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Abstract
We study how to maximize the broker’s (expected)
profit in a two-sided market, where she buys items
from a set of sellers and resells them to a set of
buyers. Each seller has a single item to sell and
holds a private value on her item, and each buyer
has a valuation function over the bundles of the
sellers’ items. We consider the Bayesian setting
where the agents’ values/valuations are indepen-
dently drawn from prior distributions, and aim at
designing dominant-strategy incentive-compatible
(DSIC) mechanisms that are approximately opti-
mal.
Production-cost markets, where each item has a
publicly-known cost to be produced, provide a plat-
form for us to study two-sided markets. Briefly, we
show how to covert a mechanism for production-
cost markets into a mechanism for the broker,
whenever the former satisfies cost-monotonicity.
This reduction holds even when buyers have gen-
eral combinatorial valuation functions. When the
buyers’ valuations are additive, we generalize an
existing mechanism to production-cost markets in
an approximation-preserving way. We then show
that the resulting mechanism is cost-monotone and
thus can be converted into an 8-approximation
mechanism for two-sided markets.

1 Introduction
Two-sided markets are widely studied in economics [Myer-
son and Satterthwaite, 1983; McAfee, 1992; McAfee, 2008],
where a number of buyers and a number of sellers are con-
nected by an intermediary, such as antique markets, used-car
markets, and pre-owned house markets. Here each seller has
a single item to trade for money and holds a private value for
her item, while each buyer’s private information is a combi-
natorial valuation over the bundles of the sellers’ items. A
common feature in these situations is that the intermediary
keeps the difference between the payments made by the buy-
ers and the payments made to the sellers —that is, the inter-
mediary’s profit. We call such an intermediary a broker. The
objective of the broker is to acquire the items from the sell-
ers and resell them to the buyers to maximize her profit. The

problem studied in our paper is to design the mechanism in
the two-sided market that maximize the broker’s profit. For
convenience, we refer to the sub-market between the sellers
and the broker the seller-side market and to the sub-market
between the broker and the buyers the buyer-side market.

If the broker had all the items, then we would only have
the buyer-side market, which is an auction where the broker
tries to maximize her revenue. Auctions have been well stud-
ied in the literature following the seminal work of Myerson
[Myerson, 1981]. In Section 1.2, we will briefly recall the
most relevant literature on auctions. If the broker would keep
the items, then we only have the seller-side market, which
is a procurement game. Budget feasible procurement has
been studied by many in the Algorithmic Game Theory litera-
ture [Singer, 2010; Dobzinski et al., 2011; Chen et al., 2011;
Chan and Chen, 2014]. The broker wants to maximize her
value for the items she buys, subject to a budget constraint.

Although auctions and procurements are closely related to
the broker’s problem, they cannot be dealt with separately in
two-sided markets. Indeed, the difficulty of the broker’s prob-
lem is to simultaneously and truthfully elicit both the sellers’
and the buyers’ valuations, so as to generate a good profit.

1.1 Main Results and Techniques
In this paper we assume the values of the sellers and buyers
are independently distributed, and we study simple dominant-
strategy incentive compatible (DSIC) mechanisms. To ap-
proximately maximize the (expected) profit of the broker,
we first develop a reduction, through which we can directly
convert mechanisms for production-cost markets into mecha-
nisms for two-sided markets. In a production-cost market, the
broker is able to produce all the items, each item has a cost
to be produced and the costs are publicly known. Roughly
speaking, we say a mechanism for production-cost markets
is cost-monotone if, when the cost of an item increases, the
likelihood that it is sold does not increase. We show that any
cost-monotone mechanism for production-cost markets can
be converted into a mechanism for two-sided markets via a
black-box approach. This reduction holds for general combi-
natorial valuation functions of buyers.
Theorem 1 (Informal). Any cost-monotone DSIC mecha-
nism that is an α-approximation for production-cost mar-
kets, can be converted into a DSIC mechanism that is an α-
approximation for two-sided markets.
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Next, we use cost-monotonicity as a guideline in construct-
ing concrete mechanisms for two-sided markets. When the
buyers have additive valuations, we generalize the duality
framework of [Cai et al., 2016] and the mechanism there
to design a cost-monotone mechanism for production-cost
markets. Following our reduction, we immediately obtain a
mechanism for two-sided markets.

