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Abstract

We consider the electoral bribery problem in com-
putational social choice. In this context, extensive
studies have been carried out to analyze the compu-
tational vulnerability of various voting (or election)
rules. However, essentially all prior studies assume
a deterministic model where each voter has an asso-
ciated threshold value, which is used as follows. A
voter will take a bribe and vote according to the at-
tacker’s (i.e., briber’s) preference when the amount
of the bribe is above the threshold, and a voter will
not take a bribe when the amount of the bribe is
not above the threshold (in this case, the voter will
vote according to its own preference, rather than the
attacker’s). In this paper, we initiate the study of
a more realistic model where each voter is associ-
ated with a willingness function, rather than a fixed
threshold value. The willingness function charac-
terizes the likelihood a bribed voter would vote ac-
cording to the attacker’s preference; we call this
bribe-effect uncertainty. We characterize the com-
putational complexity of the electoral bribery prob-
lem in this new model. In particular, we discover
a dichotomy result: a certain mathematical prop-
erty of the willingness function dictates whether or
not the computational hardness can serve as a de-
terrence to bribery attackers.

1 Introduction
Election (or voting) is a mechanism for agents in a society
or multiagent system to make decisions collectively. Because
of its many interesting aspects, such as algorithmic solutions
and computational complexity characteristics, there is an ac-
tive research field in computational social choice (see, for ex-
ample, the book by [Brandt et al., 2016] and some recent re-
sults by [Kenig and Kimelfeld, 2019; Faliszewski et al., 2019;
Chen et al., 2019b]). One of the most fundamental problems
in computational social choice is bribery, namely that an at-
tacker (i.e., briber) attempts to manipulate the outcome of an
election by bribing some voters to deviate from their own
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preferences to the attacker’s preference or designated can-
didate. Since its introduction by [Faliszewski et al., 2009],
this problem has received a considerable amount of attention;
see, e.g., [Brelsford et al., 2008; Xia, 2012; Faliszewski et al.,
2015; 2011; Parkes and Xia, 2012; Faliszewski et al., 2019;
Chen et al., 2018a; 2018b; 2019b].

Existing studies essentially make the following binary as-
sumption: a voter either (i) takes a bribe that exceeds a thresh-
old value determined by the voter and votes according to the
attacker’s preference, or (ii) declines a bribe that does not ex-
ceed the threshold value and votes according to the voter’s
own preference. This binary assumption oversimplifies the
problem because in the real world a voter’s decision may de-
pend on the amount of the bribe. For example, a voter, who
takes a bribe worth $101 because its threshold value is $100,
may also take a bribe worth $99 with some probability.

The aforementioned inadequacy of the binary assumption
has actually been discussed by researchers in the fields of psy-
chology (see, e.g., [Gerlach et al., 2019]) and economic be-
havior (see, e.g., [Frank and Schulze, 2000]). However, the
computational social choice community does not appear to be
aware of these studies until now.

In this paper, we cope with the inadequacy of the binary
assumption made in the literature of computational social
choice, by investigating the following notion of bribe-effect
uncertainty: Each voter is associated with a willingness func-
tion, rather than a threshold value; the willingness function
determines the probability that a bribed voter will indeed vote
according to the attacker’s preference, where the probabil-
ity varies with the amount of the bribe. With this new per-
spective, the classic bribery problem becomes what we call
the Election with Bribe-Effect Uncertainty (EBEU) problem.
The decision version of the EBEU problem is: Can an at-
tacker with a fixed bribery budget succeed in manipulating the
outcome of an election with a probability exceeding a given
threshold of interest? Correspondingly, the optimization ver-
sion of the EBEU problem asks for a solution that maximizes
such a probability.

