalition X C N such that for all
i € X, X 3=; m(i) and there exists e X st X »=; 7(4).

° Pareto optimal (PO): partition 7’ such that for all 7 €
N,7'(i) %=; w(i) and there exists i € N s.t. 7/(2) >; 7(7).

e Perfect: coalition X C N s.t. for some i € X, X »;7(4).

Let us now describe the implications between envy-
freeness and stability notions, summarized in Figure 1.

First, remark that the grand coalition is always envy-free

but not always individually rational or Pareto optimal. Thus
envy-freeness notions do not imply any of the stability con-
cepts defined in this paper. Notice further that a perfect par-
tition is envy-free, since no agent can improve. Moreover,
an agent who has (weakly) justified envy forms a (strict) core
deviation with the corresponding coalition. Thus, (strict) core
stability implies (weakly) justified envy-freeness.
Finally, strict strong Nash stability does not imply envy-
freeness; neither strong Nash stability nor Pareto optimal-
ity implies weakly justified envy-freeness; and Nash stabil-
ity does not imply justified envy-freeness. Indeed, when x
equals 1, 2, or 3 in Example 1, partition {{1,2,3},{4}} is
respectively strict strong Nash stable, strong Nash stable and
Pareto optimal, or Nash stable. Implications between stability
notions are taken from Aziz and Brandl [2012].

We assume readers’ familiarity with complexity class NP.
In our proofs, we use the problem EXACTCOVERBY3SETS,
which is NP-complete even when each ¢ € Y appears in at
most three sets s € S [Garey and Johnson, 2002].

Definition 6 (EXACTCOVERBY3SETS (X3C)). Consider a
setY = {1,...,3n} and a collection S = {s1,..., 8} of
subsets of Y such that for all s € S, |s| = 3. Does there exist
a subset S” C S such that S’ is a partition of Y'?
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Figure 2: A symmetric ASHG with no IS and JEF partition.

3 Justified Envy in Symmetric ASHGs

In symmetric ASHGs, it is known that Nash (and thus in-
dividually) stable partitions always exist [Bogomolnaia and
Jackson, 2002]. However, Aziz et al. [2013b] show that an
individually stable and envy-free partition may not exist, and
that deciding the existence of such partition is NP-complete.
We strengthen both results with Proposition 1 and Theorem
1, showing that they even hold for justified envy-freeness.

Proposition 1. In symmetric ASHGs, an individually stable
and justified envy-free partition may not exist.

The proof is based on the following counterexample.

Example 2. Consider the symmetric ASHG, illustrated by
Figure 2, with six agents {1,...,6} and values v1(2) = 7,
’1}2(3) = 6, U2(4) = 4, 1)3(4) = 1, U3(5) = 5, ’U4(5)
v4(6) = 3, and v5(6) = 1. All other values are equal to —9.

Proof. Assume that there exists an individually stable and
justified envy-free partition 7 in Example 2. First, if m con-
tains a coalition where two agents have value —9 for each
other, then 7 is not individually rational for at least one of
these agents. Therefore, we limit the following study to coali-
tions containing no negative values, i.e., cliques in Figure 2.

Assume that coalition {1, 2} belongs to 7. If agent 3 is in
coalition {3} or coalition {3, 4}, then agent 5 individually de-
viates toward 3’s coalition. Hence coalition {3,4, 5} belongs
to 7, but then agent 2 has justified envy toward 5.

Thus, coalition {1, 2} does not belong to 7, which implies
that agent 1 is in a singleton coalition. If 2 is in coalition {2},
{2,3}, or {2,4}, then 2 individually deviates toward {1}.
Hence, coalition {2, 3,4} belongs to 7. Now, if agent 5 is
in a singleton coalition then 5 deviates toward {6}, and thus
{5,6} belongs to 7. It leads to 7 = {{1},{2, 3,4}, {5, 6}}
but then 4 individually deviates toward {5, 6}.