Theorem 3 (Informal). When the buyers have additive valu-
ations, there exists a DSIC mechanism for two-sided markets
which is an 8-approximation to the optimal profit.

1.2 Related Work
Bayesian auctions have been extensively studied since the
seminal work of [Myerson, 1981]. For single-parameter set-
tings, Myerson’s mechanism is optimal. The problem be-
comes more complicated in multi-parameter settings [Hart
and Nisan, 2017]. Although optimal Bayesian incentive-
compatible (BIC) mechanisms have been characterized [Cai
et al., 2012b; Cai et al., 2012a], they are too complex to be
practical. Also, optimal DSIC mechanisms remain unknown.
Thus simple DSIC mechanisms that are approximately op-
timal have been studied, such as [Kleinberg and Weinberg,
2012; Yao, 2015; Cai et al., 2016]

Two-sided markets are also called double auctions
[McAfee, 1992], bilateral trading [Myerson and Satterth-
waite, 1983] or market intermediation [Jain and Wilkens,
2012] in the literature. Maximizing the broker’s profit is an
important objective for two-sided market. The seminal paper
[Myerson and Satterthwaite, 1983] characterized the optimal
mechanism for one seller and one buyer, which is further gen-
eralized by [Deng et al., 2014] to multiple single-parameter
sellers and buyers. Unlike our work, [Deng et al., 2014] stud-
ies the Bayesian Incentive Compatible (BIC) mechanisms.
DSIC mechanisms are also studied in the literature, but only
for some special cases: [Jain and Wilkens, 2012] studies the
case of a single buyer and multiple sellers, [Balseiro et al.,
2019] studies the case of a single seller and multiple buyers,
and [Gerstgrasser et al., 2016] studies the optimal mechanism
when the numbers of sellers and buyers are both constants.
Although [Chan and Chen, 2016] studies two-sided markets
with multiple buyers and multiple sellers, the dealer there has
a fixed budget and their mechanism guarantees that the pay-
ment to sellers is within the budget. Before our work, it re-
mained unknown how to design a (simple) DSIC mechanism
that approximates the optimal profit in multi-parameter set-
tings with a general number of sellers and buyers.

Finally, we briefly discuss the efficiency of two-sided mar-
kets, which is measured by gain-from-trade (GFT), i.e., the
total value gained by the buyers minus the value contributed
by the sellers. [McAfee, 1992] gave the first approximation
mechanism for the one seller and one buyer case, and [Brus-
tle et al., 2017] gives approximation mechanisms for multi-
ple buyers with unit demand valuations. Recently, [Segal-
Halevi et al., 2018a] and [Segal-Halevi et al., 2018b] study
the asymptotically efficient mechanisms instead of constant
approximations. For maximizing social welfare, [Colini-
Baldeschi et al., 2016; Colini-Baldeschi et al., 2017] provide
constant-approximation mechanisms.

2 Preliminaries
A two-sided market includes a set M of m sellers, and a set
N of n buyers. We consider the setting where each seller j
has one item j to sell, so we may refer to items and sellers
interchangeably. The total payment made by the buyers is the
broker’s revenue, and her profit is the revenue minus the total
payment to the sellers.

Each buyer i has valuation vBi : 2M → R+ ∪ {0} with
vBi (∅) = 0. The function vBi is monotone: for any T ⊆ S ⊆
M , vBi (T ) ≤ vBi (S). In our reduction between production-
cost and two-sided markets, we consider combinatorial valu-
ations and do not impose any restriction on vBi .

Each function vBi is independently drawn from a distri-
bution DB

i over the set of all possible valuation functions,
with density function fBi and cumulative probability FBi . Let
DB = ×i∈NDB

i , fB = ×i∈NfBi and FB = ×i∈NFBi .
Each seller j’s value on her item, vSj ∈ R+∪{0}, is indepen-
dently drawn from a distribution DS

j , with density function
fSj and cumulative probability FSj . Let DS = ×j∈MDS

j ,
fS = ×j∈MfSj and FS = ×j∈MFSj . Let the supports of
distributions DB

i and DS
j be TBi and TSj , respectively. TBi

and TSj are called the valuation spaces of buyer i and seller j.
Let TB = ×i∈NTBi and TS = ×j∈MTSj . Finally, denote by
I = (N,M,DB , DS) a two-sided market instance.

