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Abstract
In an election, votes are often given as ordered lists
over candidates. A common way of determining
the winner is then to apply some scoring system,
where each position is associated with a specific
score. This setting is also transferable to other sit-
uations, such as sports tournaments. The design of
such systems, i.e., the choice of the score values,
may have a crucial influence on the outcome. We
study the computational complexity of two related
decision problems. In addition, we provide a case
study of data from Formula 1 using ILP formula-
tions. Our results show that under some mild con-
ditions there are cases where the actual scoring sys-
tem has no influence, whereas in other cases very
small changes may lead to a different winner. This
may be seen as a measure of robustness of the win-
ning candidate.

1 Introduction
A common task in diverse situations is to choose a winner
among a group of alternatives. If the underlying information
consists of linear orders over the alternatives a usual approach
is to use scoring systems. Here, each position is associated
with a respective score value and the candidates with the high-
est scores are the winners. This approach is not only useful
for elections in the classical sense, but also for other situa-
tions such as sports competitions. A Formula 1 season can
be seen as an election where the candidates correspond to the
drivers and the voters represent the placements for each race.
Another example of a competition using scoring systems is
the Eurovision Song Contest.

When designing such a scoring system some requirements
obviously have to be respected. For example the points
should be non-increasing from the first to the last place, and
when considering sports tournaments it is often reasonable to
have a significant distance between the front positions. Tak-
ing the scoring systems for the Formula 1 as an example,
it can be observed that there were several changes over the
years. When a lot of money and/or prestige is involved, it is
∗A preliminary version of this paper appeared as an extended
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particularly important to examine the manipulative design of
scoring systems, since an external agent may therefore have
an influence on manipulating the outcome.

We investigate this problem from two different perspec-
tives. On the one hand we provide a theoretical background
for the manipulative design of scoring systems and on the
other hand we give an experimental evaluation of data from
the Formula 1. We introduce the decision problem SCOR-
ING SYSTEM EXISTENCE which captures the simple setting
where a manipulator seeks for a scoring system that makes
some distinguished candidate win, regardless of any external
requirements on the scores. As argued above, the existence
of only weird scoring systems may not help, as there is no
chance to implement them. So we additionally consider re-
strictions on the system. A slightly different approach is cap-
tured by the problem CLOSE SCORING SYSTEMS, where the
choice of a new system is bounded by some given distance.
This is especially important when an existing system will be
changed since in most cases small changes will be accepted
more easily. We study the computational complexity of both
problems in several variants. Our results range from hardness
results for NP and W[2] to polynomial-time algorithms that
are obtained through linear programming approaches. In ad-
dition to the theoretical results, we also provide a case study
on Formula 1 data. For all seasons from 1961 to 2008, we
checked whether there exist scoring systems that result in a
different winner. We show that there are years with perfect
winners, i.e., the current winner is the only possible unique
winner under every other scoring system that fulfills some
very mild criteria, whereas in other years very small changes
may already lead to a different winner. Hence the obtained
results are also a measure of robustness of the actual winner.

2 Preliminaries
Formally an election is a pair (C, V ), with C being the set
of candidates and V = (v1, . . . , vn) a profile of voters con-
sisting of n linear orders over C. A scoring system used to
define the winner of an election with m candidates is de-
fined through the vector ~α = (α1, . . . , αm) ∈ Rm≥0 with
α1 ≥ α2 ≥ · · · ≥ αm and α1 > αm. By score~α(C,V )(c) =∑n
i=1 αpos(vi,c) we denote the number of points for candi-

date c in election (C, V ), where pos(v, c) is the position of
candidate c in the linear order v. The candidates having
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the highest score are the winners. Prominent examples in-
clude the plurality rule, where only the first-placed candidate
in each vote gets one point and thus has the scoring vector
(1, 0, . . . , 0), or the Borda rule defined through the vector
(m − 1,m − 2, . . . , 0). Beside usual elections, scoring sys-
tems are also used in competitions like the Eurovision Song
Contest or the Formula 1. In Section 5 the data from For-
mula 1 races will be considered in detail with respect to the
problems studied in this paper.