Obtaining the willingness functions as an input data can
be achieved via experiments. Indeed, researchers in the psy-
chology and economic behavior community have conducted
experiments to study the relationship between dishonest be-
havior and reward magnitude; see Section 1.2. In particular,
[Gerlach et al., 2019] provides a comprehensive survey over
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hundreds of such experiments.
It is worth stressing that a bribed voter may not always

have to vote according to the attacker’s preference, especially
in elections using secret ballots. On the other hand, the EBEU
model actually can be equally applied to describe the follow-
ing lobbying problem: An attacker (i.e., briber) may donate
an amount of money to (for example) a politician, in hoping
that the politician will vote according to the attacker’s prefer-
ence (e.g., in deciding some public policy). In this case, the
politician would certainly accept the donation but may not
vote according to this particular donner’s preference; instead,
the politician may vote according to the preference of another
donner who donates possibly a bigger amount of money. That
is, the decision of the politician would be a function of the
amount of the donation.

1.1 Our Contributions
The conceptual contribution of the paper is the introduction
of a new type of uncertainty, namely bribe-effect uncertainty,
into election models. This uncertainty is described by a will-
ingness function, which eliminates the aforementioned over-
simplifying binary assumption that has been widely made in
the literature.

The technical contribution of the paper is the following di-
chotomy result. On one hand, we show that the EBEU prob-
lem under the Plurality voting rule, which will be explained
later, does not admit any O(1)-approximation FPT-algorithm
for arbitrary willingness functions, assuming FPT6=W[1].
This means that the computational complexity of the EBEU
problem could serve as an effective deterrence to bribery at-
tackers. On the other hand, we show that if the logarithm
of every voter’s willingness function is Lipschitz continuous
(which will be defined later), then there exists an FPT al-
gorithm that produces (1+ ε)-approximate solution, mean-
ing that the computational complexity may not be able to
deter bribery attackers when their willingness functions are
“smooth”. This result is interesting because it’s the mathe-
matical property, rather than any specific form, of the willing-
ness function that dictates whether or not the computational
hardness can serve as a deterrence.

1.2 Related Work
Uncertainty is inherent to many real-world complex prob-
lems and coping with it has become a fundamental research
problem. Putting into the context of election, uncertainty is
inherent to the bribery problem because it is inadequate to
model voters as machines that return “yes” or “no” based on
whether or not a monetary award exceeds a threshold (see,
e.g., [Frank and Schulze, 2000]). Nevertheless, the bribe-
effect uncertainty we study in the present paper has not been
investigated in the literature. The most closely-related prior
works are [Chen et al., 2019b] and [Wojtas and Faliszewski,
2012], which still make the binary assumption despite that
some bribed voters have some “no-show” probabilities (i.e.,
they may not vote at all). In our model, we eliminate the
binary assumption and replace it with willingness functions,
which characterize the relationship between the amount of
bribe and the probability that a bribed voter indeed votes ac-
cording to the attacker’s preference. This distinction between

the different kinds of uncertainty is also confirmed by the
fact that the problem studied by [Chen et al., 2019b] always
denies an O(1)-approximation FPT algorithm, while the ap-
proximability of our problem is crucially dependent upon a
certain mathematical property of the willingness functions,
as indicated by the dichotomy result mentioned above.

It is worth mentioning that other kinds of uncertainty (e.g.,
margin of victory), which are loosely related to the bribe-
effect uncertainty, have been studied by [Dey and Narahari,
2015; Erdelyi et al., 2014; Mattei et al., 2015]. It is also
worth mentioning that we focus on investigating the impact of
the mathematical property of the willingness function, rather
than its specific form, which is actually an open problem. In-
deed, some researchers argue that a larger “reward” (or bribe)
would increase the chance of dishonest behavior (see [Con-
rads et al., 2014; Gneezy, 2005]); others actually argue for
the opposite — a larger bribe may lead to a smaller chance
of dishonest behavior — because the psychological cost of
cheating may increase (see [Mazar et al., 2008]); yet others
argue that they are relatively independent (see [Abeler et al.,
2016]). Our dichotomy result applies regardless of the cor-
rectness of these arguments because we show that it is not the
monotonicity of the willingness function that matters most in
determing whether or not the computational complexity can
serve as a deterrence.

Despite the classical bribery model that assumes a thresh-
old bribery cost for each voter [Faliszewski et al., 2009], other
kinds of bribery model like swap bribery are also considered,
see, e.g. [Elkind et al., 2009; Bredereck et al., 2016a; 2016b;
Elkind and Faliszewski, 2010].