A mechanismM for two-sided markets is represented by
(xB , xS , pB , pS). Given a valuation profile (vB , vS),
• xB(vB , vS) = (xBi (v

B , vS))i∈N is the allocation of the
buyers, where xBi (v

B , vS) = (xBiA(v
B , vS))A⊆M with

xBiA(v
B , vS) ∈ [0, 1], representing the probability that

buyer i gets the item set A, under valuation profile vB
and vS . Moreover,

∑
A x

B
iA(v

B , vS) = 1.

• xS(vB , vS) = (xSj (v
B , vS))j∈M is the allocation of the

sellers with xSj (v
B , vS) ∈ [0, 1], representing the prob-

ability that seller j’s item is sold under (vB , vS).
• pB(vB , vS) = (pBi (v

B , vS))i∈N is the payment made
by the buyers, where pBi (v

B , vS) ∈ R+ ∪ {0}.
• pS(vB , vS) = (pSj (v

B , vS))j∈M is the payment made
to the sellers, where pSj (v

B , vS) ∈ R+ ∪ {0}.
A feasible mechanismM is such that∑

A3j

∑
i∈N

xBiA(v
B , vS) ≤ xSj (vB , vS)

for any item j ∈ M and any valuation profile (vB , vS). In
principle, the above condition may allow a mechanism to sell
an item that it didn’t buy or to buy an item without selling it.
However, these cases never happen in the mechanisms in this
paper.1 The expected profit PFT (M; I) of mechanism M
for instance I is

E
vS∼DS ;vB∼DB

∑
i∈N

pBi (v
B , vS)−

∑
j∈M

pSj (v
B , vS).

1Note that our feasibility constraint only requires “feasible in ex-
pectation” which is weaker than ex post feasibility. All of our results
still hold if we change the requirement to be ex post feasible.
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The utilities of the agents are quasi-linear. That is, for each
buyer i, for any valuation subprofile vB−i of the buyers and
any valuation profile vS of the sellers, when i reports her true
valuation function vBi , her utility under mechanismM is

uBi (v
B
i ;M, vB−i, v

S) =
∑
A⊆M

xBiA(v
B , vS)vBi (A)−pBi (vB , vS).

For each seller j, for any valuation subprofile vS−j and vB ,
when j reports her true value vSj , her utility is

uSj (v
S
j ;M, vB , vS−j) = pSj (v

B , vS)− vSj xSj (vB , vS).
MechanismM is dominant-strategy incentive-compatible

(DSIC) if: (1) for any buyer i, vB−i, v
S , and vBi , v′Bi ,

uBi (v
B
i ;M, vB , vS−i)

≥
∑
A⊆M

xBiA(v
′B
i , vB−i, v

S)vBi (A)− pBi (v′Bi , vB−i, v
S);

and (2) for any seller j, vS−j , v
B and vSj , v′Sj ,

uSj (v
S
j ;M, vS−j , v

B) ≥ pSj (vB , v′Sj , vS−j)−vSj xSj (vB , v′Sj , vS−j).
MechanismM is individually rational (IR) if: (1) for any

buyer i, vBi , vB−i and vS , uBi (v
B
i ;M, vB−i, v

S) ≥ 0; and (2)
for any seller j, vSj , vS−j and vB , uSj (v

S
j ;M, vS−j , v

B) ≥ 0.
Mechanism M is Bayesian incentive-compatible (BIC)

if (1) for any buyer i and valuation functions vBi , v′Bi ,

uBi (v
B
i ;M) = EvB−i∼DB

−i;v
S∼DS uBi (v

B
i ;M, vB−i, v

S)

≥ EvB−i∼DB
−i;v

S∼DS

[∑
A⊆M xBiA(v

′B
i , vB−i, v

S)vBi (A)

−pBi (v′Bi , vB−i, v
S)
]
;

and (2) for any seller j and values vSj , v′Sj ,

uSj (v
S
j ;M) = E

vB∼DB ;vS−j∼DS
−j

uSj (v
S
j ;M, vB , vS−j) ≥

E
vB∼DB ;vS−j∼DS

−j

[
pSj (v

B , v′Sj , v
S
−j)− vSj xSj (vB , v′Sj , vS−j)

]
.