The score values are often restricted to natural numbers,
however, we also consider the more general case of real num-
bers or rational numbers. We will show that this choice is
crucial for determining the computational complexity. To
facilitate our analysis we will use the following lemma that
characterizes equivalent scoring rules.
Lemma 1. A scoring system ~α ∈ Rm≥0 is equivalent to a
scoring system ~α′ ∈ Rm≥0 in terms of winner determination if
and only if ~α′ = a · ~α+ b with a ∈ R>0 and b ∈ R holds.

Lemma 1 implies that every scoring system can be trans-
formed into an equivalent scoring system with αm = 0.
Therefore, we will generally assume that αm = 0 holds. In
our proofs we need to construct profiles that satisfy certain
criteria on the scores of the candidates. This can be achieved
by the following lemma. This is a slightly adapted version of
the lemma by Betzler and Dorn [2010] (see also [Dey and
Misra, 2017]), which is formulated over score differences
rather than absolute scores. For a given profile V over C
and a scoring vector ~α ∈ R|C|≥0 we define the score differ-
ence between two candidates a, b ∈ C as sd~α(V,C)(a, b) =

score~α(V,C)(a)− score~α(V,C)(b).

Lemma 2. Given a set of candidates C =
{c1, c2, . . . , cm−2, p, e} and an integer matrix
H = (hi,j)i=1,...,m−2, j=1,...,m−1 with H ∈ Zm−2×m−1.
One can construct a profile V = (v1, . . . , vn) such that
evaluated by any scoring system ~α = (α1, α2, . . . , αm−1, 0)

is satisfying sd~α(V,C)(e, p) < 0 and sd~α(V,C)(ci, p) =

[hi,1]·α1+· · ·+[hi,m−1]·αm−1 for i ∈ {1, . . . ,m−2}, with
n ∈ O(ĥ ·m3) and ĥ = maxi∈{1,...,m−2},j∈{1,...,m−1} |hi,j |.

We assume that the reader is familiar with the basics of
computational complexity, such as the classes P and NP. For
further information we refer to the textbooks by Papadim-
itriou [1994] and Arora and Barak [2009]. In addition to clas-
sical complexity, we also study the parameterized complexity
and obtain FPT results and W[2]-hardness. For further read-
ing we refer to the textbooks by Downey and Fellows [1999]
and by Flum and Grohe [2006].

In our constructions, we will make use of the NP-complete
problem DOMINATING SET. An instance consists of an undi-
rected graph G = (X,E) and an integer s ≤ |X|. The ques-
tion is whether there exists a subset X ′ ⊆ X with |X ′| ≤ s
such that each xj ∈ X is either a member of X ′ or shares an
edge with a member of X ′. This problem is W[2]-hard with
respect to the parameter s, the size of the dominating set (see
[Downey and Fellows, 1999]). For our reductions, we will
construct ILPs that are similar to the following direct ILP for-
mulation of DOMINATING SET. Given a DOMINATING SET

instance consisting of G = (X,E) with X = {x1, . . . , x`}
and integer s ≤ |X|. Let N [xj ] denote the closed neighbor-
hood of xj . An equivalent ILP is given as follows.

∀xj ∈ X : yj ∈ {0, 1} (1)

∀xj ∈ X :
∑

xi∈N [xj ]
yi ≥ 1 (2)∑

xj∈X
yj ≤ s (3)

3 Scoring System Existence
As an election problem, we model the situation where the
chair of the election seeks an alternative scoring system that
guarantees the victory of a distinguished candidate for differ-
ent possible profiles. This is, for example, the case if different
opinion polls are known but there is some uncertainty about
the real votes. A different application is the evaluation of
(online) surveys, where the voting system used is initially un-
known to the participants. The initiator may afterwards try
to adjust the scores in order to ensure a victory for her pre-
ferred candidate or to support her hypothesis. To formally
capture the idea of manipulation through the choice of the
scoring vector we introduce the problem SCORING SYSTEM
EXISTENCE.

SCORING SYSTEM EXISTENCE

Given: A set of candidates C with |C| = m, a list of pro-
files V1, V2, . . . , VN overC, and a candidate p ∈ C.

