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Abstract
We investigate the efficiency of fair allocations of
indivisible goods using the well-studied price of
fairness concept. Previous work has focused on
classical fairness notions such as envy-freeness,
proportionality, and equitability. However, these
notions cannot always be satisfied for indivisible
goods, leading to certain instances being ignored
in the analysis. In this paper, we focus instead on
notions with guaranteed existence, including envy-
freeness up to one good (EF1), balancedness, max-
imum Nash welfare (MNW), and leximin. We
mostly provide tight or asymptotically tight bounds
on the worst-case efficiency loss for allocations sat-
isfying these notions.

1 Introduction
The allocation of scarce resources among interested agents
is a problem that arises frequently and plays a major role
in our society. We often want to ensure that the allo-
cation that we select is fair to the agents—the literature
of fair division, which dates back to the design of cake-
cutting algorithms over half a century ago [Steinhaus, 1948;
Dubins and Spanier, 1961], provides several ways of defining
what fair means. An issue orthogonal to fairness is efficiency,
or social welfare, which refers to the total happiness of the
agents. A fundamental question is therefore how much effi-
ciency we might lose if we want our allocation to be fair.

This question was first addressed by Caragiannis et
al. [2012], who introduced the price of fairness concept to
capture the efficiency loss due to fairness constraints. For
any fairness notion and any given resource allocation instance
with additive valuations, they defined the price of fairness
of the instance to be the ratio between the maximum social
welfare over all allocations and the maximum social welfare
over allocations that are fair according to the notion. The
overall price of fairness for this notion is then defined as the
largest price of fairness across all instances. Caragiannis et
al. considered the classical fairness notions of envy-freeness,
proportionality and equitability, and presented a series of re-
sults on the price of fairness with respect to these notions.
As an example, they showed that for the allocation of indi-
visible goods among n agents, the price of proportionality is

n − 1 + 1/n, meaning that the efficiency of the best propor-
tional allocation can be a linear factor away from that of the
best allocation overall.

Caragiannis et al.’s work sheds light on the trade-off be-
tween efficiency and fairness in the allocation of both divis-
ible and indivisible resources. However, a significant limita-
tion of their study is that while an allocation satisfying each
of the three fairness notions always exists when goods are di-
visible, this is not the case for indivisible goods. Indeed, none
of the notions can be satisfied in the simple instance with at
least two agents and a single good to be allocated. Caragian-
nis et al. circumvented this issue by ignoring instances in
which the fairness notion in question cannot be satisfied. As
a result, their price of fairness analysis, which is meant to
capture the worst-case efficiency loss, fails to cover certain
scenarios that may arise in practice.1 In addition, the fact that
certain instances are not taken into account in the price of fair-
ness have seemingly contradictory consequences. For exam-
ple, since envy-free allocations are always proportional when
valuations are additive, it may appear at first glance that the
price of envy-freeness must be at least as high as the price of
proportionality. This is not necessarily the case, however, be-
cause there are instances that admit proportional but no envy-
free allocations.2

To address these limitations, in this paper we study the
price of fairness for indivisible goods with respect to fairness
notions that can be satisfied in every instance. Among other
notions, we consider envy-freeness up to one good (EF1), bal-
ancedness, maximum Nash welfare (MNW), and leximin.3 In
addition to deriving bounds on the price of fairness for these
notions, we also introduce the concept of strong price of fair-
ness, which captures the efficiency loss in the worst fair al-
location as opposed to that in the best fair allocation. The
relationship between the price of fairness and the strong price

1From the above example, one may think that such scenar-
ios are rare exceptions. However, for envy-freeness, these sce-
narios are in fact common if the number of goods is not too
large compared to the number of agents [Dickerson et al., 2014;
Manurangsi and Suksompong, 2019].

2Indeed, the instance that Caragiannis et al. used to show that the
price of proportionality is at least n− 1 + 1/n admits no envy-free
allocation. Thus, it is still possible that the price of envy-freeness is
lower than the price of proportionality.