Mechanism M is Bayesian individually rational (BIR) if
(1) for any buyer i and valuation function vBi , uBi (v

B
i ;M) ≥

0; and (2) for any seller j and value vSj , uSj (v
S
j ;M) ≥ 0.

Finally, we denote by OPT (I) the (expected) profit gen-
erated by the optimal DSIC mechanism for instance I.

A special case of two-sided markets is production-cost
markets, where the broker can produce the items by him-
self and each item j ∈ M has a publicly known production
cost cj ∈ R+ ∪ {0}. Therefore we do not need to con-
sider the sellers’ incentives. Letting c = (cj)j∈M , we use
Ic = (N,M,DB , c) to denote a production-cost market in-
stance andMc = (xB , pB) a production-cost market mech-
anism, where the input of xB and pB is the buyers’ valuation
profile. Then the broker’s profit is the revenue minus the total
production cost PFT (Mc; Ic), which is

E
vB∼DB

∑
i∈N

pBi (vB)− ∑
A⊆M

∑
j∈A

xBiA(v
B)cj

 .

Auctions are production-cost markets with cost 0. We
use Ia = (N,M,DB) to denote an auction instance and
Ma = (xB , pB) an mechanism. The expected revenue is
PFT (Ma; Ia) = EvB∼DB

∑
i∈N p

B
i (v

B). When there is
no ambiguity, the superscript B is omitted in auctions and
production-cost markets.

In Section 4, we will consider additive valuations for the
buyers. In this case, for any buyer i, there exists a valuation
vector (vBij)j∈M such that vBij = vB({j}) is i’s value on each
item j. Then, vBi is additive if vBi (A) =

∑
j∈A v

B
ij for any

A ⊆ M . To simplify the notation, in this case we use vBi
to denote the vector (vBij)j∈M instead of the corresponding
function. Each vBij is independently drawn from a distribution
DB
ij , and DB

i = ×j∈MDB
ij . Finally, when buyers have addi-

tive valuations, their allocation is simplified as xB(vB , vS) =
(xBi (v

B , vS))i∈N , where xBi (v
B , vS) = (xBij(v

B , vS))j∈M
with xBij(v

B , vS) ∈ [0, 1], representing the probability that
buyer i gets the item j, when the valuations are vB and vS .

3 A Reduction from Two-sided Markets to
Production-cost Markets

Note that the sellers are single-parameter in the two-sided
markets under consideration. Thus, each seller is truthful in a
mechanism if and only if the selling probability of her item is
non-increasing with respect to her value and the payment to
her is the threshold payment, i.e., the highest value such that
her item can still be sold. More precisely, for any single-value
distribution D with density function f and cumulative prob-
ability F , if D is a seller’s value distribution, then the virtual
value function is φS(v) = v + F (v)

f(v) . In addition, if D is not
regular then φS is the ironed virtual value. Following [Myer-
son and Satterthwaite, 1983], for single-parameter sellers and
any DSIC mechanismM = (xS , xB , pS , pB), the total pay-
ment to the sellers is the virtual social welfare of them, i.e.,

E
vS∼DS

∑
j∈M

pSj (v
B , vS) = E

vS∼DS

∑
j∈M

φj(v
S
j )x

S
j (v

B , vS)

(1)
for any valuation profile vB of the buyers.