2 Problem Statement and Preliminaries
Election Problem. There are m candidates, denoted by a
set C = {c1,c2, . . . ,cm}, and n voters, denoted by a set V =
{v1,v2, . . . ,vn}. Each voter votes according to its preference
over the candidates c1,c2, . . . ,cm. There is a voting rule, ac-
cording to which a winner is determined. There are many
voting rules, but we focus on the plurality rule, which says
that each voter votes for its most preferred candidate and the
candidate receiving the most votes will be the winner.
Bribery Problem. In this problem, an attacker (i.e., briber)
attempts to manipulate the outcome of an election by bribing
some voters that would deviate from voting for their own pre-
ferred candidate to voting for the attacker’s designated can-
didate. Specifically, let voter vi has a bribery price qi, mean-
ing that receiving a bribe worth qi will make vi vote for the
attacker’s designated candidate, regardless of vi’s own prefer-
ence. The attacker has a total budget Q that can be spent on
bribing voters.
EBEU Problem. This problem extends the bibery problem,
which uses a binary willingness function f j : R≥0 → {0,1},
with a more general willingness function f j : R≥0 → [0,1]
for voter v j such that f j(x) returns the probability that v j will
vote for the attacker’s designated candidate, where x is the
amount of bribe received from the attacker and 1 ≤ j ≤ n.
Without loss of generality, let c1 be the winner when there are
no bribery attacks and cm be the attacker’s designated candi-
date. Suppose the attacker has a fixed budget Q for waging
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the bribery attack and each voter v j has a willingness func-
ton f j. The EBEU problem asks for identifying a subset of
k voters in V ′ ⊆V , each of which receives a bribe of amount
x j where v j ∈ V ′, such that the probability that the attacker’s
designated candidate cm wins the election (i.e., the attacker
succeeds in manipulating the election) is maximized.

Formally, the EBEU problem is described as follows while
normalizing the attacker’s budget Q to 1 for a technical con-
venience.

The (Plurality-)EBEU Problem
Input: A set of m candidates C = {c1,c2, . . . ,cm}, where
c1 is the winner in the absence of bribery attacks and cm
is the attacker’s designated candidate; a set of n voters
V = {v1,v2, · · · ,vn}; a positive integer k; an attack budget
(normalized to) 1; each voter v j ∈ V is associated with a
willingness function f j such that if v j receives a bribe of
amount x from the attacker, then v j will vote, with probabil-
ity f j(x), according to the attacker’s preference rather than
v j’s own preference (in the case of the plurality voting rule,
v j will vote for the attacker’s designated candidate cm).
Output: Find a set of indices I∗ ⊆ {1,2, · · · ,n}, |I∗| = k,
together with x j ∈ R≥0 for each j ∈ I∗ such that
• ∑ j∈I∗ x j ≤ 1, and
• the probability that cm wins the election (under the plu-

rality voting rule) is maximized by bribing voters be-
longing to V ∗ = {vi ∈V \Vm|i ∈ I∗}.

Lipschitz Continuity. Since we will show that the Lips-
chitz continuity of the willingness function f j(·) will play the
critical role in determing whether the election problem under
bribe-taking uncertainty is vulnerable to the bribery attack or
not, we need to review this property.

Definition 1 (Lipschitz continuity). Given two metric space
(X ,dX ) and (Y,dY ), where dX and dY respectively denote the
metrics in X and Y . A function f : X → Y is said Lipschitz
continuous if there exists a universal real constant α0 ≥ 0
such that for all x1,x2 ∈ X, it holds that

dY ( f (x1), f (x2))≤ α0 ·dX (x1,x2). (1)

When the function f is defined on real numbers, which is true
in the setting of the present paper, the condition specified by
Eq. (1) can be rewritten as

| f (x1)− f (x2)| ≤ α0 · |x1− x2|. (2)

3 Hardness of EBEU With Non-“Lipschitz
Continuous” Willingness

In this section, we show via Theorem 1 that if some of the
log f j(·)’s are not Lipschitz continuous, then the EBEU prob-
lem does not admit any constant ratio approximation algo-
rithms. The inapproximability holds even if the willingness
functions are continuous. The implication of this hardness re-
sult is that election under bribe-effect uncertainty is not vul-
nerable to optimal bribery attacks, namely that the complex-
ity in finding an optimal attack may hinder the attacker from
waging such attacks.