Note that Proposition 1 directly implies that the existence
of an {IS, NS} and {JEF, WJEF} partition is not guaranteed.
Moreover, Example 2 is minimal in the sense that an individ-
ually stable and justified envy-free partition always exists for
five agents or less (we omit the case study proof). An inter-
esting question is then the complexity of deciding whether an
individually stable and jusified envy-free partition exists.

Theorem 1. Given an ASHG, deciding whether an individ-
ually stable and justified envy-free partition exists is NP-
complete, even with symmetric preferences.

Proof. First, the problem is in NP since checking these prop-
erties is polynomial. Similarly to Aziz et al. [2013b], we
show NP-hardness by reduction from X3C (see Definition 6).
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Figure 3: Symmetric ASHG obtained by reduction of an X3C in-
stance with s1 = {1, 2,3}, s2 = {2, 3,4}, ..., with focus on s;.

Consider (Y, S) an instance of X3C. From (Y, S), we con-
struct a symmetric ASHG as follows, illustrated by Figure 3:
e For each i € Y, we create six agents (y;)j:17___,6 that form
an instance of Example 2.

e For each set s = {i,j,k} € S, we create agent s such
that ve(yt) = vs(y]) = vs(yf) 5, and we also set
vyi (1) = v, (yF) = vy () = 1.
e All other values are equal to —11.

Before the main argument, notice that if an agent 3% is
isolated from agents (y;) j=2,....6, then the (partial) partition
{{yd, yi}, {yi, i, yi}} is the only individually stable and
justified envy-free partition for agents (y;) J=2,....6-

(=) Assume that there exists a partition S” C S of Y.
Consider partition 7 = {{s,4%, 47,48} | 5 = {i,,k} €
SPU{{ya, usds {va, ys, 461 i € YIU{{s} | s € S\ 5}
We argue that 7 is individually stable and justified envy-free.
First, for each ¢ € Y, agent yi has value 7 in w. Thus,
no agent 4} has incentive to individually deviate toward an-
other coalition or has envy toward agent y%. Hence, each yi
is isolated from agents (yé)jzg ,,,,, 6, and, as argued above,
each {{yd,yi}, {yi,vi,ys}} is individually stable and jus-
tified envy-free. Lastly, since for all s € Sandi € Y \ s,
vs(yt)=—11, no agent s€ S\ S’ has envy toward any s € S’.

(<) Assume that there exists an individually stable and
justified envy-free partition 7. As shown in Example 2, if
an agent y! is in coalition {3} or {y%,v%}, then 7 is not
individually stable and justified envy-free. Hence each agent
Y4 is in coalition with agents from S U {y] | j € Y}, and
thus, each coalition {{y4, 44}, {yi, yi, y&}} belongs to .

Now, assume that for some i € Y, S N w(yi) = 0. Since
each i € Y appears in at most three sets s € S, agent ¢ has
value at most 6 in 7(y?), but then y! has justified envy toward
y4. Hence foralli € Y, S Nm(y}) # 0. The only individu-
ally rational coalitions to which agent ¢ belongs are {s, v},
{s.yi,yi}. and {s, 41, y1,yi}, for some s = {i,j,k} € S.
However, if 4} is in coalition {s,y!} or {s, vy, v]}, then yi
has value at most 6 and justified envy toward agent y4. There-
fore, each y belongs to a coalition {s,y%,y],y¥} for some
s ={i,j,k} € S, which form a partition of Y.
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In addition, the reduction holds as it is for any conjunction
of {IS, NS} and {JEF, WJEF}.

Finally, Pareto optimal partitions always exist by defini-
tion. However, we show that Pareto optimal and justified
envy-free partitions may not exist in symmetric ASHGs.

Proposition 2. In symmetric ASHGs, a Pareto optimal and
Jjustified envy-free partition may not exist.

We omit the argument of the proof based on Example 3.

Example 3. Consider the symmetric ASHG with nine agents
{1,...,9} and values v1(2) = 8, v2(3) = 7, v2(4) = 4,
1)3(4) = 2, 1)3(5) = 6, U4(5) = 3, U4(6) = 4, ’U5(6) = 2,
v5(7) = v6(7) = 1, and v3(8) = v5(8) = 1. All other values
are equal to —10.

