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Abstract

We provide an experimental study of committees
that achieve (proportional/extended) justified repre-
sentation (JR/PJR/EJR). In particular, we ask how
many such committees exist and how varied they
are in terms of voter satisfaction and coverage. We
find that under many natural distributions of prefer-
ences a large fraction of randomly selected JR com-
mittees also provide PJR and EJR. Further, we find
that the sets of JR committees for our elections are
very varied and include both high-quality ones and
not-so-appealing ones.

1 Introduction
There exist many situations where societies—either natural
or artificial—need to select a group of candidates that would
represent them in some appealing way. For example, faculty
members need to select their representatives in the univer-
sity’s senate, web search engines need to select answers to
given queries that represent various interpretations [Skowron
et al., 2017], and funding committees need to select projects
that represent different areas of research (in addition to the
excellence criterion, of course). Formally, such problems are
studied under the umbrella of multiwinner voting and have
recently received increased interest (see the overview of Fali-
szewski et al. [2017b]).

We focus on approval elections, where each voter indicates
by which candidates he or she feels represented. This is a par-
ticularly convenient model because approval ballots have a
simple interpretation and appear to be sufficiently expressive
for many applications. Further, the notions of justified rep-
resentation (JR) [Aziz et al., 2017], as well as its more con-
strained variants such as proportional justified representation
(PJR) [Sánchez-Fernández et al., 2017] and extended justified
representation (EJR) [Aziz et al., 2017], provide convincing
formalizations of the idea that a committee is representative
(or proportional). Briefly put, for an election with n voters, a
committee of size k provides justified representation if there
is no group of n/k voters such that all these voters approve
some common candidate, but none of the voters approves any
member of the committee (the rationale here is that a group
of n/k voters is large enough to convincingly argue that its

members deserve representation). Proportional justified rep-
resentation and extended justified representation add similar
conditions for larger groups of voters, with more commonly
approved candidates.

The notions of (proportional/extended) justified represen-
tation received significant attention from the research com-
munity and, for example, it is known that JR/PJR/EJR com-
mittees always exist and that a number of voting rules,
both natural and specifically designed for this purpose, pro-
vide such committees [Aziz et al., 2017; Aziz et al., 2018;
Sánchez-Fernández et al., 2017; Brill et al., 2017a] (see also
the overview of Elkind [2017]). Yet, so far, all these studies
focused on theoretical results and experimental evaluations
were missing. We believe that it is important to fill this gap
and our goal is to initiate experimental investigations into the
nature of JR, PJR, and EJR committees.

One of the most basic questions regarding JR, PJR, and
EJR is how restrictive these notions are. On the formal level,
we know that the EJR definition is more demanding than
the PJR one, which in turn is more demanding than the JR
one, but we are interested in a more quantitative perspective.
Specifically, for a given family of elections (e.g., those gener-
ated according to the impartial culture model or one of the Eu-
clidean models), we would like to know the average number
of committees that provide (proportional/extended) justified
representation. Unfortunately, we show that computing such
a number is #P-hard. Thus, for the families of elections that
we consider, we draw committees uniformly at random and
check how many of them satisfy JR, PJR, and EJR. Rather
surprisingly, it turns out that the number of thus-generated JR
committees that also satisfy PJR or even EJR is very high;
in all of our experiments this was true for more than 50%
of the JR committees, and in some settings this number was
approaching 100%. This is even more striking as the prob-
ability that a randomly generated committee satisfies JR is
very high (even in the most demanding setting this probabil-
ity was still above 14%). These results stand in sharp contrast
with the intuition that one might get from theoretical stud-
ies, which suggest that EJR is much more challenging to sat-
isfy than JR (in particular, the polynomial-time algorithm for
computing a JR committee is very simple, but corresponding
algorithms for PJR and EJR require more involved ideas and
analyses [Aziz et al., 2017; Sánchez-Fernández et al., 2017;
Aziz et al., 2018]).
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Given the above discussion, we are interested in two issues.
First, we would like to understand why so many JR commit-
tees appear in our experiments, and, second, we would like to
know how varied these JR committees are. To deal with the
first issue, we seek the smallest sets of candidates that already
satisfy the JR definition for a given committee size; we refer
to such sets as n/k-justifying groups. It turns out that for the
families of elections that we consider, n/k-justifying groups
are typically quite small and include fewer than half of the
allowed committee members. As a consequence, there are
many JR committees because to obtain one, it suffices to take
a (small) n/k-justifying set and complement it with arbitrary
candidates. On a more theoretical side, we show that every
candidate who is approved by at least one voter must belong
to some JR committee (that is, every candidate can be dubbed
a possible JR member; nonetheless, testing if a candidate is
a necessary JR member, i.e., if he or she belongs to all JR
committees, is coNP-hard).