3See Section 2 for the definitions of these notions.
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Property P Price of P Strong price of P
General n n = 2 General n n = 2

Envy-freeness up to one good (EF1) LB: Ω(
√
n)

UB: O(n)
LB: 8/7

UB: 2/
√

3
∞ ∞

Envy-freeness up to any good (EFX) − 3/2 − ∞
Round-robin (RR) n 2 n2 4

Balancedness (BAL) Θ(
√
n) 4/3 ∞ ∞

Maximum Nash welfare (MNW) Θ(n)
LB: 27/23
UB: 5/4

Θ(n)
LB: 27/23
UB: 5/4

Maximum egalitarian welfare (MEW) Θ(n) 3/2 ∞ for n ≥ 3 3/2
Leximin (LEX) Θ(n) 3/2 Θ(n) 3/2

Pareto optimality (PO) 1 1 Θ(n2) 3

Table 1: Summary of our results. LB denotes lower bound and UB denotes upper bound. We do not consider the (strong) price of EFX for
n > 2 because it is not known whether an EFX allocation always exists. If we allow dependence on the number of goods m, we have an
upper bound of O(

√
n log(mn)) on the price of EF1.

of fairness is akin to that between the price of stability and
the price of anarchy for equilibria. While the strong price
of fairness is too demanding to yield any nontrivial guaran-
tee for some fairness notions, as we will see, it does provide
meaningful guarantees for other notions.

1.1 Our Results

The majority of our results can be found in Table 1; we high-
light a subset of these next. For the price of EF1, we provide a
lower bound of Ω(

√
n) and an upper bound ofO(n). We then

show that two common ways to obtain an EF1 allocation—
the round-robin algorithm and MNW—have a price of fair-
ness of linear order (for round-robin the price is exactly n),
implying that these methods cannot be used to improve the
upper bound for EF1. We also show that improving this up-
per bound would yield a corresponding improvement on the
price of envy-freeness gap for divisible goods left open by
Caragiannis et al. [2012]. On the other hand, if we allow
dependence on the number of goods m, the price of EF1 is
O(
√
n log(mn))—this means that the Ω(

√
n) lower bound is

almost tight unless the number of goods is huge compared
to the number of agents. For MNW, maximum egalitarian
welfare (MEW), and leximin, we prove an asymptotically
tight bound of Θ(n) on the price of fairness. Moreover, with
the exception of EF1 and MNW, we establish exactly tight
bounds in the case of two agents for all fairness notions.

On the strong price of fairness front, we show via a simple
instance that the strong price of EF1 and balancedness are in-
finite, meaning that there are arbitrarily bad EF1 and balanced
allocations. Nevertheless, a round-robin allocation, which
satisfies these two properties, always has welfare within a
factor n2 of the optimal allocation, and this factor is exactly
tight. For MNW and leximin, the strong price of fairness,
like the price of fairness, is of linear order. However, while
the price of MEW is also Θ(n), the strong price of MEW is
infinite for n ≥ 3 (and 3/2 for n = 2). Finally, we consider
Pareto optimality, for which the price of fairness is trivially 1.
We show that the strong price of Pareto optimality is Θ(n2).

1.2 Related Work
The price of fairness was introduced independently by Bert-
simas et al. [2011] and Caragiannis et al. [2012]. Bertsimas
et al. studied the concept for divisible goods with respect to
fairness notions such as proportional fairness and max-min
fairness. Caragiannis et al. presented a number of bounds
for both goods and chores (i.e., items that yield negative util-
ity), both when these items are divisible and indivisible. The
price of fairness has subsequently been examined in several
other settings, including for contiguous allocations of divis-
ible goods [Aumann and Dombb, 2015], indivisible goods
[Suksompong, 2019], and divisible chores [Heydrich and van
Stee, 2015], as well as in the context of machine scheduling
[Bilò et al., 2016].