Question: Is there a scoring vector ~α ∈ Rm
≥0 with αm = 0,

such that p is the unique winner of election (C, Vj),
1 ≤ j ≤ N , with respect to ~α?

We focus on the unique winner case. The non-unique win-
ner case is less interesting, as vectors that assign nearly the
same value to all positions are often a solution in the uncon-
strained case. In general, the approaches in the constrained
case are technically more interesting for the unique winner
case and can easily be broken down for the non-unique case.
This decision problem is contained in NP for all variants con-
sidered here since for a given scoring vector the election can
be evaluated efficiently. Therefore, we will only refer to the
hardness in the later NP-completeness proofs.

Even though the formal definition uses the notions of elec-
tions, this problem also captures completely different set-
tings, for example the Formula 1 or the Eurovision Song
Contest. The task is again to figure out whether a change
of the system, based on suspected placements or a subse-
quent change based on the actual placements, can guarantee
certain outcomes. This question is particularly interesting if
people in charge might have an interest in the success of a
certain team because of preferences, arrangements, or bets.
In Section 5 we will use real-world data to show that it is
not unlikely in regular competitions to be able to replace the
unique winner by changing the system only slightly. In all
these cases, one has to keep in mind that arbitrary systems,
which follow no idea or intuition, are suspicious and make a
targeted modification of the system very obvious. Therefore,
we consider certain restrictions of the scoring systems.
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Related work. Our problem belongs to the group of elec-
tion problems studied in computational social choice. Com-
paring it to the existing election problems, it is much
closer to the different variants of control (see Bartholdi et
al. [1992]), than to manipulation (see Bartholdi et al. [1989])
or bribery (see Faliszewski et al. [2009]), since the influ-
ence is on the chair and the election itself rather than on
the voters or candidates. Baumeister et al. [2011] consid-
ered a special case of our problem, showing that SCOR-
ING SYSTEM EXISTENCE for one profile is NP-complete
for (α1, ..., αm−4, x1, x2, x3, 0) with xi = 1 for at least
one i ∈ {1, 2, 3}, if we a assume that the votes are given
in succinct representation, i.e., instead of listing each vote
separately the distinct votes are given with their correspond-
ing multiplicity. We will strengthen this result by showing
that even without the requirement of succinct representation,
the problem is NP-complete for a variety of slightly con-
strained vectors. On the other hand, our results imply that
their problem for unconstrained vectors can be solved effi-
ciently. Elkind and Erdélyi [2012] considered a related prob-
lem, in which the voting rule to be used will be chosen from
a given set of rules, and the aim of the manipulator is to find
a vote that ensures the victory of some distinguished candi-
date for all of the possible voting rules. Shiryaev et al. [2013]
and Bredereck et al. [2017] studied the robustness of an elec-
tion taking into account the minimum degree of change nec-
essary regarding the votes to alter the outcome of the election.
In contrast, we measure the amount of change in the scoring
vector needed by using distances.

Complexity

We briefly outline the scenarios examined in the following.
First, we consider the unrestricted case. Then, we investigate
the complexity of vectors restricted to natural numbers using
one of the simplest constraints: requiring a certain value at a
given rear/front position in the vector. Our hardness results
are formulated in the most restricted case and therefore also
show hardness for the most general cases, e.g. where either
the value, the position, or both are part of the input. For this
case we also show that the problem is FPT regarding the
number of candidates or regarding the total number of voters
across all profiles. The main results for SCORING SYSTEM
EXISTENCE are summarized in Table 1.

The first result is that without restrictions it can be checked
in polynomial-time whether an alternative scoring system ex-
ists that makes the distinguished candidate the unique winner
of all the elections.

Theorem 1. SCORING SYSTEM EXISTENCE is in P for ~α ∈
Rm≥0, Qm≥0, and Nm≥0.

Proof. Let the profiles be Vj = (vj,1, vj,2, . . . , vj,nj ) for
1 ≤ j ≤ N . From the definition of a scoring system and
the properties of a scoring vector, the following linear pro-
gram (LP) can be easily derived. This LP is solvable, if and
only if there exists a system in which p becomes the unique
winner with a minimum advantage of ε > 0 in each of the

elections.