By the above discussion, we see that the constraints put
on JR committees may be quite loose and, as a consequence,
two JR committees may have very different properties. To
verify this supposition, we consider two basic measures of
quality of a (representative) committee: the number of vot-
ers that approve at least one committee member (referred to
as the coverage of the committee; if a voter approves some
committee member then we may say that his or her views are
represented) and the average number of committee members
that a voter approves (referred to as the voter satisfaction).
Inspired by Lackner and Skowron [2019], for a given elec-
tion we investigate experimentally what coverage and satis-
faction values can be achieved by (a) arbitrary committees,
(b) JR committees, and (c) committees provided by several
prominent voting rules. It turns out that for our families of
elections there are both JR committees of very high quality
(in terms of both our criteria) and of relatively low one, but
natural voting rules tend to select the high-quality ones.

All in all, we believe that taking an experimental approach
shows a new perspective on the notions of JR, PJR, and EJR,
and provides some new intuitions. However, our results also
raise some concerns, of which the most intriguing one is
whether the election families that we used truly model rep-
resentative elections. We return to this issue in the final sec-
tion. We omit many of the proofs and the details of the integer
linear programs used due to space constraints.

2 Preliminaries
For a positive integer t, we write [t] to denote the set
{1, . . . , t}. We model an election as a pair E = (C,N),
where C = {c1, . . . , cm} is a set of candidates and N = [n]
is a set of voters. Each voter i ∈ N has approval ballot
Ai ⊆ C and we say that this voter approves candidate cj ∈ C
if cj ∈ Ai; we say that i disapproves cj otherwise. For a
candidate cj ∈ C, by Ncj we mean the set of voters that ap-
prove cj . A committee is a subset of candidates of a given
size. A multiwinner voting ruleR is a function that, given an
election E and committee size k, outputs the family of size-k
committees that win the election (according to this rule); we
disregard the issue of tie-breaking.

Voting Rules
Consider an election E = (C,N) and a committee size k.
The Multiwinner Approval Voting (AV), the Chamberlin–
Courant (CC) [Chamberlin and Courant, 1983; Procac-
cia et al., 2008], and the Proportional Approval Voting
(PAV) [Thiele, 1895; Kilgour, 2010] rules output size-k com-
mittees W that maximize the scores:

scoreAV(W ) =
∑

c∈W |Nc|,
scoreCC(W ) = |

⋃
c∈W Nc|,

scorePAV(W ) =
∑

i∈N
∑|W∩Ai|

j=1
1/j.

The AV score gives the total number of approvals that mem-
bers of the committee receive, and we sometimes refer to this
value as voter satisfaction. The CC score gives the number of
voters that approve at least one committee member. Such vot-
ers can be seen as represented in the committee and we some-
times refer to the CC score as voter coverage. The PAV score
is defined in a less intuitive way, but it can be shown to en-
sure proportional representation of the voters (see the works
of Brill et al. [2017b] and Skowron and Lackner [2018]).

There is a simple polynomial-time algorithm for AV, but
deciding whether there is a CC or PAV committee with
a given score is NP-hard (see the works of Procaccia et
al. [2008], Skowron et al. [2016] and Aziz et al. [2015]); yet
there are approximation algorithms for these rules [Lu and
Boutilier, 2011; Skowron et al., 2015; Byrka et al., 2018].