4 Top Responsiveness and Envy-freeness

Top responsiveness is a condition on agent’s preference, intro-
duced in Alcalde and Revilla [2004]. Intuitively, it requires
that an agent’s preference over two coalitions is responsive
to her best subsets (choice set) in each coalition. Given agent
i€ N and coalition X € V;, let Ch(i, X) denote the choice set
ofiin X, ie., Ch(i,X)={YeX, :VY' € X,,)Y =, Y'}.

A hedonic game (N, =) satisfies top responsiveness if for
all © € N, the three following conditions are satisfied:

) forall X € N, |Ch(i, X)| = 1,
and let ch (i, X') denote the unique element of Ch(i, X),

() forall X,Y € N, ch(i, X) =; ch(i,Y) = X =; Y,

(3) forall X,Y € N;, [ch(i, X) = ch(i,Y)and X C Y] =
X =Y.

Further, a top responsive hedonic game is mutual if for all
i,jE Nand X € X; N X, j € ch(i,X) < i € ch(j, X).
Dimitrov and Sung [2007] prove that top responsiveness
guarantees the existence of the strict core, relying on the Top
Covering Algorithm, which outputs a strict core stable parti-
tion. Hence, we ask whether top responsiveness guarantees
the existence of a (strict) core stable and envy-free partition.

Proposition 3. Top responsiveness does not guarantee the
existence of a core stable and envy-free partition.

Example 4. Consider four agents {1, 2, 3,4} and the follow-
ing preferences, which can be extended to be top responsive:

1{1} 1 ...

22{1,2,3} b} {1,2,3,4} b} {1,2} ~9 {2,3} 2 ...
3: {2,3} >3 {1,2,3} ~3 {2,3,4} 3 ...

4:{3,4} =4 {1,3,4} ~4 {2,3,4} =4 ...

Proof. In this example, the only core stable partition is
{{1},42, 3}, {4}}, however, agent 4 has envy toward 2. [

Proposition 3 directly holds for the conjunction of envy-
freeness and {SIS, SCS}. Besides, top responsiveness does
not guarantee Nash stable partitions [Dimitrov and Sung,
2006]. The remaining questions concern the conjunction of
envy-freeness with individual stability or Pareto optimality.

Theorem 2. In top responsive hedonic games, a Pareto opti-
mal, individually stable, and envy-free partition always exists,
and can be computed in polynomial time.
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Algorithm 1 Extended Top Covering Algorithm

Input: Top responsive hedonic game (NN, =)
Output: 7, a partition of NV

I: RV :=N,7m:=0

2: for k =1to |N|do

3:  Select agent i € R such that for all j € RF
000, B9 < |00, RY)|

k i, R

4: o= ,

5. if |OC(i, RF)| > 2 then

6: while 3 j € RF\ 7% : ch(j, R¥) N 7% £ 0 do
7 7k =7k U CC(j, RF)

8: end while

9: endif

10:  7:=7nU{rF}, RF! .= Rk\xk
11:  if R = () then

12: return m

13:  end if

14: end for

15: return

Proposition 3 implies that the Top Covering Algorithm
does not return an envy-free partition. We propose the Ex-
tended Top Covering Algorithm, which returns a Pareto op-
timal, individually stable, and envy-free partition, when ap-
plied to a top responsive hedonic game. To define it, we intro-
duce additional notations taken from Aziz and Brandl [2012].

For a coalition X C N, let «~~x denote the binary relation
on X x X such that ¢ «~x j if and only if j € ch(i, X).
We define the connected component of i with respect to the
binary relation «~x, denoted CC' (i, X), as the set:

{(keX|3j,...

Informally, CC(i, X) represents the set of agents in X that
are “reachable” from ¢ by an iterative use of ch(-, X'). We re-
mark that for all i € N and X € N, the following inclusions
hold: ch(i, X) C CC(i,X) C X.
The Extended Top Covering Algorithm is formally defined
as Algorithm 1. Let us describe its application on Example 4:
Step1 R! = {1,2,3,4}: CC(1,R') = {1}, CC(2, RY)
CC(3,R') = {1,2,3}, and CC(4,RY) = {1,2,3,4}.
Agent 1 is selected and 7! = CC(1, R!).