∀j ∈ {1, . . . , N} : ∀q ∈ C \ {p} :∑m

k=1

[
T(C,Vj)(p, k)− T(C,Vj)(q, k)

]
· αk ≥ ε (1)

with T(C,Vj)(c, k) = |{i ∈ {1, . . . , nj} | pos(vj,i, c) = k}|.

∀k ∈ {1, . . . ,m− 1} : αk − αk+1 ≥ 0 (2)
αm = 0 (3)

The choice of ε restricts the possible scoring vectors, but nev-
ertheless, in order to check whether any vector exists at all,
the actual value of ε is irrelevant: As the advantage is pro-
portional to the scaling of the vector, by Lemma 1 we can
always obtain an equivalent vector guaranteeing a minimum
advantage of ε, if one exists at all. Therefore, ε can be chosen
arbitrarily and we choose ε = 1 by default.

LPs can be solved efficiently depending on the number
of variables and on the length of the input (see [Karmarkar,
1984] and [Adler et al., 1989]). The output of these algo-
rithms is always rational for rational inputs, whereby a ratio-
nal scoring vector exists if there exists one at all. Therefore,
by applying Lemma 1, we can also receive an equivalent in-
teger scoring vector by scaling if there exists one at all.

Through Lemma 1, rational vectors can always be reshaped
to contain a certain value at a given position. However this
does not hold for integer vectors, and this is what we now
focus on. In this case, SCORING SYSTEM EXISTENCE is al-
ready getting hard if one specific value on some fixed rear
position is required in the vector. Note that the position, as
well as the specific value, are independent of the actual input.
Theorem 2. Let k ∈ N≥1 and γ ∈ N≥1 be some fixed val-
ues. SCORING SYSTEM EXISTENCE is NP-complete if the
scoring vector ~α ∈ Nm≥0 for m > k candidates has to satisfy
αm−k = γ.

Proof. NP-hardness will be shown by a reduction from
DOMINATING SET. Assume we are given a DOMINATING
SET instance G = (X,E) with X = {x1, x2, . . . , x`}
and an integer s ≤ |X|. We construct an election with
the set of candidates C = {p, e, g} ∪ A ∪ B ∪ D, where
A = {a1, . . . , a`}, B = {b1, . . . , b`}, and dummy candi-
dates D = {d1, . . . , dk+1}. The preferred candidate is p.
According to Lemma 2 we construct the profile V that en-
sures the following score differences, where we choose p and
e respectively. For each aj , 1 ≤ j ≤ `: sd~α(C,V )(aj , p) =

[γ] · α(m−k)−j − [γ] · α(m−k)−(j−1) − [2] · αm−k, for each
bj , 1 ≤ j ≤ `: sd~α(C,V )(bj , p) = [χj(x1)] · α(m−k) −
[χj(x`)] ·α(m−k−l)+

∑`−1
i=1 [χj(xi+1)− χj(xi)] ·α(m−k)−i

with χj denoting the characteristic function of N [xj ], and
sd~α(C,V )(g, p) = [γ] · α(m−k)−` − [s+ 1 + γ] · αm−k.

For each dj ∈ D we set sd~α(C,V )(dj , p) to be negative.
Therefore, for the candidates in {e} ∪D the score difference
to p is less than zero, i.e., they have fewer points than p irre-
spective of the entries in the scoring vector.

We will now show that a scoring vector of the required
form making p the unique winner exists for the constructed
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~α ∈ Nm≥0 αm−k = γ, fixed rear position αk = γ, fixed front position

k fixed, γ fixed NP-complete, Thm. 2 ∈ P, Thm. 3
k fixed, γ input NP-complete, Thm. 2 NP-c. / W[2]-hard wrt. γ, Thm. 3

k input, γ fixed / input NP-complete, Thm. 2
for all cases FPT wrt. number of candidates or total number of voters, Thm. 4

Table 1: Complexity results for SCORING SYSTEM EXISTENCE.