Theorem 1 (Main hardness result). Assuming W [1] 6=
FPT , there exist (continuous) willingness functions, f j(·)’s,
such that the EBEU problem does not admit any g(k)-
approximation algorithm that runs in FPT time parameter-
ized by k for any computable function g, even if m = 2.

In order to prove Theorem 1, we leverage the 2-
dimensional knapsack problem, which is reviewed below,
and its W[1]-hardness result owing to [Kulik and Shachnai,
2010].

The 2-dimensional Knapsack
Input: A set of n′ items, where each item j has a 2-
dimensional size (a j,b j) ∈ Z2

≥0; a 2-dimensional knapsack
of size (A,B) ∈ Z2

>0.
Output: Decide whether or not there exists a subset S of
items such that |S|= r and ∑ j∈S(a j,b j)≤ (A,B).

Theorem 2 (Theorem 7, [Kulik and Shachnai, 2010]). As-
suming W [1] 6= FPT , there does not exist any algorithm that
runs in time fKP(r)|IKP|O(1) for solving the 2-dimensional
knapsack problem for any computable function fKP, where
|IKP| is the length of the input.

The strategy for proving Theorem 1 is the follow-
ing: Suppose on the contrary that there exists some α-
approximation FPT algorithm that solves the EBEU problem
in fEBEU (k)|IEBEU |O(1) time for some computable function
fEBEU , where α = g(k) for some function g, we can show
that this algorithm can be utilized to solve the 2-dimensional
knapsack problem in fKP(r)|I|O(1) time for some computable
function fKP. This contradicts with Theorem 2.

Proof of Theorem 1. Under the proof strategy mentioned
above, we first construct an instance of the EBEU problem
from an instance of the 2-dimensional knapsack problem ac-
cording to the following two steps. First, we construct two
candidates c1 and c2, where c1 is the winner when there are
no bribery attacks and c2 is the attacker’s designated candi-
date. Recall that the bribe budget is defined to be 1. Second,
we construct n = 2n′+2k−1 voters, including n′ key voters,
each of which corresponds to an item, and n′+2k−1 dummy
voters, each of which does not correspond to any item, where
k = r. The difference between these two types of voters is in
their willingness functions: the willingness functions of key
voters are not Lipschitz continuous, but the willingness func-
tions of dummy voters are Lipschitz continuous.
• Constructing key voters: For each item j of 2-

dimensional size (a j,b j), a key voter v j is constructed
with the following willingness function f j:

f j(x) =



0, if x < A+a j−δ

(k+1)A
x−A−a j+δ

δ
M−b j if A+a j−δ

(k+1)A ≤ x≤ A+a j
(k+1)A

M−b j , if A+a j
(k+1)A < x≤ 1

x−1+M−b j , if1 < x≤ 2−M−b j

1, otherwise

where M > α is an integer (e.g., M = α +1) and δ is a
sufficiently small rational number (e.g., δ = 1/(100n)).
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Note that the function f j is continuous, but it has a sharp
increase around the point A+a j

(k+1)A , where the value ex-
plodes with rate O(1/δ ) = O(n). Hence, f j and log f j
are not Lipschitz continuous.

• Constructing dummy voters: Each dummy voter has the
following willingness function fdummy:

fdummy(x) =


0, if x≤ 1
x−1, if 1≤ x≤ 2
1, otherwise.

All the n′ key voters vote for c1 because they are not bribed
by the attacker. Among the n′+2k−1 dummy voters, 2k−1
of them vote for c1 and n′ of them vote for c2. This completes
the construction of a EBEU instance.