Step2 R? = {2,3,4}: CC(2,R?*) = CC(3,R?) = {2,3},
and CC (4, R?) = {2,3,4}. Agent 2 is selected and
72 = CC(2,R?)U CC(4, R?) = {2,3,4}.
Then, R? = () and the outcome is 7 = {{1},{2,3,4}}.

Let us state directly that Algorithm 1 runs in polynomial
time, returns a partition of IV, and at any step k, for all i € 7*:
() ch(i, RF) C 7%, and (ii) for all step &’ such that &' < k
and |7¥'| > 2, ¢h(i, R¥ )Nx*" = (). To prove Theorem 2, we
use the three following lemmas for which we omit the proofs.
Lemma 1. Consider the k' step of Algorithm 1, then for all
ienk k= {i}

Lemma 2. Consider the k'" step of Algorithm 1. Let X
RF such that 7% C X, then for all i € 7%, 7% =; X.

Lemma 3. Consider the k" step of Algorithm 1. Let X
RE such that 7% # X and 7% N X = {i}, then 7% ~; X.

I EX |ivwx j1vx ..o ox i ox k)

-

-

71

Proof of Theorem 2. Consider a top responsive hedonic game
(N, =) and let 7 denote the outcome of Algorithm 1.

[IS] Toward a contradiction, assume first that agent i € 7%
individually deviates toward e, ™ U {i} = 5 and
forall j € 7', 7¥" U {i} =; 7. Remark first that Lemma 1
implies that 7% 3=; {i}, and thus 7% # 0.

e If k < K, then 7¥" C R* and #* N (7% U {i}) = {i}.
By Lemma 3 [for 7% « 7*, X « 7% U {i}], we get that
m* T U {4}, which is a contradiction.
o If k' < k, then ¥ C 7% U {i} C R¥". By Lemma 2 [for
a7 X « 7 U {i}], we get that for all j € 7~
7+ = 7% U {i}, which is a contradiction.

[PO] Assume now that 7 is not Pareto optimal, i.e., there

exists partition 7’ such that for all ¢ € N, 7n'(7) »=; (i) and
there exists ¢ € N such that 7/(7) >=; 7 (). Consider the set
A={ie N |n(i) # «'(i)}, i.e., the set of agents who are in
different coalitions in 7 and 7. Let k denote the first step of
Algorithm 1 such that 7% N A # (), and consider agent i € 7.
o If 78 C 7/(4), then by Lemma 2 [for 7% < 7%, X <+
7'(i)], we get that 7% =; 7' (i), which is a contradiction.
o If 7% ¢ 7/ (i), then there exists j € 7% (maybe j = i) such
that ch(j, R*) ¢ 7/(j). In addition, by definition of step k,
7'(j) € RF, and thus ch(j, R*) =; ch(j,n'(j)). Further-
more, since ch(j, R¥) C 7%, ch(j, 7*) = ch(j, R¥). Hence,
ch(j, ") =; ch(j,n'(j)), and top responsiveness implies
78 = 7'(j), which is a contradiction.

[EF] Finally, assume that agent i € 7* has envy toward
agent j € 7%, ie., (7* \ {j}) U {i} =, =" First, Lemma 1
implies 7% 3=; {i}, and thus (7" \ {j}) # 0.

o If k < K/, then (7" \ {j}) € R¥ and 7% n (=¥ \ {j}) U
{i}) = {i}. By Lemma 3 [for % « 7%, X « («*" \ {j}) U
{i}1, we get that 7 >; (7" \ {;}) U {i}, a contradiction.

o If &/ < k, we start by showing that for all step k" such
that & < k", |=*"| > 2. First, since 7% \ {j} # 0,
|7*'| > 2. By contradiction, consider the first step k* such
that k¥ < k* and |7*"| 1, and denote by [ the agent
such that 7" = {I}. For all k¥” such that ¥’ < k" <
k*, |7*"| > 2, and thus ch(l, R*") n7¥" = (. Hence,
ch(l, R¥") = ch(l,R*" \ 7*") holds. In total, we obtain
ch(l, R¥ )= ch(l, R* \Up < <pp- ™ ) = ch(l, R¥" ) ={1}.
Hence, CC/(I, R¥") = {1}, which contradicts |7*'| > 2.