Typically, the price of fairness study focuses on quantify-
ing the efficiency loss solely in terms of the number of agents.
A notable exception to this is the work of Kurz [2014], who
remarked that certain constructions used to establish worst-
case bounds for indivisible goods require a large number of
goods. As a result, Kurz investigated the dependence of the
price of fairness on both the number of agents and the num-
ber of goods, and found that the price indeed improves sig-
nificantly if we limit the number of goods.

2 Preliminaries
Denote by N = {1, 2, . . . , n} the set of agents and M =
{1, 2, . . . ,m} the set of goods. Each agent i has a nonnega-
tive utility ui(j) for each good j. The agents’ utilities are ad-
ditive, meaning that ui(M ′) =

∑
j∈M ′ ui(j) for every agent

i and subset of goods M ′ ⊆ M . Following Caragiannis et
al. [2012], we normalize the utilities across agents by assum-
ing that ui(M) = 1 for all i. We refer to a setting with agents,
goods, and utility functions as an instance. An allocation is
a partition of M into bundles (M1, . . . ,Mn) such that agent
i receives bundle Mi. The (utilitarian) social welfare of an
allocation M is defined as SW(M) :=

∑n
i=1 ui(Mi). The

optimal social welfare for an instance I , denoted by OPT(I),
is the maximum social welfare over all allocations for this
instance.
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A property P is a function that maps every instance I to a
(possibly empty) set of allocations P (I). Every allocation in
P (I) is said to satisfy property P .

We are now ready to define the price of fairness concepts.

Definition 2.1. For any given property P of allocations and
any instance, we define the price of P for that instance to be
the ratio between the optimal social welfare and the maxi-
mum social welfare over allocations satisfying P :

Price of P for instance I =
OPT(I)

maxM∈P (I) SW(M)
.

The overall price of P is then defined as the supremum price
of fairness across all instances.

Similarly, the strong price of P for a given instance is the
ratio between the optimal social welfare and the minimum so-
cial welfare over allocations satisfying P :

Strong price of P for instance I =
OPT(I)

minM∈P (I) SW(M)
.

The overall strong price of P is then defined as the supremum
price of fairness across all instances.

We will only consider properties P such that P (I) is
nonempty for every instance I , so the (strong) price of fair-
ness is always well-defined. With the exception of Theo-
rem 3.7, we will be interested in the price of fairness as a
function of n, and assume that m can be arbitrary.

Next, we define the fairness properties that we consider.
The first two properties are relaxations of the classical envy-
freeness notion.

Definition 2.2 (EF1). An allocation is said to satisfy envy-
freeness up to one good (EF1) if for every pair of agents
i, i′, there exists a set Ai′ ⊆ Mi′ with |Ai′ | ≤ 1 such that
ui(Mi) ≥ ui(Mi′\Ai′).

Definition 2.3 (EFX). An allocation is said to satisfy envy-
freeness up to any good (EFX) if for every pair of agents i, i′
and every good g ∈Mi′ , we have ui(Mi) ≥ ui(Mi′\{g}).

It is clear that EFX imposes a stronger requirement than
EF1. An EF1 allocation always exists [Lipton et al., 2004],
while for EFX the existence question is still unresolved
[Caragiannis et al., 2016]. As such, we will only consider
EFX in the case of two agents, for which existence is guaran-
teed [Plaut and Roughgarden, 2018].

The round-robin algorithm, which we describe below, al-
ways computes an EF1 allocation (see, e.g., [Caragiannis et
al., 2016]).

Definition 2.4 (RR). The round-robin algorithm works by
arranging the agents in some arbitrary order, and letting the
next agent in the order choose her favorite good from the re-
maining goods.4 An allocation is said to satisfy round-robin
(RR) if it is the result of applying the algorithm with some
ordering of the agents.

4In case there are ties between goods, we may assume worst-
case tie breaking, since it is possible to obtain an instance with
infinitesimal difference in welfare and any desired tie-breaking be-
tween goods by slightly perturbing the utilities.