instance if and only if a dominating set with at most s vertices
exists for the given instance. We begin with equivalences re-
garding the solvability of the instance. If p is the unique win-
ner of the election, the score difference sd~α(C,V )(c, p) for all
candidates c ∈ C \{p} has to be negative. This already holds
for e and the candidates in D, hence we only have to focus
on the score differences of the candidates in A ∪ B ∪ {g}.
Recall that γ = αm−k holds. For each aj , 1 ≤ j ≤ `,
we have: 0 > [γ] · α(m−k)−j − [γ] · α(m−k)−(j−1) − [2] ·
αm−k ⇔ α(m−k)−(j−1) + 1 ≥ α(m−k)−j . Taking into
account the monotonicity, each α(m−k)−j can have exactly
two distinct values: α(m−k)−(j−1) or α(m−k)−(j−1) + 1.
For each bj , 1 ≤ j ≤ `, we have: 0 > [χj(x1)] ·
α(m−k)− [χj(x`)] ·α(m−k−l)+

∑`−1
i=1 [χj(xi+1)− χj(xi)] ·

α(m−k)−i ⇔ 1 ≤
∑
xi∈N [xj ]

(
α(m−k)−i − α(m−k)−(i−1)

)
.

And for g we have: 0 > [γ]·α(m−k)−`−[s+1+γ]·αm−k ⇔
s ≥ α(m−k)−` − αm−k. To summarize, a scoring vector of
the required form making p the unique winner exists for the
constructed instance if and only if there exists a scoring vec-
tor fulfilling the following restrictions.

∀j ∈ {1, . . . , `} :
α(m−k)−j ∈ {α(m−k)−(j−1), α(m−k)−(j−1) + 1} (1)

∀j ∈ {1, . . . , `} :

1 ≤
∑

xi∈N [xj ]

(
α(m−k)−i − α(m−k)−(i−1)

)
(2)

s ≥ α(m−k)−` − αm−k (3)

The values not considered so far, namely α1, α2, . . . ,
α(m−k)−`−1 and α(m−k)+1, α(m−k)+2, . . . , αm, do not have
an influence on the score differences between p and the can-
didates that could prevent p from being the unique winner,
hence their actual value is insignificant as long as they com-
ply with the monotonicity of the scoring vector. Note that
the above set of inequalities is equivalent to the ILP for-
mulation of DOMINATING SET given previously regarding
feasibility: (1) ensures that every α(m−k)−j can have two
different values depending on the previous values, namely
α(m−k)−(j−1) indicating that xj /∈ X ′ or α(m−k)−(j−1) + 1
indicating that xj ∈ X ′. (2) ensures for each vertex xj either
xj or at least one of its neighbors is covered by X ′. (3) with
α(m−k)−` −αm−k equaling the number of values set to their
upper values ensures that |X ′| ≤ s holds.

Therefore, a scoring vector of the required form making
p the unique winner exists for the SCORING SYSTEM EXIS-
TENCE instance if and only if a dominating set with at most s
vertices exists for the DOMINATING SET instance.

Note that in this proof only one profile is needed to es-
tablish NP-hardness of the problem. In sharp contrast to the
previous result, we now show that if some value at some front
position is fixed in advance the problem remains solvable in
polynomial time. This includes, for example, the case where
the maximum number of points to be given has been limited
from the outset. However if the value is not fixed in advance
but part of the input, this problem is W[2]-hard.
Theorem 3. Let k ∈ N≥1 and γ ∈ N≥1 be some fixed values.
SCORING SYSTEM EXISTENCE is in P if the scoring vector
~α ∈ Nm≥0 for m ≥ k candidates has to satisfy αk = γ. If
γ is not fixed in advance, the problem is NP-complete and
W[2]-hard with respect to γ.