We now show how to convert a mechanism for production-
cost markets into a two-sided market’s mechanism. The main
idea is to use the sellers’ virtual values in two-sided markets
as costs, and run the mechanism for production-cost markets.
Definition 1. A mechanism Mc = (x, p) for production-
cost markets is cost-monotone if for any two instances Ic =
(N,M,Dc, c) and I ′c = (N,M,Dc, c′), where c and c′ dif-
fer only at an item j and cj ≤ c′j , for any buyers’ valuation
profile vc ∼ Dc, the probabilities of item j being sold un-
der the two instances, xj =

∑
i∈N

∑
A3j xiA(v

c; Ic) and
x′j =

∑
i∈N

∑
A3j xiA(v

c; I ′c), satisfy xj ≥ x′j .
Reduction. Let I = (N,M,DS , DB) be a two-sided

market instance. For any valuation profile vS of the sell-
ers, denote by φS(vS) = (φSj (v

S
j ))j∈M the sellers’ virtual-

value vector, and let IcφS(vS) = (N,M,DB , φS(vS)) be a
production-cost market instance.
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We first show that the optimal profit of the two-sided mar-
ket is no more than the optimal profit generated by the corre-
sponding production-cost markets in expectation.

Lemma 1. For any two-sided market instance I =
(N,M,DB , DS), OPT (I) ≤ EvS∼DSOPT (IcφS(vS)).

Proof. It suffices to show that for any DSIC mechanism
M = (xS , xB , pS , pB) for two-sided markets, there exists
a DSIC mechanism Mc for production-cost markets such
that PFT (M; I) ≤ EvS∼DSPFT (Mc; IcφS(vS)). Indeed,
this would imply PFT (M; I) ≤ EvS∼DSOPT (IcφS(vS))

for anyM, and thus OPT (I) ≤ EvS∼DSOPT (IcφS(vS)).
GivenM and I, we define mechanismMc = (xc, pc) as

follows. For any instance IcφS(vS), M
c first computes vS ,

the (randomized) pre-image of φS(vS) with respect to DS .
In particular, if for some seller j, the (ironed) virtual value
φSj (v

S
j ) corresponds to a value interval in the support of DS

j ,
then vSj is randomly sampled from DS

j conditional on it be-
longs to this interval.

For any reported valuation profile vB and buyer i ∈ N ,

xciA(v
B) = xBiA(v

B , vS)

for any A ⊆M , and

pci (v
B) = pBi (v

B , vS).

It is easy to see that, given any vS and vB−i, for any true val-
uation vBi , buyer i has the same utility in Mc and M by
reporting the same v′Bi . Thus Mc is DSIC whenever M is
DSIC. Next, we lower-bound the profit of Mc for each in-
stance IcφS(vS).

PFT (Mc; IcφS(vS))

= E
vB∼DB

∑
i∈N

pci (vB)− ∑
A⊆M

xciA(v
B)
∑
j∈A

φSj (v
S
j )


= E

vB∼DB
E

vS∼DS |φS(vS)

(∑
i∈N

pBi (v
B , vS)

−
∑
j∈M

∑
i∈N

∑
A3j

xBiA(v
B , vS)φSj (v

S
j )


≥ E

vB∼DB
E

vS∼DS |φS(vS)

(∑
i∈N

pBi (v
B , vS)

−
∑
j∈M

φSj (v
S
j )x

S
j (v

B , vS)


The inequality above is because any feasible mechanism

should satisfy
∑
i∈N

∑
A3j x

B
iA(v

B , vS) ≤ xSj (v
B , vS) for

any j ∈M and any valuation profiles vB , vS . Thus,

E
vS∼DS

PFT (Mc; IcφS(vS))

= E
φS(vS)∼φS(DS)

PFT (Mc; IcφS(vS))

≥ E
vB∼DB

E
vS∼DS

(∑
i∈N

pBi (v
B , vS)

−
∑
j∈M

φj(v
S
j )x

S
j (v

B , vS)


= E

vS∼DS ,vB∼DB

∑
i∈N

pBi (v
B , vS)−

∑
j∈M

pSj (v
B , vS)


= PFT (M, I),

as desired. Here φS(DS) is the distribution of virtual values
induced byDS , and the second equality is by Equation 1.

In the following, we show that if a mechanism for
production-cost markets is cost-monotone, then it can be con-
verted into a mechanism for two-sided markets.