Now, suppose there exists a α-approximation FPT algo-
rithm for the EBEU problem that runs in fEBEU (k)|IEBEU |O(1)

time. Then, we can use this algorithm to solve the given 2-
dimensional knapsack instance, yielding a contradiction. Re-
call that k = r and that there is a one-to-one correspondence
between the key voters in the constructed EBEU instance and
the items in the given 2-dimensional knapsack instance. The
proof is based on the following 5 claims (see [Chen et al.,
2019a] for the omitted proofs).

Claim 1. If c2 wins with probability 0 in the approxima-
tion solution to the constructed EBEU instance, the given 2-
dimensional knapsack instance does not admit any feasible
solution.

From now on we assume c2 wins with a positive proba-
bility in the approximation solution to the EBEU instance.
Note that if the attacker chooses to bribe some voter, the at-
tacker should spend an amount such that the voter will vote
for the attacker’s designated candidate with a positive prob-
ability. This means that if the attacker chooses to bribe a
dummy voter, the attacker should spend an amount that is
strictly larger than 1, which is impossible. Hence, the attacker
bribes exactly k key voters in any feasible solution. Let V ′ be
an arbitrary feasible solution to the EBEU instance, and let
S′ be the corresponding subset of items in the 2-dimensional
knapsack instance. It is clear that j ∈ S′ and v j ∈V ′ are equiv-
alent.

Claim 2. ∑ j:v j∈V ′ a j ≤ A.

Claim 3. Without loss of generality, we can assume that the
attacker bribes v j ∈V ′ with an amount A+a j

(k+1)A .

Claim 4. If the given 2-dimensional knapsack instance ad-
mits a feasible solution, then the objective value of an α-
approximation solution to the EBEU instance is at least M−B.

Claim 5. If the given 2-dimensional knapsack instance does
not admit any feasible solution, then the objective value of
the approximation solution to the EBEU instance is at most
M−B−1.

By Claim 1, Claim 4 and Claim 5, we can decide whether
the given 2-dimensional knapsack instance admits a feasible
solution by checking whether or not the α-approximation so-
lution to the EBEU instance has an objective value larger
than M−B−1. Since the approximation algorithm runs in
fEBEU (k)|IEBEU |O(1) time for some computable function
fEBEU and that r = k, we derive an FPT algorithm for the
2-dimensional knapsack problem, contradicting Theorem 2.
Hence, Theorem 1 holds.

4 FPT-Approximation Schemes for EBEU
With Lipschitz Continuous Willingness

Now we present an algorithmic result in Theorem 3, while
assuming the willingness functions are Lipschitz continuous.
Theorem 3 (Main algorithmic result). Let F+

j = {x : f j(x)>
0} where 1 ≤ j ≤ n. If log f j(x) is Lipschitz continous
for all x ∈ F+

j as well as 1 ≤ j ≤ n and the number of
candidates m is a constant, then there exists an algorithm
for solving the EBEU problem such that the algorithm runs
in fEBEU (k)|IEBEU |O(1) time for some computable function
fEBEU and returns a solution with an objective value that is
no smaller than (1− ε)OPT, where OPT ∈ [0,1] is the opti-
mal objective value and ε > 0 is an arbitrary small constant.

In order to prove Theorem 3, we proceed as follows.
In Section 4.1, we show the existence of a well-structured
near optimal solution. In Section 4.2, we show how to
guess important structural information for identifying the
well-structured near optimal solution. In Section 4.3, we
present an approximation algorithm that returns a kO(k)-
approximation solution. This approximation algorithm pro-
vides an upper bound of the optimal objective value, through
which we develop a dynamic programming-based FPT ap-
proximation scheme in Section 4.4.