The proof is omitted due to space restrictions. For the
hardness, the idea is to use additional candidates to enforce
the conditions in which one can apply the reduction of The-
orem 2. For this, we set γ to be s + 1 whereby the NP-
and W[2]-hardness follows from the respective hardness of
DOMINATING SET. Again, only one profile is necessary to
establish the NP- and W[2]-hardness. Now, we will consider
the parameterized complexity of the problem with respect to
the number of candidates and voters. For this, we consider the
more general case of the problem where a specific value and
its position itself may be part of the input. Note that an effi-
ciency result for this case also applies to the restricted cases
studied before where k and αk or αm−k are fixed.
Theorem 4. SCORING SYSTEM EXISTENCE with ~α ∈ Nm≥0,
αk = γ ∈ N≥1 and k ∈ {1, . . . ,m−1} as part of the input is
FPT with respect to the number of candidates or with respect
to the total number of voters.

Proof sketch. Regarding the number of candidates, the cor-
responding ILP (see proof of Theorem 1, with γ as part of
the input and αm = 0, contains only m − 2 variables to be
determined.

Regarding the total number of voters, the proof is based on
the fact that for the solvability of the instance, one only has
to consider the values of the vector on which positions p has
been placed in at least one of the votes. All other values can
be decreased to γ, 0, or the next of those values, as this only
reduces the score of candidates other than p. Therefore, we
have to consider an ILP with at most n variables, with n being
the total number of voters.

In both cases, ILPs are FPT regarding the number of vari-
ables (see [Lenstra, 1983]), the problem is FPT regarding the
number of candidates or the total number of voters.

Interestingly, one can show that in the case where the num-
ber of profiles is variable, but the number of voters per pro-
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file is bounded by a constant depending on γ, the problem is
again hard once you fix only one value, even if it is constant at
a constant position from the bottom. This special case is mo-
tivated by the fact that in (sports) competitions the number of
jurors per event or races per season is mostly constant.

4 Closest Scoring System
So far we considered only very mild restrictions on the scor-
ing vectors. However, the manipulator may wish to limit the
changes to the scores. Formally this can be modeled by mea-
suring the difference between the original and the new scor-
ing system by some appropriate distance. We will use the
following Minkowski distances to compare scoring systems.

Definition 1. The Manhattan distance D1, the Euclidean
distance D2, and the Chebyshev distance D∞ for two vec-
tors ~x, ~y ∈ Rm with ~x = (x1, x2, . . . , xm) and ~y =
(y1, y2, . . . , ym) are defined as follows:

D1(~x, ~y) =
m∑
j=1

|xj − yj |, D2(~x, ~y) = 2

√∑m
j=1 (xj − yj)

2,

and D∞(~x, ~y) =
m

max
j=1
|xj − yj |.

In terms of scoring systems, the Manhattan distance mea-
sures the total change at given points per position and thereby
the overall adjustments to the vector. The Chebyshev distance
takes into account only the largest deviation. With regard to
this distance, it is advantageous to distribute the adjustments
to the scoring vector. The Euclidean distance combines both
approaches, measuring the total change while heavily weight-
ing larger deviations of individual entries. This motivates
again the minimization of the overall adjustments to the vec-
tor while distributing the adjustments to the entire vector.

The problem we will focus on asks whether there is an al-
ternative scoring system making the distinguished candidate
the unique winner, while the distance between the two vec-
tors is bounded. For a distance D on arbitrary sized vectors,
the problem is formally defined as follows.

D-CLOSE SCORING SYSTEM

Given: A set of candidates C with |C| = m, a list of
profiles V1, V2, . . . , VN over C, a scoring system
~α = (α1, α2, . . . , αm) ∈ Rm

≥0 with αm = 0, a
distance limit K ∈ R≥0, and a candidate p ∈ C.

Question: Is there a scoring system ~α′ ∈ Rm
≥0 with α′m = 0,

such that p is the unique winner of election (C, Vj),
1 ≤ j ≤ N with respect to ~α′ and D(~α, ~α′) ≤ K?

Again, the problem D-CLOSE SCORING SYSTEM is con-
tained in NP, for all distances considered here. In the previ-
ous section we showed that the unrestricted variant of SCOR-
ING SYSTEM EXISTENCE can be solved in polynomial time.
ForD-CLOSE SCORING SYSTEM this still holds if the vector
consists of real numbers or rational numbers.

