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Abstract
We consider the election control problem in social
networks which consists in exploiting social influ-
ence in a network of voters to change their opin-
ion about a target candidate with the aim of in-
creasing his chances to win (constructive control)
or lose (destructive control) the election. Previ-
ous works on this problem focus on plurality vot-
ing systems and on a influence model in which
the opinion of the voters about the target candidate
can only change by shifting its ranking by one po-
sition, regardless of the amount of influence that
a voter receives. We introduce Linear Threshold
Ranking, a natural extension of Linear Threshold
Model, which models the change of opinions taking
into account the amount of exercised influence. In
this general model, we are able to approximate the
maximum score that a target candidate can achieve
up to a factor of 1 − 1/e by showing submodular-
ity of the objective function. We exploit this result
to provide a 1

3 (1 − 1/e)-approximation algorithm
for the constructive election control problem and a
1
2 (1 − 1/e)-approximation ratio in the destructive
scenario. The algorithm can be used in arbitrary
scoring rule voting systems, including plurality rule
and borda count.

1 Introduction
All of us have specific personal opinions on certain topics,
such as lifestyle or consumer products. These opinions, nor-
mally formed on personal life experience and information,
can be conditioned by the interaction with our friends leading
to a change in our original opinion on a particular topic if a
large part of our friends holds a different opinion. Moreover,
opinions can propagate through a social network, generating
a diffusion process. This phenomenon of opinion diffusion
has been intensely investigated from many different perspec-
tives, from sociology to economics. In recent years, there
has been a growing interest on the relationship between so-
cial networks and political campaigning. Political campaigns
nowadays use online social networks to lead elections in their
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favor; for example, they can target specific voters with fake
news [Allcott and Gentzkow, 2017]. A real-life example of
political intervention in this context occurred in the US Con-
gressional elections in 2010, where a set of users were en-
couraged to vote with a message on Facebook. These mes-
sages directly influenced the real-world voting behavior of
millions of people [Bond et al., 2012]. Another example is
that of French elections in 2017, where automated accounts
in Twitter spread a considerable portion of political content
trying to influence the outcome [Ferrara, 2017].

There exist an extensive literature on manipulating elec-
tions without considering the underlying social network
structure of the voters, e.g., swap bribery [Elkind et al., 2009],
shift bribery [Bredereck et al., 2016]; we point the reader
to a recent survey [Faliszewski et al., 2016]. Nevertheless,
there are only few studies that exploit opinion diffusion in
social networks to change the outcome of elections. The In-
dependent Cascade Model [Kempe et al., 2015] has been con-
sidered as diffusion process to guarantee that a target candi-
date wins/loses [Bartholdi et al., 1992; Hemaspaandra et al.,
2007]. The constructive (destructive) election control prob-
lem has been introduced in [Wilder and Vorobeychik, 2018a]
and consists in changing voters’ opinions with the aim of
maximizing (minimizing) the margin and probability of vic-
tory of a specific target candidate. A variant of the Linear
Threshold Model [Kempe et al., 2015] with weights on the
vertices has been considered on a graph in which each node
is a cluster of voters with a specific list of candidates and there
is an edge between two nodes if they differ by the ordering of
a single pair of adjacent candidates [Faliszewski et al., 2018].
Moreover, it has been studied how to manipulate the network
in order to have control on the majority opinion, e.g., brib-
ing or adding/deleting edges, on a simple Linear Threshold
Model where each node holds a binary opinion, each edge
has a fixed weight, and all vertices have a threshold fixed
to 1/2 [Bredereck and Elkind, 2017]. The study of opin-
ion diffusion modeled as a majority dynamics has attracted
much attention in recent literature [Auletta et al., 2015;
Brill et al., 2016; Botan et al., 2017]. In these models each
agent has an initial preference list and at each time step a sub-
set of agents updates their opinions according to some major-
ity -based rule that depends on their neighbors in the network.