4.1 Existence of a Near Optimal Solution
Recall that the total budget is 1 and we only consider f j(x)
where x ≤ 1. The following property of f j(·)’s plays a cru-
cial role in deriving a kO(k)-approximation algorithms, which
leads to an FPT approximation scheme. Intuitive, ln f j being
Lipschitz continuity means that the value of f j(x) does not
increase arbitrary as x increases, as is shown by Corollary 1.
This fact is particularly useful in two aspects. First, we can
round down the cost spent on bribing each voter by some suf-
ficiently small amount without causing the value of the will-
ingness function to change much. This allows us to show the
existence of a well-structured near optimal solution. Second,
we can derive a kO(k)-approximation solution through the fol-
lowing heuristic: If we have a budget of amount k instead of
1, then we can simply bribe the k voters whose f j(1)’s are the
largest; given that we only have a budget of 1, we can choose
to spend 1/k to bribe each of these voters, and this greedy
solution would not be too far from the optimal one because
f j(1) and f j(1/k) do not differ too much, owing to the prop-
erty of Lipschitz continuity.

The following Lemma 1, Lemma 2 and Corollary 1 are all
deduced from Lipschitz continuity (see [Chen et al., 2019a]
for their proofs).
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Lemma 1. If ln f j(x) is Lipschitz continuous for x ∈ F+
j ∩

[0,1], then

| f j((1± ε)x)− f (x)| ≤ O(ε) f (x)

holds for any sufficiently small ε > 0.
Note that we do not necessarily restrict f j’s to be non-

decreasing, but if f j(x) < f j(y) for some x > y and the at-
tacker allocates a budget of amount x to bribe v j, then the at-
tacker may simply choose to spend a smaller amount to bribe
v j. For example, the attacker can spend an amount x′ to bribe
v j, where f j(x′) = supt≤x f j(t). Consequently, we define f̄ j
as:

φ j(x) = sup
t≤x

f j(t).

Similar to Lemma 1, the following lemma holds for function
φ j.

Lemma 2. If ln f j(x) is Lipschitz continuous for x ∈ F+
j ∩

[0,1], then

|φ j((1± ε)x)−φ j(x)| ≤ O(ε)φ j(x)

holds for any sufficiently small ε > 0.
From now on we only need to focus on φ j(x) instead of

f j(x) because the monotonicity of φ j(x) makes our presen-
tation easier to follow. According to Lemma 2, we have the
following corollary.
Corollary 1. If ln f j(x) is Lipschitz continuous for x ∈ F+

j ∩
[0,1], then

max{
φ j(y)
φ j(x)

,
φ j(x)
φ j(y)

} ≤ (
y
x
)O(1)

holds for any x,y ∈ F+
j ∩ [0,1],x < y.

Consider an arbitrary solution where the attacker bribes
some subset V ′ of voters such that any v j ∈ V ′ will vote for
the attacker’s designated candidate with some probability p j.
Let π1 be the probability that cm wins. Let v j0 ∈ V ′ be an
arbitrary fixed voter. Suppose we change the probability as-
sociated to v j0 ∈ V ′ from p j0 to p′j0 ≥ p j0 , and let π2 be the
probability that cm wins as a consequence of the change in
probability. Since v j0 votes for the attacker’s designated can-
didate with a higher probability now, it is straightforward to
see that π2 ≥ π1. Lemma 3 below says that π2 cannot be too
large.

Lemma 3. π2 ≤ π1 ·
p′j0
p j0

.

Proof. Let Ω be the event that when v j0 votes for the at-
tacker’s designated candidate cm and cm wins. Let Ω′ be the
event that when v j0 does not vote for the attacker’s designated
candidate cm and cm wins. Then, we have

π1 = Pr(Ω)p j0 +Pr(Ω′)(1− p j0),

and
π2 = Pr(Ω)p′j0 +Pr(Ω′)(1− p′j0).

Since p j0 ≤ p′j0 , we have Pr(Ω′)(1− p j0)≥ Pr(Ω′)(1− p′j0).

Hence, we have π2 ≤ π1 ·
p′j0
p j0

.

From Lemma 3, we obtain the following corollary.

Corollary 2. Let π ′ be the probability that cm wins when we
change the probability that v j votes for the attacker’s desig-
nated candidate from p j to p′j. Then, we have

π
′ ≤ π1 ∏

j∈V ′
max{1,

p′j
p j
}.