Therefore, for all k” such that ¥ < k" < kK,
|7%"| > 2, and then ch(i, R¥") N «*" = 0. It implies
that ch(i, R¥") = ch(i, R¥" \ #*"), and in total we obtain
ch(i, R*") = ch(i, R" \Upcpn -1 ™) = ch(i, R¥). More-
over, ch(i, R¥) C 7%, and then ch(i, 7%) = ch(i, R*). Thus
ch(i, ") = ch(i, R¥"). Also, since ch(i, R¥') nx¥ = 0,
ch(i, R¥) N (7% \ {4}) = 0 also holds. By definition of
ch(i, R¥"), itimplies ch(i, R¥') =; ch(i, (x* \ {j}) U {i}).
Hence we obtain ch(i,7%) =; ch(i, (v \ {j}) U {i}), and
then top responsiveness implies 7% >; (7 \ {j}) U {i},
which is a contradiction. O
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Finally, when a top responsive hedonic game satisfies mu-
tuality, Aziz and Brandl [2012] show that the outcome of the
Top Covering Algorithm is strict strong Nash stable. We fur-
ther show that its outcome is envy-free.

Theorem 3. Top responsiveness and mutuality guarantee the
existence of strict strong Nash stable and envy-free partitions.

Proof. Consider a top responsive and mutual hedonic game
(N, =) and let 7 be the outcome of the Top Cover Algorithm.
By Theorem 3 and Lemma 1 in Aziz and Brandl [2012] re-
spectively, 7 is strict strong Nash stable, and for all 7 € N,
ch(i, N) C 7(i). Toward a contradiction assume that agent ¢
has envy toward agent j in 7, i.e., (w(5)\ {j}) U{i} =; 7 (7).

First assume (i) = {¢}. It implies (7w () \ {j}) # 0, and
then {i} C (7(j) \ {j}) U {¢}. Since ch(i,N) C =(3), it
holds that ch(i, N) = {i}. Hence, by definition of ch(i, N),
{i} = ch(i{i}) = ch(i, (=(j) \ {7}) U {i}). With {i} C
(m(y )\{]}) U {#}, top responsiveness implies {i} = 7 (i) >=;
(m(5) \ {7}) U {4}, which is contradiction.

Thus 7(i) # {i}. Since 7 is individually rational, it
implies ch(i, N) # {i}, and thus ch(i,N) & (w(j) \
{7}) U {i}. By definition of ch(i,N), for all S € N;
and S # ch(i,N), ch(i,N) >; S. Hence, for all S C
(m() \ {]}) U {i}, c¢h(i, N) =; S, and thus ch(i, N) =;

ch(i, (w(5) \{j}) U {i}). Moreover, since ch(i, N) C (i),
we obtain ch(i,7(i)) = ch(i, N), and thus ch(i,m(i)) =;

ch(i, (m(5) \ {47}) U {i}). Hence, top responsiveness implies

( ) =i (m(5)\ {4}) U {i}, which is a contradiction. O

5 Bottom Responsiveness and Envy-freeness

In opposition to top responsiveness, bottom responsiveness

[Suzuki and Sung, 2010] is based on the notion of avoid set.

Given agent ¢ € N and coalition X € N, the avoid set of 7 in

Xis Av(i, X) ={Y € X, : VY € X,, Y =, Y}. In other

words, Av(i, X) denotes the worst subsets in X for agent i.

A hedonic game (N, =) satisfies bottom responsiveness if for

all 7 € N, the two following conditions are satisfied:

(1) for all XY € N, [for all X’ € Av(i,X) and Y’ €
Av(3,Y), X' = Y= X =, Y,

(2) forall X, Y € NV, [Av(i, X) N Av(4,Y) # 0 and | X| >
Y= X =Y.