In this work we focus on the election control through social
influence problem [Wilder and Vorobeychik, 2018a]: Given
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a social network of voters, we want to select a subset of vot-
ers such that their influence will change the opinion about a
target candidate, maximizing its chances to win or lose (we
remark that we are in the specific scenario in which only the
opinions about a target candidate can be changed). In pre-
vious work, the only voting system studied is the plurality
rule. Moreover, in the diffusion model considered in the lit-
erature, an influenced voter changes the position of the target
candidate in its ranking by shifting it up or down by one po-
sition, regardless of the amount of influence received [Wilder
and Vorobeychik, 2018a]. Here we study the election control
problem in any scoring rule voting system and in a different
diffusion model, that takes into account the degree of influ-
ence that voters exercise on the others and is able to describe
the scenario in which a high influence on someone can radi-
cally change its opinion.

Original Contribution
• We introduce the Linear Threshold Ranking, a natural

and powerful extension of the Linear Threshold Model
for the election scenario that takes into account the de-
gree of influence of the voters on each other.

• We show that maximizing the score of a target candi-
date is monotone and submodular for arbitrary scoring
function (including popular voting systems, e.g., plu-
rality rule or borda count), with any number of candi-
dates. This implies that a greedy hill-climbing algorithm
achieves a 1− 1/e factor approximation for the problem
of maximizing the score.

• Exploiting the previous result, we achieve a 1
3 (1− 1/e)

factor to the problem of maximizing the Margin of Vic-
tory of a target candidate in arbitrary scoring rule voting
systems with any number of candidates.

• We give a simple reduction that maps destructive control
problems to constructive control ones and allows us to
achieve a 1

2 (1− 1/e)-approximation.

Due to space constraints, some of the proofs are omitted or
only sketched. Full proofs, along with an experimental study,
can be found in the full version.1

2 Background
In this section we present some notions and concepts about
voting systems and influence maximization on social networks
that will be used in the design and analysis of the algorithm.

Voting Systems
Voting systems are sets of rules that regulate all aspects of
elections and that determine their outcome. Herein we con-
sider two single-winner voting systems: (i) Plurality rule:
Each voter can only express a single preference among the
candidates; the winner is the candidate with the highest num-
ber of voter, i.e., the plurality. (ii) Scoring rule: Each voter
expresses his preference as a ranking; each candidate is then
assigned a score, computed as a function of the positions he
was ranked. The former is arguably the simplest voting rule

1https://arxiv.org/abs/1902.07454

and one of the most commonly used. The latter is a gen-
eral definition that include several popular election methods
by choosing an adequate scoring function: (i) plurality rule:
1 point to the first candidate and 0 to all the others; (ii) t-
approval: 1 point to the first t candidates and 0 to the oth-
ers (each voter approves t candidates); (iii) t-veto or anti-
plurality: 1 point to the first m − t candidates and 0 to the
remaining t, with m the number of candidates; (iv) borda
count: m− l points to candidate in position l.

Influence Maximization
Influence maximization is the problem of finding the subset
of nodes of a graph that maximizes the spread of information.
Linear Threshold Model (LTM) is one of the most used mod-
els to study influence diffusion in social networks [Kempe et
al., 2015]. Given a graph G = (V,E), in LTM each node
v ∈ V has a threshold tv ∈ [0, 1] sampled uniformly at
random and independently and each edge (u, v) ∈ E has a
weight buv ∈ [0, 1] such that, for each v ∈ V , the sum of the
weights of the incoming edges is less than or equal to 1, i.e.,∑

(u,v)∈E buv ≤ 1. Let At ⊆ V be the set of active nodes
at time t, where A0 is the set of nodes that are active at the
beginning of the process. In LTM a node v becomes active if
the sum of the weights of the edges coming from active nodes
is greater than or equal to its threshold tv , i.e., v ∈ At if and
only if v ∈ At−1 or

∑
u∈At−1:(u,v)∈E buv ≥ tv . The process

has quiesced at the first time t̃ in which the set of active nodes
does not change anymore, i.e., time t̃ is such that At̃ = At̃+1.
We define the eventual set of active nodes as A := At̃.