Justified Representation
Aziz et al. [2017] introduced the notion of justified represen-
tation (JR) to capture the basic requirements for represen-
tative committees. They also introduced extended justified
representation (EJR) and, a bit later, Sánchez-Fernández et
al. [2017] defined proportional justified representation (PJR).
Aziz et al. [2017] also showed that for every election a JR
(PJR, EJR) committee always exists.
Definition 1. Let E = (C,N) be an election with n voters
and committee size k. For each positive integer `, a group N ′

of voters is `-large if it contains at least `n/k voters, and it is
`-cohesive if |

⋂
i∈N ′ Ai| ≥ `, that is, if its members approve

at least ` common candidates. Let W be a size-k committee:
1. W provides justified representation for E if for each 1-

large, 1-cohesive group N ′ ⊆ N of voters, at least one
member of N ′ approves at least one candidate from W .

2. W provides proportional justified representation if for
each ` ∈ [k] and each `-large, `-cohesive group N ′ ⊆
N of voters, we have that |W ∩ (

⋃
i∈N ′ Ai)| ≥ ` (i.e.,

at least ` members of W are approved by some voters
from N ′).

3. W provides extended justified representation if for each
` ∈ [k] and each `-large, `-cohesive group N ′ ⊆ N of
voters, there is an i ∈ N ′ such that |Ai∩W | ≥ ` (i.e., at
least one voter in N ′ approves at least ` members of W ).

We say that a voting rule satisfies JR (PJR, EJR) if for
each election and committee size it outputs a committee
that provides JR (PJR, EJR). If a rule satisfies EJR, then
it also satisfies PJR, and if it satisfies PJR, then it satisfies
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JR. Aziz et al. [2017] showed that the AV rule fails JR, but
the CC rule satisfies it, and the PAV rule even satisfies EJR.
Brill et al. [2017a] showed, for example, that the sequential
Phragmén rule satisfies PJR.

There is a simple polynomial-time algorithm for verify-
ing whether a given committee provides justified representa-
tion [Aziz et al., 2017], but the same task is coNP-complete
for both PJR and EJR [Aziz et al., 2018; Aziz et al., 2017].

Experimental Setup
We focus on elections generated according to (a variant
of) the impartial culture model and two Euclidean mod-
els [Enelow and Hinich, 1984; Enelow and Hinich, 1990] (the
former is a standard yardstick for election studies and the lat-
ter receive increased attention in the literature [Elkind et al.,
2017; Faliszewski et al., 2017a; Celis et al., 2018]):

1. For a probability value p, under the p-Impartial Culture
model (p-IC) each voter i approves each candidate cj
independently, with probability p.

2. In the Euclidean model, each candidate and each voter
is associated with some point in a given t-dimensional
Euclidean space Rt (typically t ∈ {1, 2}). Each voter
approves all the candidates whose points are within
a given radius of the voter’s point. In the r-Uniform
Interval (r-UI) and r-Uniform Square (r-US) models,
the candidate and voter points are chosen uniformly
at random from the interval [0, 1] or from the square
[0, 1] × [0, 1], respectively, and each voter approves
candidates within radius r.

Unless specified otherwise, our elections have m = 100
candidates, n = 100 voters, and committees of size k = 10.
Similar values are used in a number of papers, including those
cited above. Nonetheless, we note that our parameters are
somewhat special in that n/k = k; we checked several other
election sizes and our results were qualitatively the same.

3 Counting JR, PJR and EJR Committees
We start our investigations by asking for the number of com-
mittees that provide the three variants of justified representa-
tion for a given election. We consider the following problems.

Definition 2. In the #JR COMMITTEES problem we are given
an election E and an integer k, and we ask how many size-k
committees provide justified representation for E. The prob-
lems #PJR COMMITTEES and #EJR COMMITTEES are de-
fined analogously, but for PJR and EJR, respectively.

These problems are interesting because knowing the num-
ber of JR, PJR, and EJR committees would give us a first hint
on how restrictive these notions are. Unfortunately, the prob-
lems are #P-hard and, thus, are unlikely to have polynomial-
time algorithms (the class #P is analogous to the class NP,
but for the counting problems instead of the decision ones;
see, e.g., the book of Hemaspaandra and Ogihara [2002]).