Theorem 5. D-CLOSE SCORING SYSTEM for ~α, ~α′ ∈ Qm≥0
or Rm≥0, and Minkowski distances D1, D2, and D∞ is in P.

The proof modifies the LP from the proof of Theorem 1
but is omitted due to space restrictions. In the following, we
will show that the problem is hard when the scoring vectors

are restricted to natural numbers. Nevertheless, if we want to
solve the problem in practice, we can interpret the LP together
with the distance optimization used in the proof of Theorem 5
as an ILP.
Theorem 6. D-CLOSE SCORING SYSTEM for ~α, ~α′ ∈ Nm≥0
and Minkowski distances D1, D2, and D∞ is NP-complete.

The proof is omitted due to space restrictions and its simi-
larity to the proof of Theorem 2. For the instances constructed
in the proof of Theorem 6 there does always exist a scoring
vector making p the unique winner. We have shown that if
the instance is not solvable with αm−1 = 1, the necessary
distance increases at least by a factor of `. Based on these
two arguments, it can be shown that for the problem for D1,
D2, and D∞, no efficient constant-factor approximation al-
gorithm for the distance can exist, unless P = NP.

Now, we present an analysis of the parameterized complex-
ity of the problem with respect to the distance limit. Note that
the proof of Theorem 6 includes that the problem with respect
to D∞ is NP-complete even for a constant distance limit of
K = 1. Therefore we will know focus on the parameterized
complexity of the problem regarding D1 and D2.
Theorem 7. Let K ∈ R≥0 be some fixed value. D-CLOSE
SCORING SYSTEM for ~α, ~α′ ∈ Nm≥0 and Minkowski dis-
tances D1 and D2 is in P. If K is not fixed in advance, the
problem is W[2]-hard with respect to K.

Proof sketch. The proof of W[2]-hardness is already included
in the proof of Theorem 6, as DOMINATING SET is W[2]-
hard with respect to s and we used K = s for D1 and D2.
It remains to prove that the problem can be solved efficiently
for a constant K. It can be shown that for a constant K, the
number of vectors to be considered within D1 or D2 distance
K is bounded by a polynomial depending on m. Since those
vectors can be efficiently generated, one can check for all the
vectors, whether they are monotone and non-negative, and if
so whether p becomes the unique winner by one of them.

5 Experiments
In addition to the theoretical results presented so far, we in-
vestigated the manipulative design of scoring systems in a
case study. Our aim was to identify how relevant the problem
presented here is, in other words, how likely it is that with
small changes to the system, one can change the outcome of
an election or competition.

We consider real-life competition data from the Formula
1 from the seasons 1961 to 2008. To be precise, we use
the version of the data available at PrefLib.org [Mattei and
Walsh, 2013]. There exists a list of race results for each
season, with each race result consisting of a strict order of
drivers who have completed the race with all other drivers
being tied on the last position. Since we examine fixed re-
sults here, not predictions, each instance contains exactly
one profile. In the provided seasons the Formula 1 used
the following scoring systems: ~α = (9, 6, 4, 3, 2, 1, 0, . . . , 0)
in 1961–1990, (10, 6, 4, 3, 2, 1, 0, . . . , 0) in 1991–2002, and
(10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0) in 2003–2008.

Until 1991, not a stand-alone scoring system was used, as
only a certain number of the best results of a driver were
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(I.) 12 - - 2 2 12 2 8 21 3 19 11 20 2 34 2 10 5 3 10 1 4 2 2
(II.) - - - 2 2 - 2 - - 3 - - - 2 - 2 10 5 3 10 1 4 2 2
(III.) - - - 8 4 - 5 - - - - - - 4 - 2 22 - 16 - 6 9 2 -
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(I.) 25 2 3 4 7 5 - 22 - 1 17 6 2 12 2 4 29 - 1 7 40 40 1 1
(II.) - 2 3 4 7 5 - - - 1 - 6 2 - 2 4 - - 1 7 - - 1 1
(III.) - 2 4 9 10 - - - - 1 - - 2 - 4 - - - 3 - - - 3 2

Table 2: Results for the case study of D1-CLOSE SCORING SYSTEM for Formula 1 data from 1961–2008. The table lists the minimum
distance to a scoring vector that results in a different unique winner with respect to the restrictions (I.), (II.), and (III.).

counted. To keep the results consistent, we will however
count all races of a season. In addition, we will also not con-
sider special events such as exclusions or penalties. Thus, we
treat the data as it is. The data-set contains 48 seasons, with
the number of drivers (candidates) varying between 22 and
62, and the number of races (voters) between 8 and 19.