The most central result in LTM is the following [Kempe et
al., 2015]: Starting from any set A0, the distribution of A is
equivalent to the distribution of reachable nodes in the set of
random graphs called live-edge graphs [Kempe et al., 2015].
In live-edge graphs, subgraphs where each node has at most
one incoming edge, the problem of selecting the initial set of
nodes to maximize the diffusion is monotone and submodu-
lar;2 hence, it can be approximated to a factor of 1 − 1/e
using a simple greedy hill-climbing algorithm [Nemhauser
et al., 1978]. While it is #P -hard to compute the expected
number of active nodes, there exists a simulation-based ap-
proach in which the spread of influence can be evaluated by
sampling a polynomial number of live-edges [Kempe et al.,
2015, Proposition 4.1].

3 Linear Threshold Ranking
We consider the scenario in which a set of candidates are run-
ning for the elections and a social network of voters will de-
cide the winner. Some attacker could be interested in chang-
ing the outcome of the elections by sending ads and/or (pos-
sibly fake) news about a specific candidate to a subset of vot-
ers, that could share the news and influence their friends. Is
it possible for the attacker to select a subset of voters to con-
trol the election, i.e., to change voters’ opinions about a target
candidate, maximizing his chances to win/lose the elections?

More formally, let G = (V,E) be a directed graph repre-
senting the underlying social network. For each node v ∈ V

2For a set N , a function z : 2N→R is submodular if ∀S, T ⊆N
s.t. S⊆T , ∀e∈N\T holds z(S ∪{e})−z(S)≥z(T ∪{e})−z(T ).
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we call Nv the set of incoming neighbors of v. Let C =
{c1, . . . , cm} be a set ofm candidates nominated for the elec-
tions; we refer to our target candidate, i.e., the one that we
want to make win/lose the elections, as c?. Each v ∈ V has a
permutation πv of C, i.e., its list of preferences for the elec-
tions; we denote the position of candidate ci in the preference
list of node v as πv(ci).

Let B ∈ N be the initial budget, i.e., the maximum size of
the set of active nodesA0 from which the LTM process starts.
After the LTM process has quiesced, the position of c? in the
preference list of each node changes according to a function
of its incoming active neighbors. The threshold tv of each
node v ∈ V models its strength in retaining its original opin-
ion about candidate c?: The higher is the threshold the lower
is the probability that v is influenced by its neighbors. The
weight on an edge buv measures the influence that node u has
on node v. Taking into account the role of such parameters,
we define the number of positions that c? goes up in πv as

π↑v(c?) := min

πv(c?)− 1,

α(πv(c?))
tv

∑
u∈A, (u,v)∈E

buv

 ,

where α : {1, . . . ,m} → [0, 1] is a function that depends
on the position of c? in πv and models the rate at which c?
shifts up. Note that α can be set arbitrarily to model different
scenarios, e.g., shifting up of one position from the bottom of
the list could be easier than moving from the second to the
first position. Note that π↑v(c?) can be any integer value in
{0, . . . , πv(c?) − 1}: The floor function guarantees a posi-
tive integer value and the minimum between such value and
πv(c?) − 1 guarantees that the final position of c? is at least
1. We call this process the Linear Threshold Ranking (LTR).

After LTR, the candidates might have a new position in
the preference list of each node v ∈ V , that we denote as
π̃v . In particular, the new position of c? will be π̃v(c?) :=
πv(c?)− π↑v(c?); the candidates that are overtaken by c? will
shift one position down.