Lemma 2. Given any DSIC cost-monotone mechanismMc

for production-cost markets, there exists a DSIC mechanism
M for two-sided markets such that

PFT (M; I) = EvS∼DSPFT (Mc; IcφS(vS)).

Proof. Given mechanism Mc = (xc, pc), the mechanism
M = (xS , xB , pS , pB) is defined as follows: M first col-
lects vB and vS reported by the buyers and the sellers, and
then run Mc on the production-cost instance IcφS(vS) =

(N,M,DB , φS(vS)) to obtain xc(vB) and pc(vB). Then for
each buyer i, let

xBiA(v
B , vS) = xciA(v

B)

for any A ⊆M and

pBi (v
B , vS) = pci (v

B).

For each seller j, let

xSj (v
B , vS) =

∑
i∈N

∑
A3j

xciA(v
S , vB)

and let pSj (v
B , vS) be the threshold payment for j: namely,

the highest reported value of seller j such that the probability
that item j is bought by the broker is xSj (v

B , vS).
We claim thatM is DSIC. First, the buyers will truthfully

report their valuations because Mc is DSIC and each buyer
has the same allocation and payment inM andMc. For the
sellers, sinceMc is cost-monotone and each (ironed) virtual
value function φSj is non-decreasing in vSj , the allocation xSj
is non-increasing in vSj . As the payments to the sellers are the
threshold payments, the sellers are truthful as well.
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Next we show that

PFT (M, I)

= E
vS∼DS ,vB∼DB

∑
i∈N

pBi (v
B , vS)−

∑
j∈M

pSj (v
B , vS)


= E

vS∼DS ,vB∼DB

(∑
i∈N

pBi (v
B , vS)

−
∑
j∈M

xSj (v
B , vS)φj(v

S
j )


= E

vB∼DB
E

φS(vS)∼φS(DS)

(∑
i∈N

pci (v
B)

−
∑
j∈M

∑
i∈N

∑
A3j

xciA(v
B)φj(v

S
j )


= E

φS(vS)∼φS(DS)
E

vB∼DB

∑
i∈N

(
pci (v

B)

−
∑
A⊆M

∑
j∈A

xciA(v
B)φj(v

S
j )


= E

vS∼DS
PFT (Mc; IcφS(vS)).

Thus Lemma 2 holds.

Combining Lemmas 1 and 2, we get our first main result.
Theorem 1. Given any DSIC mechanismMc for production-
cost markets, if Mc is cost-monotone and is an α-
approximation to the optimal profit, then there exists a
DSIC mechanism M for two-sided markets that is an α-
approximation to the optimal profit.

Proof. Mechanism M is defined as in Lemma 2. For any
two-sided market instance I,

PFT (M; I) = E
vS∼DS

PFT (Mc; IcφS(vS))

≥ 1

α
E

vS∼DS
OPT (IcφS(vS)) ≥

1

α
OPT (I),

where the equality is by Lemma 2 and the last inequality is
by Lemma 1.

4 A Mechanism for Two-sided Markets with
Additive Valuations

4.1 Broker’s Profit in Production-cost Markets
We first design a mechanism MA for production-cost mar-
kets which is an 8-approximation of the optimal profit. Our
mechanism is inspired by the mechanism in [Yao, 2015] and
the duality framework in [Cai et al., 2016] for auctions. In
particular, with probability 3

4 , MA runs the mechanism of
[Myerson and Satterthwaite, 1983] for two-sided markets for
each item separately, denoted by MIT . The mechanism of
[Myerson and Satterthwaite, 1983] is for a single buyer and a

Mechanism 1MBV CG for Production-Cost Markets
1: Collect the valuation profile v from the buyers.
2: For any buyer i and item j, let Pij(v−i) = maxi′ 6=i vi′j

and βij(v−i) = max{Pij(v−i), cj}.
3: For any buyer i, set the reserve price for item j to be
βij(v−i). Set the entry fee ei(v−i) to be the median of
the random variable

∑
j∈M (tij−βij(v−i))+, where ti =

(tij)j∈M ∼ Di and x+ = max{x, 0} for any x ∈ R.
4: Each buyer i is considered to accept her entry fee if and

only if
∑
j∈M (vij − βij(v−i))+ ≥ ei(v−i).