Theorem 1. #JR COMMITTEES, #PJR COMMITTEES, and
#EJR COMMITTEES are #P-hard.

Proof. We focus on #JR COMMITTEES. We give a
reduction from the #P-hard #PERFECT MATCHINGS

problem [Valiant, 1979]. In this problem we are given a
bipartite graph and the goal is to output the number of
perfect matchings (i.e., of edge sets that cover every vertex
exactly once). We describe a polynomial-time algorithm
that takes an instance IM of #PERFECT MATCHINGS and
transforms it into an instance IJ of #JR COMMITTEES such
that the number of JR committees in IJ equals the number of
matchings in IM plus some linear-time computable number
depending only on IM.

Let G be the bipartite graph of the #PERFECT MATCH-
INGS instance. We assume w.l.o.g. that G has an even
number of vertices and set 2r := |V (G)|, r > 1. We
construct the #JR COMMITTEES instance IJ as follows. For
each vertex u ∈ V (G) we create a vertex voter v(u). For
each edge e = {u, u′} of G we create an edge candidate c(e)
that is approved by v(u) and v(u′). Additionally, we
create two special voters v∗1 and v∗2 as well as a special
candidate c∗ such that c∗ is approved by every (vertex
and special) voter. Hence, for all u ∈ V (G) we have
Av(u) = {c(e) | u ∈ e}∪ {c∗} and for all i ∈ {1, 2} we have
Av∗i

= {c∗}. We set the committee size k := r.
Let x :=

(|E(G)|
r−1

)
and let y denote the number of perfect

matchings in G. For the correctness of the reduction, we
will now argue that IJ has exactly x + y JR committees.
Let us first analyze which JR committees are possible in the
instance IJ. Clearly, whenever the special candidate c∗ is
part of the committee, then this committee provides justified
representation because every voter approves c∗. In total, there
are x committees that include c∗ (we can fill up the com-
mittee with any set of r − 1 further candidates). There may,
however, be further JR committees that do not include c∗. We
show that every such JR committee corresponds to a perfect
matching in G and vice versa, which finishes the proof.

First, assume that there is a perfect matching M ⊆ E(G).
Then, W (M) := {c(e) | e ∈M} is a JR committee of size k
because every vertex voter is covered by W (M). Moreover,
the two remaining special voters v∗1 and v∗2 cannot form a 1-
large, 1-cohesive group because n/k = 2r+2/r = 2+2/r > 2.

Second, assume that there is a size-k JR committee W in IJ
that does not include c∗. Then, M(W ) := {e | c(e) ∈ W}
is a perfect matching. Assume towards a contradiction
that some vertex u from G is not covered by any edge
from M(W ). Then, since c∗ is not in W , the two special
voters together with v(u) form a 1-large, 1-cohesive group
whose members do not approve any member of W . This con-
tradicts the assumption that W is a JR committee. It remains
to show that no vertex is covered twice by M(W ). To see
this, observe that M(W ) contains r edges each covering two
vertices and there are 2r vertices in total. Thus, no vertex can
be covered twice and M(W ) must be a perfect matching.

Experimental Evaluation
To get an idea regarding how many committees provide JR,
PJR, and EJR for elections generated according to the p-IC,
r-UI, and r-US elections, we performed the following exper-
iment. We considered the following parameter values:

1. p between 0.015 and 0.375 with step 0.15 for p-IC
(which gives an average number of approved candidates
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Figure 1: The probability that a randomly selected committee of size 10 provides JR, PJR, and EJR, for elections generated according to the
p-IC model, the r-UI model, and r-US model, depending on the average number of candidates approved by a voter (on the x-axis).

per voter between 1.5 and 37.5),

2. r between 0.01 and 0.25 with step 0.01 for r-UI (which
gives an average number of approved candidates per
voter between 2 and 43), and

3. r between 0.02 and 0.5 with step 0.02 for r-US (which
gives an average number of approved candidates per
voter between 0.12 and 48).