Our next property is balancedness, which means that the
goods are as spread out among the agents as possible. Bal-
ancedness and similar cardinality constraints have been con-
sidered in recent work [Biswas and Barman, 2018]. In addi-
tion to satisfying EF1, an allocation produced by the round-
robin algorithm is also balanced.
Definition 2.5 (BAL). An allocation is said to be balanced
(BAL) if |Mi −Mj | ≤ 1 for any i, j.

Next, we define a number of welfare maximizers.
Definition 2.6 (MNW). The Nash welfare of an allocation is
defined as

∏
i∈N ui(Mi). An allocation is said to be a max-

imum Nash welfare (MNW) allocation if it has the maximum
Nash welfare among all allocations.5

Definition 2.7 (MEW). The egalitarian welfare of an alloca-
tion is defined as mini∈N ui(Mi). An allocation is said to be
a maximum egalitarian welfare (MEW) allocation if it has the
maximum egalitarian welfare among all allocations.
Definition 2.8 (LEX). An allocation is said to be leximin
(LEX) if it maximizes the lowest utility (i.e., the egalitarian
welfare), and, among all such allocations, maximizes the sec-
ond lowest utility, and so on.

Finally, we define Pareto optimality. While this is an effi-
ciency notion rather than a fairness notion, we also consider
it as it is a fundamental property in the context of resource
allocation.
Definition 2.9 (PO). Given an allocation (M1, . . . ,Mn), an-
other allocation (M ′1, . . . ,M

′
n) is said to be a Pareto improve-

ment if ui(M ′i) ≥ ui(Mi) for all i with at least one strict in-
equality. An allocation is Pareto optimal (PO) if it does not
admit a Pareto improvement.

Caragiannis et al. [2016] showed that a MNW allocation
always satisfies EF1 and Pareto optimality. It is clear from
the definition that any leximin allocation is Pareto optimal
and maximizes egalitarian welfare. The problem of com-
puting a MEW allocation has been studied by Bezáková and
Dani [2005] and Bansal and Sviridenko [2006]. Leximin allo-
cations were studied by Bogomolnaia and Moulin [2004] and
shown to be applicable in practice by Kurokawa et al. [2015].

All omitted proofs can be found in the full version of this
paper [Bei et al., 2019].

3 Envy-Freeness
In this section, we consider envy-freeness relaxations and the
round-robin algorithm, which always produces an EF1 allo-
cation. We begin with a lower bound on the price of EF1.
Theorem 3.1. The price of EF1 is Ω(

√
n).

Proof. Let m = n, r = b
√
nc, and assume that the utilities

are as follows:
• For i = 1, . . . , r − 1: ui((i − 1)r + j) = 1

r for j =
1, . . . , r, and ui(j) = 0 otherwise.

5In the case where the maximum Nash welfare is 0, an allocation
is a MNW allocation if it gives positive utility to a set of agents of
maximal size and moreover maximizes the product of utilities of the
agents in that set.
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• ur(j) = 1
n−r(r−1) for j = r(r − 1) + 1, . . . , n, and

ur(j) = 0 otherwise.

• For i = r + 1, . . . , n: ui(j) = 1
n for all j.

Consider the allocation that assigns goods ir−r+1, . . . , ir
to agent i for i = 1, . . . , r − 1 and the remaining goods to
agent r. The social welfare of this allocation is r. On the
other hand, in any EF1 allocation, each of the agents i =
r+ 1, . . . , n must receive at least one good—otherwise some
agent would receive at least two goods and agent iwould envy
her. This means that the social welfare is at most r · 1r + (n−
r) · 1n < 2. Hence the price of EF1 is at least r

2 = b
√
nc
2 .

For two agents, we establish an almost tight bound on the
price of EF1 and a tight bound on the price of EFX.

Theorem 3.2. For n = 2, the price of EF1 is at least 8
7 ≈

1.143 and at most 2√
3
≈ 1.155.

Theorem 3.3. For n = 2, the price of EFX is 3/2.