5: If a buyer i accepts her entry fee, then she gets the set of
items j with vij ≥ βij(v−i), and her price is ei(v−i) +∑
j:vij≥βij(v−i)

βij(v−i). If i does not accept her entry
fee, then she gets no item and pays 0.

single seller, but can be generalized to multiple buyers and a
single seller as shown in [Deng et al., 2014]. Furthermore,
MA generalizes the bundling VCG mechanism of [Yao,
2015] to production-cost markets (denoted byMBV CG) and
runs it with probability 1

4 .
Essentially, MechanismMIT runs a second-price auction

on the buyers’ virtual values, with a reserve price which is
the production cost of the item. As shown in [Myerson and
Satterthwaite, 1983; Deng et al., 2014], this mechanism is
optimal for the broker’s profit when the buyers have single-
parameter valuations. Mechanism MBV CG is well stud-
ied in auctions [Yao, 2015; Cai et al., 2016], and we de-
scribe it in Mechanism 1 for production-cost markets Ic =
(N,M,D, c). Essentially, it is a VCG mechanism with per-
item reserve prices and per-agent entry fees.

It is not hard to see that bothMIT andMBV CG are DSIC
and IR. Indeed, the mechanism of [Myerson and Satterth-
waite, 1983] is DSIC and IR,MIT directly applies it to each
item, and the buyers have additive valuations across the items.
Moreover, MBV CG is DSIC and IR with respect to any re-
serve prices βij that do not depend on vij , and Mechanism 1
simply incorporates the production costs into reserve prices.

In Theorem 2 we use MA to upper-bound the optimal
profit for any production-cost instance Ic = (N,M,D, c),
with proof provided in the online appendix [Chen et al.,
2019]. In fact, the proof is similar to the one in [Cai et al.,
2016] with modifications to incorporate the production costs
into consideration. Note that [Brustle et al., 2017] also adapts
the framework of [Cai et al., 2016] to the 2-sided market, but
their goal is to maximize the gain from trade and the buyers
have unit-demand valuations.
Theorem 2. When the buyers have additive valuations,
Mechanism MA is DSIC and is an 8-approximation to the
optimal profit for production-cost markets.

4.2 ConvertingMA to Two-sided Markets
Next we prove the cost-monotonicity for Mechanism MA.
But first, we start with MechanismMIT .
Lemma 3. MIT is cost-monotone.

Proof. For any two production-cost instances Ic =
(N,M,D, c) and I ′c = (N,M,D, c′), where there exists
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an item j ∈ M such that c′j > cj and c′j′ = cj′ for any
j′ 6= j, we show that in Mechanism MIT , when buyers’
valuation profile is v ∼ D, if item j is not sold in Ic, then
item j is not sold in I ′c. Since all buyers’ valuation func-
tions are additive andMIT sells each item individually, the
result of selling one item does not effect any other item. In
the mechanism of [Myerson and Satterthwaite, 1983], given
the reported valuation profile v, the potential winner of item
j is the buyer who has highest virtual value on it, denoted
by ij = argmaxi∈N vij . If her virtual value φijj(vijj) is
at least the cost of item j, buyer ij takes item j. Otherwise,
item j is kept unsold. Therefore, if item j is not sold in Ic,
then φijj(vijj) − cj < 0 which implies φijj(vijj) − c′j < 0
and item j cannot be sold in I ′c. Thus MIT satisfies cost-
monotonicity.

Next we show MBV CG is cost-monotone. Since we
need to apply MBV CG to different instances with different
cost vectors c and c′, we explicitly write βij(v−i, cj) and
ei(v−i, c) in Steps 2 and 3 of Mechanism 1.
Lemma 4. MBV CG is cost-monotone.

Proof. Similarly, for any two production-cost instances Ic =
(N,M,D, c) and I ′c = (N,M,D, c′), where there exists
an item j ∈ M such that c′j > cj and c′j′ = cj′ for any
j′ 6= j, we show that in MechanismMBV CG, when buyers’
valuation profile is v ∼ D, if item j is sold in I ′c, then item
j is also sold in Ic.