Note that we can interpret Lemma 3 as if we decrease the
probability of v j0 from p′j0 to p j0 , in which case the prob-
ability that v j votes for the attacker’s designated candidate
decreases from π2 to π1, but we can still obtain the lower
bound π1 such that π1 ≥ π2 ·

p j0
p′j0

. This leads to the following

corollary:

Corollary 3. Let π ′ be the probability that cm wins when we
change the probability that v j votes for the attacker’s desig-
nated candidate from p j to p′j, then we have

π
′ ≥ π1 ∏

j∈V ′
min

{
1,

p′j
p j

}
.

Now we are ready to construct a solution. From now on we
denote by V ∗ the subset of voters selected by the optimal so-
lution. Let x j be the amount of budget the attacker spends on
bribing voter v j ∈V ∗, φ j(x j) = p j, and π∗ be the probability
that cm wins. We modify the optimal solution in the following
three steps.

Step 1. We reduce the amount of budget that is spent on
each voter by a factor of 1− ε/k, meaning that the attacker
spends (1− ε/k)x j to bribe voter v j ∈V ∗.

Lemma 4. After Step 1, cm wins with a probability at least
π∗(1−O(ε)).

Proof. According to Lemma 2, we have φ j((1− ε/k)x j) ≥
(1−O(ε/k))p j. According to Corollary 3, the probability
that cm wins after the modification specified in Step 1 is at
least π∗(1−O(ε/k))k ≥ π∗(1−O(ε)).

Step 2. Note that after Step 1, the total amount of budget
spent by the attacker is at most 1−ε/k. If the attacker spends
less than ε/k2 on some voter, then we increase the amount
to be ε/k2. Since at most k voters are selected, the overall
increase in the spent budget is ε/k, which is still legitimate
(i.e., no greater than the original total budget of 1). Note that
by doing so the probability that cm wins does not decrease
and is at least π∗(1−O(ε)).

Step 3. Consider the budget spent to bribe v j ∈ V ∗ after
Step 2. We round down this amount to the nearest value in
the form of ε/k2(1+ ε/k)i for some integer i ≥ 0. Note that
this step is similar to Step 1 and using the same argument
as in Step 1, we can show that after Step 3 cm wins with a
probability at least π∗(1−O(ε)).

After conducting the preceding three steps, we call the re-
sulting solution a well-structured feasible solution, which has
a near optimal objective value (i.e., well-structured near op-
timal solution).
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4.2 Enumeration
In order to find a well-structured near optimal solution, we
need to guess (through enumeration) on some component
in this solution. Since the amount of budget spent on each
selected voter is in the form of ε/k2(1 + ε/k)h where h ≤
O(k/ε · log(k/ε)), there are only O(k/ε · log(k/ε)) possibil-
ities. We now classify the voters into m groups, where Vi is
the set of voters who vote for candidate ci when there are no
bribery attacks. We first guess, via km enumerations, the num-
ber of voters bribed in each Vi. Suppose ki voters that belong
to Vi are bribed.

For each bribed voters in Vi, the attacker spends a budget
of amount ε/k2(1+ ε/k)h to bribe the voter. We can list the
ki different amounts the attacker spent to bribe the voters in Vi
as a vector, leading to a ki-dimensional vector where each el-
ement (or coordinate) can take at most O(k/ε · log(k/ε)) dif-
ferent values. We call such a vector a package for Vi. Through
O(kk/εk · logk(k/ε)) enumerations, we can guess the pack-
age for each Vi. Hence, by O(kmk/εmk · logmk(k/ε)) enumer-
ations, we can guess all of the packages.

Suppose the package for Vi is (a,b). Then, what remains
to be done is to decide to select which of the two voters in
Vi. Note that even if we know the two selected voters are v j1
and v j2 , it is far from clear that the attacker should spend bud-
get a to bribe voter v j1 and budget b to bribe voter v j2 , or the
attacker should spend b to bribe v j1 and a to bribe v j2 . In or-
der to resolve this issue, we employ a dynamic programming
approach. For this purpose, we need a g(k)-approximation
algorithms that can provide us with a reasonable lower bound
on the optimal objective value. Section 4.3 presents such an
approximation algorithm.