A bottom responsive hedonic game is strongly bottom re-
sponsive if for all ¢ € N and X € A, |Av(i, X)| = 1, and
it satisfies mutuality if for all 4,7 € N and X € X; N &),
jeAv(i,X) i€ Av(j, X

Aziz and Brandl [2012] show that bottom responsiveness
guarantees a strong individually stable partition, and that
strong bottom responsiveness together with mutuality guar-
antee a strong Nash stable partition. Yet, we show that even
the latter one does not guarantee the existence of a weakly
justified envy-free and individually or core stable partition.
Proposition 4. In a strong bottom responsive hedonic game,
a weakly justified envy-free and individually or core stable
partition may not exist, even with mutual preferences.

Example 5. Consider three agents {1, 2, 3} with preferences:
1: {1,2} 1 {1} 1 {1,273} ~1 {1,3}
2:{1,2,3} =2 {1,2} ~2 {2,3} =2 {2}
3:{2,3} =3 {3} =3 {1,2,3} =5 {1,3}
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Proof. In Example 5, partitions {{1,2,3}} and {{1, 3}, {2}}
are not individually rational for agents 1 and 3. Also, partition
{{1}, {2}, {3}} is not core or individually stable, since {1, 2}
is a deviation. For partitions {{1, 2}, {3}} and {{1},{2,3}},
agent 3 has weakly justified envy toward agent 1 in the for-
mer, and 1 has weakly justified envy toward 3 in the latter.
Preferences are strong bottom responsive and mutual. O

Proposition 4 directly holds for the conjunction of {WJEF,
EF} and {NS, SIS, SNS}. An interesting question is then the
complexity of deciding the existence of such partitions.

Theorem 4. Given a strong bottom responsive hedonic game,
deciding whether an individually stable and envy-free parti-
tion exists is NP-complete, even with mutual preferences.

Proof sketch. We show NP-hardness by reduction from X3C.
Consider (Y, S) an instance of X3C withY = {1,...,3n}

and S = {s1, ..., $m}. We construct a symmetric and strong

bottom responsive ASHG, as follows:

e For each i € Y, we create two agents {y},y5} and a

“clique” of seven agents K% where forall ,I' € K%, v(I') =

1. We set for all [ € K2, vl(yl) = (y) = 1.

e For each set s = {i,7,k} € S, we create a “clique” of

five agents K where for all [,I’ € K, v;(I') = 1. We set

forall I € K, vi(y}) = w(y]) = v(yf) = 1, and also

vyi (1) = v, () = vye (yi) = 1.

e All other values are equal to —|N| = —(3n -9+ m - 5).
The constructed ASHG is both strong bottom responsive

and mutual (indeed, it is a symmetric enemy aversion hedonic

game [Dimitrov et al., 2006]). Notice that, in individually sta-

ble partitions, agents in each “clique” (K%);cy and (K3 )ses

are in the same coalition. The main argument is then similar

to the proof of Theorem 1 and we omit it. O

The reduction also holds for the conjunction of {IS, NS}
and {WJEF, EF}. A direct corollary is that deciding the exis-
tence of an individually stable and envy-free partition is NP-
complete in symmetric ASHGs with only two different values,
and thus it strengthens Theorem 13 in Aziz et al. [2013b],

Finally, we state two results on envy-freeness and Pareto
optimality under bottom responsiveness, omitting the proofs.

Proposition 5. In a strong bottom responsive hedonic game,
a Pareto optimal and weakly justified envy-free partition may
not exist, even with mutual preferences.

Theorem 5. In a bottom responsive hedonic game, a Pareto
optimal and justified envy-free partition always exists.

6 Conclusion

We settled the existence of partitions satisfying the conjunc-
tion of stability and envy-freeness requirements in three im-
portant class of hedonic games. Our main positive result,
the Extended Top Cover Algorithm, may not adapt well to
weaker notion of top responsiveness. In ASHGs and bot-
tom responsive hedonic games, we show that deciding the
existence of an individually stable and envy-free partition is
NP-complete. Future works include the study of complexity
issues related to core stability and Pareto optimality, leading
probably to NPP difficult problems.
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