For each model of random elections and each parameter
value, we generated 500 elections with 100 candidates and
100 voters each. For each of them we drew a single com-
mittee of size 10 uniformly at random and we checked if it
provided JR, PJR, and EJR. We show our results in Figure 1.
Instead of reporting on the x-axis the values p and r that we
used, we give the average number of candidates approved
by a single voter (this makes the results comparable between
different distributions); the y-axis gives the probability that a
randomly selected committee provides JR, PJR, and EJR.1

It is hardly surprising that when the average number of ap-
proved candidates is either very low or very high then nearly
all random committees provide JR, PJR, and EJR (because
either 1-large, 1-cohesive groups do not even appear in the
profiles or each candidate covers a large fraction of `-large,
`-cohesive groups for all values of `). It is, however, re-
markable that for the whole range of the parameters there are
many JR, PJR, and EJR committees. Indeed, under p-IC all
the JR committees that we generated also provided PJR and
EJR, and the probability that a random committee provides
JR/PJR/EJR under p-IC does not fall below 80%. For the case
of r-UI and r-US models, up to about 10 approvals per voter,
all the JR committees that we generated also provided PJR
and EJR. For larger numbers of approved candidates there
were JR committees that failed PJR and EJR. Yet, for the r-
US model, such JR committees were not very frequent. For
the case of r-UI the differences are more pronounced, but
even in this model the probability of sampling a committee
that satisfies each of JR, PJR, and EJR is high. (The lowest
probability of generating such a committee for r-UI that we
observed was 14.2%; for r-US it was 19.8%).

1While there is a fast algorithm for testing if a given committee
provides JR, the same task for PJR and EJR is coNP-complete [Aziz
et al., 2017; Aziz et al., 2018]. Thus, to check if a given committee
does provide PJR or EJR, we formulated integer linear programs
(ILPs) that test if a given committee fails these notions.

We also considered elections with 100 candidates, 200 vot-
ers and 200 candidates, 100 voters. The latter variant made
a change shifting the minima towards 20. Yet, the difference
vanishes after normalizing the values on the x-axis wrt. the
number of candidates. We omit details due to restricted space.

4 JR Members and Justifying Groups
One of the possible reasons why we have seen so many JR
committees in the previous experiment is that, perhaps, for a
committee to provide justified representation it suffices that it
includes just a few key candidates, whereas all the other ones
can be selected arbitrarily. We now check this hypothesis.
We start by considering the notions of possible and necessary
members of JR committees.

Definition 3. Let E = (C,N) be an election and let k be a
committee size. We say that candidate p ∈ C is a possible
JR member if there exists a size-k committee that provides
justified representation and that includes p. Candidate p is a
necessary JR member if he or she belongs to all size-k com-
mittees that provide justified representation.

While checking if a candidate is a necessary JR member is
intractable, many candidates belong to some JR committees.

Theorem 2. The problem of checking if a candidate is a nec-
essary JR member for a given election is coNP-hard, and
co-W[1]-hard when parameterized by the committee size k.
The same holds for PJR and EJR.

Theorem 3. For each election E = (C,N) and each com-
mittee size k, every candidate from C that is approved by at
least one voter belongs to at least one JR committee. The
same holds for PJR and EJR.

Theorem 3 implies that for every election where each can-
didate is approved by at least one voter we have at least
m/k different committees that provide justified representa-
tion. This is not enough to explain the number of JR commit-
tees that we have seen in the preceding section and to obtain
stronger results, we consider groups of possible JR members.

Definition 4. A set S of candidates is an n/k-justifying group
for an election if for each group N ′ of at least n/k voters that
approve at least one common candidate, at least one of these
voters approves a member of S.
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Figure 2: Average sizes of the n/k-justifying groups for our elec-
tions, depending on k.

Naturally, given an election with n voters, each size-k
committee that provides justified representation is an n/k-
justifying group for E and, so, there always exists an n/k-
justifying group of size k. However, it is far more interesting
to ask for the size of the smallest such group. Indeed, if it
turned out that such groups were significantly smaller than k,
then it would explain why so many random committees pro-
vided justified representation. Unfortunately, computing the
size of the smallest n/k-justifying group is intractable (the
same holds for the notion of an n/k-justifying group adapted
to the cases of PJR and EJR).