4.3 A Simple Approximation Algorithm
Theorem 4. If ln f j(x) is Lipschitz continuous for x ∈ F∗j ∩
[0,1] and 1 ≤ j ≤ n, then there exists a kO(k)-approximation
algorithm that runs in O(km|IEBEU |) time for solving the
EBEU problem, where |IEBEU | is the length of the input.

In order to prove Theorem 4, we first show a general result
on comparing two arbitrary solutions. Let V 1 and V 2 denote
the subsets of k voters selected by two feasible solutions Sol1
and Sol2, respectively. Let V h

i =Vi∩V h for h = 1,2. We say
“the second solution is λ -bounded by the first solution” if (i)
|V 1

i | = |V 2
i | for every i and (ii) there exists a one-to-one λ -

mapping, denoted by σ , from the voters in V 1
i to the voters in

V 2
i , where a mapping σ : V 1

i →V 2
i is called λ -mapping if for

any j ∈V 1
i , we have

φσ( j)(x
′
σ( j))≤ λφ j(x j),

where x j is the amount of money the attacker spends to bribe
voter v j in the first solution, and x′

σ( j) is the amount of money
the attacker spends to bribe voter vσ( j) in the second solution.
Lemma 5. Given two feasible solutions Sol1 and Sol2. Let π1
and π2 be their optimal objective values, respectively. If the
second solution is λ -bounded by the first solution for some
λ ≥ 1, then we have π2 ≤ λ kπ1.

Note that Theorem 4 already contrasts sharply with Theo-
rem 1 and the running time is polynomial when m is constant.

4.4 An Approximation Scheme in FPT-Time
Theorem 5. If ln f j(x) is Lipschitz continuous for x ∈ F∗j ∩
[0,1] and 1 ≤ j ≤ n, and m is a constant, then there exists
a (1+ ε)-approximation algorithm that runs in FPT-time pa-
rameterized by k for solving the EBEU problem, where ε > 0
is any constant.

Proof sketch. We will use dynamic programming to keep
track of all possible “partial solutions” and find out the well-
structured near optimal solution. A partial solution is a subset
of voters selected among the first γ voters. A state for a partial
solution contains the following information: i). The number
of bribed voters in each Vi. ii). The total amount of cost spent
so far on the bribed voters. Notice that while the cost spent on
each bribed voter can be an arbitrary real number, our round-
ing procedure ensures that we may assume the cost to take
at most O(k/ε · log(k/ε)) distinct values (see Section 4.2),
therefore the cost spent on each bribed voter can be stored,
and consequently the overall cost. iii). The random variable
that corresponds to the bribed voters in each Vi in the par-
tial solution. Note that for each bribed voter, whether or not
the voter changes preference is a binary random variable, and
the eventual number of votes received by each candidate after
bribery depends on the summation of these m random vari-
ables. Each of these random variables can only take values in
{0,1, · · · ,k}, therefore, it suffices to store its probability on
each value. The probability can be arbitrary real number, so
we need to round it. Rounding is possible because the ap-
proximation algorithm derived in Section 4.3 can be used to
provide us with an upper and lower bounds on the optimal
probability that differ by a factor of at most kO(k). Therefore,
we can round the probabilities into an FPT number of distinct
values based on the lower bound and show that the rounding
will not cause the objective to increase by an O(ε) factor.

5 Conclusion and Discussion
We introduced a new perspective of the electoral bribery
problem in bribe-effect uncertainty, which goes beyond pre-
vious studies that assume a fixed threshold value accord-
ing to which a voter decides to accept or decline a bribe.
We used the notion of willingness function to accommodate
the bribe-effect uncertainty. We proved a dichotomy result,
which shows that the Lipschitz continuity of the logarithm
of the willingness function, rather than any specific form of
the willingness function, dictates whether or not the computa-
tional hardness can serve as a deterrence to bribery attackers.
The new perspective of bribe-effect uncertainty indicates that
there are many interesting problems for future research. For
example, we only investigated the Plurality voting rule; it is
interesting to know whether the dichotomy result is applica-
ble to other voting rules or not.
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