Next, we give a simple instance showing that EF1 and EFX
allocations can have arbitrarily bad welfare.

Theorem 3.4. The strong price of EF1 is∞. For n = 2, the
strong price of EFX is∞.

Proof. Let m = n, and assume that ui(i) = 1 for all i and
ui(j) = 0 otherwise. The allocation that assigns good i to
agent i for every i has social welfare n. On the other hand, the
allocation that assigns good i − 1 to agent i for i = 2, . . . , n
and good n to agent 1 is EF1 and EFX, but has social welfare
0. The conclusion follows.

We now turn our attention to the round-robin algorithm.
We show that it is always possible to order the agents to obtain
a welfare of 1.

Lemma 3.5. For any instance, there exists an ordering of the
agents such that the round-robin algorithm implemented with
this ordering produces an allocation with social welfare at
least 1, and this bound is tight.

Proof. We claim that if we choose the ordering of the agents
uniformly at random, the expected social welfare is at least 1.
The desired bound immediately follows from this claim.

To prove the claim, consider an arbitrary agent i, and as-
sume without loss of generality that ui(1) ≥ ui(2) ≥ . . . ≥
ui(m). Note that if the agent is ranked jth in the ordering,
her utility is at least ui(j) + ui(n+ j) + ui(2n+ j) + · · ·+
ui(kn + j), where k = b(m − j)/nc. Hence, the agent’s
expected utility is at least

1

n
·

n∑
j=1

b(m−j)/nc∑
r=0

ui(rn+ j) =
1

n
·

m∑
j=1

ui(j) =
1

n
.

It follows from linearity of expectation that the expected so-
cial welfare is at least n · 1n = 1, as claimed.

The tightness of the bound follows from the instance where
every agent has utility 1 for the same good.

Lemma 3.5 yields a linear price of fairness for round-robin.

Theorem 3.6. The price of round-robin is n. Consequently,
the price of EF1 is at most n.

Proof. For the upper bound, consider an arbitrary instance.
Since every agent receives utility at most 1, the optimal so-
cial welfare is at most n. On the other hand, by Lemma 3.5,
there exists an ordering of the agents such that the round-
robin algorithm yields welfare at least 1. Hence the price of
round-robin is at most n.

We now turn to the lower bound. Let m = xn for some
large x that is divisible by n, and assume that the utilities are
such that for each agent i, ui(j) = 1/xi for j = 1, . . . , xi

and ui(j) = 0 otherwise.
Consider the allocation that assigns goods 1, . . . , x to agent

1, and xi−1 + 1, . . . , xi to agent i for every i ≥ 2. In this
allocation, agent 1 gets utility 1, while each remaining agent
gets utility (xi − xi−1)/xi = 1− 1/x. The social welfare is
therefore n− (n− 1)/x. This converges to n for large x.

On the other hand, consider the round-robin algorithm with
an arbitrary ordering of the agents, and assume without loss
of generality that agents always break ties in favor of goods
with lower numbers. Hence, regardless of the ordering, the
goods get chosen in the order 1, 2, . . . ,m. As a result, every
agent gets exactly 1/n of their valued goods, so her utility is
1/n, and the social welfare is 1. Hence the price of round-
robin is n.

The argument for the lower bound in Theorem 3.6 works
even if we can choose a new ordering of the agents in every
round. This means that the fixed order is not a barrier to ob-
taining a better price of fairness, but rather the “each agent
picks exactly once in every round” aspect of the algorithm.

One may notice that the lower bound construction uses an
exponential number of goods. This is in fact necessary to
obtain an instance with a high price of round-robin. As we
show next, the Ω(

√
n) lower bound on the price of EF1 is

almost tight as long as m is not too large compared to n.

Theorem 3.7. The price of round-robin is O(
√
n log(mn)).

Consequently, the price of EF1 is O(
√
n log(mn)).