Theorem 4. The problem of deciding if there is an n/k-
justifying group of at most a given size (for a given election
and committee size) is NP-hard, and W[1]-hard when param-
eterized by the committee size.

To deal with this hardness result, we express the problem
as an ILP and solve it using Gurobi.

Experimental Evaluation
We consider elections with 100 candidates and 100 voters,
for the 0.1-IC, 0.06-UI, and 0.2-US election models (these
parameters are chosen so that, on the average, each voter ap-
proves about 10 candidates; we chose this value as we use
the same distribution in the next experiment, where we fo-
cus on committee size 10 and it is very natural for a voter to
approve about the same number of candidates as the size of
the desired committee; other parameters would make sense as
well). For k ∈ {2, . . . , 15}, we computed the average sizes of
the smallest n/k-justifying groups for the elections generated
according to these models (1000 elections for each value of k
and each model). We present the results in Figure 2. As we
can see, the justifying groups are typically quite small, which
explains why we saw so many JR committees in the previous
section. In the next section we will explore how much voter
satisfaction/coverage we can achieve given so many degrees
of freedom in JR committees.

It is natural to wonder if analogous results would hold for
PJR and EJR, in scenarios where these notions differ from JR.
Given that in all our experiments from the previous section a

relatively high number of randomly selected committees sat-
isfied PJR and EJR, we speculate that indeed this is the case.

5 Voter Satisfaction Versus Coverage
The AV rule outputs committees that provide the highest pos-
sible voter satisfaction, whereas the CC committees provide
the highest possible voter coverage. Since CC satisfies JR
but AV does not [Aziz et al., 2017], we know that there
are JR committees that achieve the highest coverage values,
but for some elections there are no JR committees with the
highest possible voter satisfaction. In this section we ask
what values of satisfaction/coverage are possible to achieve
with JR committees (our work is inspired by Lackner and
Skowron [2019], who focused on these values for prominent
voting rules, mostly providing theoretical guarantees).
Definition 5. In the MAX SATISFACTION (COVERAGE) JR
COMMITTEE problem we are given an election E, a commit-
tee size k, and an integer x, and we ask if there is a size-k
committee W that provides justified representation and has
scoreAV(W ) ≥ x (scoreCC(W ) ≥ x).

The MIN SATISFACTION (COVERAGE) JR COMMITTEE
problems are defined analogously, but we ask if there is a JR
committee that achieves at most a given value of voter satis-
faction (voter coverage). We note that MAX COVERAGE JR
COMMITTEE is equivalent to the WINNER DETERMINATION
problem for the CC rule [Betzler et al., 2013]. All these prob-
lems are computationally intractable (also for the case of PJR
and EJR) and we solve their JR variants using ILPs.
Theorem 5. MIN SATISFACTION (COVERAGE) JR COM-
MITTEE and MAX SATISFACTION (COVERAGE) JR COM-
MITTEE are all NP-hard, and W[1]-hard when parameter-
ized by the committee size k.

Experimental Evaluation
We have generated three elections2 EIC, EUI, and EUS, us-
ing the 0.1-IC, 0.06-UI, and 0.2-US models, with 100 candi-
dates, 100 voters (their parameters are such that on average,
each voter approves about 10 candidates). For each of the
elections and for each pair of values s ∈ {0, 1, 2, . . . , nm}
and t ∈ [n], we computed if there exists (a) any committee
that achieves voter satisfaction exactly s and voter coverage
exactly t, and (b) a JR committee that achieves these values.
We also computed winning committees according to the AV,
CC, PAV, and sequential Phragmén rules (this last rule is de-
scribed, e.g., by Brill et al. [2017a]).