We used the LP formulation presented in the proof of The-
orem 1 to test whether it is possible to change the current
winner by using a different integer scoring system. We pro-
posed several natural restrictions on the possible vector while
minimizing its Manhattan distance D1 to the original system.

In Table 2 we list the minimum D1 distance from ~α to a
vector ~α′ with another unique winner, and “-” denotes that
it is not possible. For this we consider three different strong
natural restrictions on the vector.

(I.) α′j = 0 for each position j ∈ {1, . . . ,m} that is tied
with the last position at least once in the given profile.

(II.) α′j = 0 for each position j ∈ {1, . . . ,m}with αj = 0.

(III.) α′j − α′j+1 ≥ α′j+1 − α′j+2 for each position j ∈
{1, . . . ,m− 2} and (II.).

Restriction (I.) is a prerequisite and only affects the last
positions. All drivers who are tied on the last position must
receive 0 points. Restriction (II.) ensures that candidates who
get no points in the original system should not get points in
the new system. Restriction (III.) enforces that the point dif-
ferences in between the top positions are non-decreasing. All
of these properties are derived from scoring systems used in
practice and are basic properties that an appropriate scoring
system should fulfill. For the exact solution, we have imple-
mented the LP from the proof of Theorem 1 as an ILP with
ε = 1 including the D1 formulation from Theorem 5 and ad-
ditionally added requirement (I.), (II.), or (III.). The ILP was
then solved using CPLEX, with the solution requiring only a
fraction of a second per profile on a standard machine.

Considering almost unrestricted scoring systems by only
requiring property (I.), the unique winner could be replaced in
43 out of 48 seasons. The maximum number of possible other
unique winners was 6. Often, drivers who had no chance of
winning in the original system could become the unique win-
ner in a system with widely distributed points. Interestingly,
even in this unrestricted case, in some years, the winner is

determined solely by the decision to use a scoring system, re-
gardless of what the actual system is. For example, in 1991,
1993 and 2002, there was no other system with a unique win-
ner apart from Senna, Prost, and Schumacher respectively.
We call these winners perfect winners because they do not
depend on the system itself, but only on the minimal require-
ment from restriction (I.). A weakening of this property is the
perfect winner regarding certain restrictions. For example,
in 1998, as soon as one demands that only the first 6 drivers
get points at all, i.e., we consider restriction (II.), Häkkinen
was the only possible unique winner. If restriction (III.) is
demanded, in 27 of the 48 seasons the unique winners are al-
ready fixed without considering the actual values. Neverthe-
less, some of the results were highly dependent on the system
used. In 2008, Massa would have been the unique winner
if (12, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0) would have been used in-
stead of (10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0) highlighting the first
place just slightly more, similar to as it has been done in the
previous systems. On the other hand, in 2003 and 2007 the
unique winner would have been Räikkönen and Alonso re-
spectively if (8, 7, 6, 5, 4, 3, 2, 1, 0, . . . , 0) would have been
used. To summarize, the experiments show that there is a
potential for the manipulative design of scoring systems one
should be aware of.

6 Conclusions
In this paper, we provide a general framework to study the
manipulative design of scoring systems in diverse situations.
A direct extension of the problem would be to consider distri-
butions of profiles based on predictions in which we want to
maximize the chances of success. Furthermore, an axiomatic
and game theoretical investigation of the problem is very in-
teresting. For the above-mentioned possibilities, the basic
complexity usually follows directly from the results presented
here. Finally, we assume that with the increasing conver-
gence of performances in professional sports, the influence
of the actual scoring system on the outcome of the competi-
tions grows (see [Berthelot et al., 2015]). This also makes the
competitions more vulnerable.
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