Proof. Consider any instance I . We claim that there exists
an ordering for which the round-robin algorithm produces an
allocation with social welfare at least OPT(I)

65
√
n log2(mn)

. First,
observe that if OPT(I) ≤ 65

√
n log2(mn), then Lemma 3.5

immediately yields the desired claim. Henceforth, we will
only focus on the case where OPT(I) > 65

√
n log2(mn).

Fix an optimal allocation M = (M1, . . . ,Mn), and let
r := dlog2(m

√
n)e. For each i ∈ N , let us partition Mi into

M0
i ∪M1

i ∪ · · · ∪Mr
i , where M `

i is defined by

M `
i =

{
{j ∈Mi | ui(j) ∈ (2−`−1, 2−`]} if ` 6= r;

{j ∈Mi | ui(j) ∈ [0, 2−`]} if ` = r.

Define M ` := ∪ni=1M
`
i and SW`(M) :=

∑n
i=1 ui(M

`
i ).

Let `∗ := arg max`∈{0,...,r−1} SW`(M). We have

SW`∗(M) ≥ 1

r

(
r−1∑
`=0

SW`(M)

)
=

OPT(I)− SWr(M)

r
.
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However, since agent i values each item in Mr
i at most

2−r ≤ 1
m
√
n

, we have ui(Mr
i ) ≤ 1/

√
n. This implies that

SWr(M) ≤
√
n, which is no more than OPT(I)/65. Hence,

SW`∗(M) ≥ 64

65r
· OPT(I) ≥ 32 · OPT(I)

65 log2(mn)
. (1)

Thus, it suffices to show the existence of an ordering such
that round-robin produces an allocation with social welfare at
least SW`∗(M)/

√
n.

Observe that (1) implies that SW`∗(M) > 32
√
n. We

only consider the case T := |M `∗ | > 2n here and leave
the case T ≤ 2n to the full version of this paper [Bei et al.,
2019]. Since ui(M `∗

i ) ≤ 2−`
∗ |M `∗

i | for each i, we have
SW`∗(M) ≤ 2−`

∗
T .

Assume that T > 2n. We will show that the round-robin
algorithm with arbitrary ordering yields an allocation with so-
cial welfare at least SW`∗(M)/

√
n.

To see this, let us consider the round-robin procedure with
arbitrary ordering, and consider the set of goods that are
picked in the first t := bT/(2n)c rounds; let St ⊆ M de-
note this set. Now, observe that

n∑
i=1

|M `∗

i \ St| ≥ T − |St| = T − n · t ≥ T

2
.

This implies that
n∑

i=1

ui(M
`∗

i \ St) ≥
T

2
· 2−`

∗−1 ≥ SW`∗(M)

4
> 8
√
n.

Since ui(M `∗

i \St) ≤ 1, there must be more than 8
√
n agents

such that M `∗

i * St. Let N∗ denote the set of such agents.
We claim that, in each of the first t rounds, every agent

i ∈ N∗ must receive an item she values at least 2−`
∗−1. The

reason is that agent i picks her favorite good, which she must
value at least as much as the good(s) left unpicked inM `∗

i \St.
Moreover, she values the latter at least 2−`

∗−1, so this must
also be a lower bound of her utility for the former.

From the claim in the previous paragraph, we can conclude
that the social welfare of the allocation produced is at least

|N∗| · t · 2−`
∗−1 > 8

√
n · T

4n
· 2−`

∗−1 ≥ SW`∗(M)√
n

as desired. Note that we use the assumption T > 2n to con-
clude that t ≥ T/(4n) in the first inequality above.

While Theorem 3.7 shows that the price of EF1 is close to
Θ(
√
n) unless the number of goods is huge, if we are only

interested in the dependence on the number of agents, the gap
still remains between Ω(

√
n) and O(n). In fact, Caragiannis

et al. [2012] left exactly the same gap on the price of envy-
freeness for divisible goods. In the full version of this paper
[Bei et al., 2019], we exhibit an interesting connection be-
tween the indivisible and divisible goods settings by showing
that the price of EF1 for indivisible goods is always at least
the price of envy-freeness for divisible goods. This implies
that improving the O(n) upper bound on the price of EF1

would also yield a corresponding improvement on the price
of envy-freeness.