We present our results in Figure 3. It consists of two rows
of plots. The top one should be read as follows. The x-
axis of each of the plots corresponds to voter satisfaction val-
ues, and the y-axis corresponds to voter coverage values. If
there is a dark red point on a given position (s, t), then it
means that there is a JR committee that achieves voter satis-
faction s and voter coverage t. If there is a light pink point,
then it means that there is no JR committee with given pa-
rameters, but a non-JR committee with them exists. For AV,

2We repeated our experiment 60 times (20 times for the presented
parameter settings and 40 times for slightly different ones, to check
their robustness) and for all elections that we generated, we obtained
results that were qualitatively the same.
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Figure 3: Satisfaction vs. coverage for elections EIC, EUI, and EUS. In the top row, dark red points at coordinates (s, t) indicate that there
is a JR committee with voter satisfaction s, and with voter coverage t. Light pink points indicate that committees achieving a particular value
exist, but there is no JR committee for it. In the bottom row, the darker the (s, t) point is, the more JR committees (out of 105 generated for
each election) with satisfaction s and coverage t were generated.

a straight vertical line shows the satisfaction value achieved
by the AV committees (whenever it touches the colored area,
this indicates an AV committee that achieves a given satis-
faction value). For CC we have an analogous horizontal line.
For PAV and sequential Phragmén, we have arrows showing
the (s, t) points for which there is a PAV (resp. sequential
Phragmén) committee (for these rules, we computed several
committees and they were in the same area).

In the bottom row in Figure 3, we report results of the fol-
lowing experiment. For each of our three elections we have
generated 105 committees (of size 10 each), for each we have
checked if it provided justified representation, and for those
that did, we computed their satisfaction and coverage values.
The plots show histograms, where the darker a given (s, t)
point is, the more JR committees with satisfaction s and cov-
erage t our random process generated.

Our experiments confirm that JR committees are varied and
can provide both high and low satisfaction and coverage val-
ues. Interestingly, the JR committees provided by our vot-
ing rules tend to give high satisfaction (resp. coverage) values
and, indeed, are nearly on the satisfaction vs. coverage Pareto
frontier. Yet, randomly generated JR committees are at some
distance from the optimal values.

We repeated our experiments for the settings where each
voter approved, on the average, between 23 and 26 candi-
dates. In the experiments in Section 3 the ratio of sampled
committees that satisfied EJR to those that satisfied JR was
the lowest for such parameters (for the r-Uniform Interval
and r-Uniform Square elections; for the p-Impartial Culture
ones all JR committees also provided EJR). The nature of
the results that we obtained was very similar to those pre-
sented in Figure 3 and, in particular, we still obtained large
areas with JR committees and the randomly selected commit-
tees were focused in their specific subareas. Since many of
the randomly selected JR committees also satisfy PJR/EJR,
and since there are PJR/EJR committees located relatively far
from the randomly sampled ones (e.g., those of PAV), we sus-
pect that the areas of PJR/EJR committees are quite large, too.

6 Discussion and Conclusions
The understanding of the JR, PJR, and EJR notions that we
get from our experimental study is quite different from the
one based purely on theoretical results. In particular, we have
shown settings where even satisfying EJR is quite easy, and
we have shown that in these settings the number of commit-
tees providing JR, PJR, and EJR is rather large. Our results
also reinforce the view that if one seeks a good representa-
tive committee, then it is not enough to simply require that
the committee satisfies JR, PJR, or EJR, and one needs to
put forward some additional criteria. Otherwise, there are too
many, too varied committees to choose from.

We believe that one of the most interesting open problems
arising from our work is a quest for a convincing model of
generating elections where the notions of JR, PJR, and EJR
differ significantly (in particular, where `-large, `-cohesive
groups for different values of ` arise naturally). This was
not the case for any model we analyzed and there seem to
be no such models (trying to capturing reality) known in the
literature. While it is clear that impartial culture does not
capture reality either—and we use it as a yardstick because
it is one of the most standard models—the Euclidean mod-
els seem to be more appealing and were used in several re-
cent papers on multiwinner elections [Elkind et al., 2017;
Faliszewski et al., 2017a; Celis et al., 2018]. We have
tried different election types (not reported in the paper): the
Polya-Eggenberger urn model [Berg, 1985], Euclidean elec-
tions with different distributions of the candidate and voter
points, and various real-life elections from PrefLib [Mattei
and Walsh, 2013]. We got qualitatively similar results.
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