In MechanismMBV CG, given the valuation profile v, the
potential winner of item j is the buyer who has highest value
on item j, denoted by ij = argmaxi∈N vij . When the cost
vector is c, item j is sold to ij if and only if ij accepts the
entry fee eij (v−i, c) and vij − βijj(v−ij , cj) > 0. Otherwise
item j is unsold. Note that given different production cost c′,
the potential winner of item j remains unchanged.

Note that the entry fee ei(v−i, c) is selected such that the
probability that buyer i accepts it is exactly 1

2 . Let dj =
βijj(v−ij , c

′
j)− βijj(v−ij , cj) be the increase of the item re-

serve inMBV CG for buyer ij . Then

(vijj−βijj(v−ij , c′j))++dj ≥ (vijj−βijj(v−ij , cj))+. (2)

Indeed the equality holds in Inequality 2 if vijj −
βijj(v−ij , c

′
j) ≥ 0.

Let e′ij = eij (v−ij , c) − dj . When the cost vector is c,
buyer ij’s utility is

uij =
∑
k∈M

(vijk − βijk(v−ij , ck))+ − eij (v−ij , c).

When the cost is c′, if the entry fee is e′ij , buyer ij’s utility is

u′ij (e
′
ij ) =

∑
k∈M

(vijk − βijk(v−ij , c′k))+ − e′ij

=
∑
k 6=j

(vijk − βijk(v−ij , ck))+ + (vijj − βijj(v−ij , c′j))+ − e′ij

=
∑
k 6=j

(vijk − βijk(v−ij , ck))+ + (vijj − βijj(v−ij , c′j))+

− eij (v−ij , c) + dj

≥
∑
k 6=j

(vijk − βijk(v−ij , ck))+ + (vijj − βijj(v−ij , cj))+

−eij (v−ij , c)
= uij .

The inequality above is by Inequality 2. Moreover, if vijj −
βijj(v−ij , c

′
j) ≥ 0, then

u′ij (e
′
ij ) = uij . (3)

That is for any valuation profile vij , buyer ij’s utility under
the entry fee e′ij and the cost vector c′ is at least her utility un-
der the entry fee eij (v−ij , c) and the cost vector c. Therefore,

Pr
tij∼Dij

[
∑
j∈M

(tijj − βijj(v−ij ))+ ≥ e′ij ] ≥
1

2
.

Since the real entry fee eij (v−ij , c
′) is selected to be the me-

dian of the random variable
∑
j∈M (tijj − βijj(v−ij ))+, we

have eij (v−ij , c
′) ≥ e′ij .

Now if under cost vector c′, item j is sold, then vijj −
βijj(v−ij , c

′
j) ≥ 0, and∑

k∈M

(vijk − βijk(v−ij , c′k))+ − eij (v−ij , c′) ≥ 0.

Thus under cost vector c, we have vijj − βijj(v−ij , cj) ≥ 0,
and by Equation 3,

uij = u′ij (e
′
ij ) =

∑
k∈M

(vijk − βijk(v−ij , c′k))+ − e′ij

≥
∑
k∈M

(vijk − βijk(v−ij , c′k))+ − eij (v−ij , c′) ≥ 0.

Therefore, under cost vector c, item j is also sold. That is,
MBV CG is cost-monotone.

By randomly selecting fromMIT andMBV CG, Mecha-
nismMA is still cost-monotone. Therefore, by Theorem 1,
MA can be converted into a mechanism for two-sided mar-
kets, which is again an 8-approximation to the optimal profit.
Theorem 3. When the buyers have additive valuations, there
exists a DSIC mechanism that is an 8-approximation to the
optimal profit for two-sided markets.

5 Conclusion and Open Problems
In this paper, we proved a general reduction from production-
cost markets to two-sided markets, and provided a simple
constant-approximation DSIC mechanism for the broker’s
optimal profit when the buyers have additive valuations. How
to design DSIC mechanisms under other valuations of the
buyers (e.g. unit-demand or sub-additive) is still open, and
it would be interesting to understand the role of production-
cost markets in those scenarios. Another interesting direction
is to study the situation when the sellers have multiple items.
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