We end this section by establishing an exact bound on the
strong price of round-robin.

Theorem 3.8. The strong price of round-robin is n2.

4 Balancedness
In this section, we consider balancedness. We begin by es-
tablishing an asymptotically tight bound on the price of bal-
ancedness.

Theorem 4.1. The price of balancedness is Θ(
√
n).

Proof. For the lower bound, consider the instance in Theo-
rem 3.1. The social welfare can be as high as r = b

√
nc,

while a similar argument shows that the social welfare of any
balanced allocation is at most 2. The conclusion follows.

We now turn to the upper bound. We claim that for any
instance I , the maximum social welfare of a balanced al-
location is always within a factor 4

√
n of the optimal so-

cial welfare; this claim implies the desired upper bound.
If OPT(I) ≤ 4

√
n, the claim follows immediately from

Lemma 3.5. We therefore assume that OPT(I) > 4
√
n. We

will show that there is a balanced allocation M such that
SW(M) ≥ OPT(I)−

√
n

2
√
n

; this suffices for our claim because
OPT(I)−

√
n

2
√
n

≥ OPT(I)
4
√
n

. We only consider the case m ≥ n

here and defer the case m < n to the full version of this pa-
per [Bei et al., 2019].

Assume that m ≥ n. Fix an optimal allocation, and let
A be the set of agents who receive at least m√

n
goods in

the optimal allocation, and B the complement set of agents.
Since there are at most

√
n agents in A, they contribute at

most
√
n to OPT(I), so the agents in B contribute at least

OPT(I) −
√
n. We let each agent in B keep her

⌈
m
2n

⌉
most valuable goods (or all of her goods, if she has fewer
than this number of goods). This yields a total utility of at
least OPT(I)−

√
n

2
√
n

. Since
⌈
m
2n

⌉
≤
⌊
m
n

⌋
due to the assump-

tion m ≥ n, the remaining goods can be reallocated to ob-
tain a balanced allocation, which has social welfare at least
OPT(I)−

√
n

2
√
n

, as desired.

For two agents, we give an exact bound on the welfare that
can be lost due to imposing balancedness.

Theorem 4.2. For n = 2, the price of balancedness is 4/3.

Finally, the same construction as in Theorem 3.4 shows
that balanced allocations can have arbitrarily bad welfare.

Theorem 4.3. The strong price of balancedness is∞.

5 Welfare Maximizers
In this section, we consider allocations that maximize differ-
ent measures of welfare. To start with, we show that every
MNW and leximin allocation yields a decent welfare.

Lemma 5.1. For any instance, every MNW allocation and
every leximin allocation has social welfare at least 1, and
both bounds are tight.
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Proof. We first establish the bound for MNW. Consider any
MNW allocation where agent i receives bundle Mi, and as-
sume for contradiction that

∑n
k=1 uk(Mk) < 1. Fix any

agent i. Since
∑n

k=1 ui(Mk) = 1, there exists j 6= i such that
ui(Mj) > uj(Mj). Construct a directed graph with vertices
1, 2, . . . , n, and add an edge from i to j if ui(Mj) > uj(Mj).
Since every vertex has at least one outgoing edge, the graph
consists of a directed cycle. For every edge i→ j in the cycle,
we give Mj to agent i instead of agent j. If we consider the
change in the multiset of the n utilities between the old and
new allocations, at least one number increases while others
remain the same. This means that either we have decreased
the number of agents who get zero utility, or keep this number
fixed and increase the product of utilities of the agents who
get nonzero utility. Either case contradicts the definition of
an MNW allocation.

To show the bound for leximin, we apply the same argu-
ment. An improvement in the multiset of utilities as described
in the last step contradicts the definition of leximin.

Finally, the tightness of the bounds follows from the in-
stance where every agent has utility 1 for the same good.

Lemma 5.1 allows us to show that the price of MNW and
the strong price of MNW are both of linear order. Similar
techniques can be used for the price of MEW and both prices
of leximin, as we establish in the two subsequent theorems.

Theorem 5.2. The price of MNW and the strong price of
MNW are Θ(n).

Proof. It suffices to show that the price of MNW is Ω(n) and
the strong price of MNW is O(n).

For the lower bound, letm = n and 0 < ε < 1, and assume
that the utilities are as follows:

• u1(1) = 1 and u1(j) = 0 otherwise.

• For i = 2, . . . , n: ui(i − 1) = 1 − ε, ui(i) = ε, and
ui(j) = 0 otherwise.

Consider the allocation that assigns good i − 1 to agent i
for i = 2, . . . , n, and good n to agent 1. The social welfare
of this allocation is (n − 1)(1 − ε). On the other hand, the
unique MNW allocation assigns good i to agent i for every i.
The social welfare of this allocation is 1 + (n − 1)ε. Taking
ε→ 0, we find that the price of MNW is Ω(n).

To show a matching upper bound, consider an arbitrary
instance. Since every agent receives utility at most 1, the
optimal social welfare is at most n. On the other hand, by
Lemma 5.1, the social welfare of any MNW allocation is at
least 1. The conclusion follows.

Theorem 5.3. The price of MEW is Θ(n).

Theorem 5.4. The price of leximin and the strong price of
leximin are Θ(n).

Surprisingly, MEW allocations can be arbitrarily bad when
there are at least three agents.

Theorem 5.5. For n > 2, the strong price of MEW is infinite.

We now turn to the case of two agents. For MNW, we
establish almost tight bounds on both prices of fairness.

Theorem 5.6. For n = 2, the price of MNW and the strong
price of MNW are at least 27/23 ≈ 1.174 and at most 5/4 =
1.25.

Finally, we derive the exact bound for MEW and leximin
with two agents. Note that since all leximin allocations are
MEW, Theorem 5.7 immediately implies Theorem 5.8.

Theorem 5.7. For n = 2, the price of MEW and the strong
price of MEW are 3/2.

Theorem 5.8. For n = 2, the price of leximin and the strong
price of leximin are 3/2.

6 Pareto Optimality
In this section, we consider Pareto optimality. Since any al-
location that maximizes social welfare is necessarily Pareto
optimal, the price of Pareto optimality is trivially 1. By estab-
lishing a tight lower bound on the welfare of a Pareto optimal
allocation, we show that the strong price of Pareto optimality
is quadratic. Our result indicates that while Pareto optimality
is sometimes referred to as ‘efficiency’, it does not necessarily
fare well if efficiency is measured in terms of social welfare.

Lemma 6.1. For any instance, every Pareto optimal alloca-
tion has social welfare at least 1/n, and this bound is tight.

Theorem 6.2. The strong price of Pareto optimality is Θ(n2).

We also show an exact bound for the case of two agents.

Theorem 6.3. For n = 2, the strong price of Pareto optimal-
ity is 3.

7 Discussion
In this paper, we study the price of fairness for indivisible
goods using several fairness notions that can always be satis-
fied. For most cases, we exhibit tight or asymptotically tight
bounds on the worst-case efficiency loss that can occur due to
fairness constraints. Interestingly, both the round-robin and
MNW allocations, which are EF1, can have social welfare a
linear factor away from the optimum, but not worse. In future
research, it would be useful to close the gaps that remain af-
ter this work, the most intriguing of which is perhaps the EF1
gap between Ω(

√
n) and O(n). As we mentioned, settling

this question would also have consequences on the price of
envy-freeness gap in the divisible goods setting left open by
Caragiannis et al. [2012].

Another direction for future work is to study the price of
fairness for the chore division problem, where chores refer to
items that yield negative utility for the agents. Indeed, almost
all of the notions that we consider in the goods setting have
direct analogs in the chore setting, and it would be interesting
to see whether the corresponding bounds in the two settings
turn out to be similar as well.
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