In the problem of election control we want to maximize
the chances of the target candidate to win the elections under
LTR. To achieve that, we maximize its expected Margin of
Victory (MOV) w.r.t. the most voted opponent, akin to that
defined in [Wilder and Vorobeychik, 2018a].3 Let us consider
the general case of the scoring rule, where a non-increasing
scoring function f : {1, . . . ,m} → N assigns a score to each
position. Let c and c̃ be the candidates, different from c?, with
the highest score before and after LTR, respectively. Let

µ(∅) :=
∑
v∈V (f(πv(c))− f(πv(c?))) (1)

µ(A0) :=
∑
v∈V (f(π̃v(c̃))− f(π̃v(c?))) (2)

be the margin (i.e., difference in score) between the most
voted opponent and c? before and after LTR, respectively.
Thus, the election control problem is formalized as that of
finding a set of nodes A0 such that

maxA0
E [MOV(A0)] := E [µ(∅)− µ(A0)]

s.t. |A0| ≤ B,
3We study the change in the margin, and not just the margin, to

have well defined approximation ratios when the margin is negative.

namely to find an initial set of seed nodes of at most size B
that maximizes the expected MOV, i.e., change in margin.4

To solve the problem we focus on the score of the target
candidate. Let us define

F (∅) :=
∑
v∈V f(πv(c?)) (3)

F (A0) := E
[∑

v∈V f(π̃v(c?))
]

(4)

as the total expected score obtained by candidate c? before
and after LTR, respectively. In Sections 4 and 5 we prove
that the score of the target candidate is a monotone submod-
ular function w.r.t. the initial set of seed nodes A0 in both
the plurality and the scoring rule; this allows us to get a
(1 − 1/e)-approximation of the maximum score through the
use of a greedy algorithm that iteratively selects the node that
maximizes the increment in score [Nemhauser et al., 1978];
we denote this algorithm as GREEDY. Note that maximiz-
ing the score of the target candidate is a NP -hard problem:
Consider the case in which there are only two candidates,
α(1) = α(2) = 1, all nodes have c? as second preference,
and the scoring function is that of the plurality rule; maxi-
mizing the score is equal to maximizing the number of active
nodes in LTM because when a node becomes active the tar-
get candidate shifts of at least one position up (in this case,
in first position); thus the two problems are equivalent. Influ-
ence maximization in LTM is NP -hard [Kempe et al., 2015]
and maximizing the score in LTR is also NP -hard because it
generalizes it. Moreover, in this instance, the maximum value
of MOV is equal to twice the maximum score; then maximiz-
ing MOV is also NP -hard.

Although maximizing the score is not equivalent to maxi-
mizing MOV, in Section 6 we show that we can use GREEDY
to obtain a constant factor approximation to MOV. Finally, in
Section 7, we consider the problem of destructive control, in
which we want the target candidate to lose the elections and
prove a constant factor approximation also in this scenario.

4 Maximizing the Score: Plurality Rule
As a warm-up, in this section we focus on the plurality rule.
We give an algorithm to select an initial set of seed nodes to
maximize the expected number of nodes that will change their
opinion and have c? as first preference at the end of LTR.

Let A0 be the initial set of seed nodes and A the set of
active nodes at the end of the process. An active node v
with πv(c?) > 1 will have c? as first preference if π↑v(c?) =
πv(c?) − 1, that is if and only if α(πv(c?))

tv

∑
u∈A∩Nv

buv ≥
πv(c?)− 1 or, equivalently, tv ≤ α(πv(c?))

πv(c?)−1
∑
u∈A∩Nv

buv.

As in influence maximization problems, we define an al-
ternative random process based on live-edge graphs, since in
live-edge graph process we don’t know the value of tv and we
cannot compute which nodes satisfy the above formula.
Definition 1. Live-edge Coin Flip process (LCF ):

1. Each node v ∈ V selects at most one of its incoming
edges with probability proportional to the weight of that
edge, i.e., edge (u, v) is selected with probability buv ,
and no edge is selected with probability 1−

∑
u∈Nv

buv .

4MOV is positive since the scoring function f is nonincreasing.
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2. Each node v with πv(c?) > 1 that is reachable from A0

in the live-edge graph flips a biased coin and changes
its list according to the outcome. In detail, v picks a
random real number sv ∈ [0, 1] and sets the position
of c? according to sv: If sv ≤ α(πv(c?))

πv(c?)−1 , node v sets
π̃v(c?) = 1 and shifts all the other candidates down by
one position; otherwise, v maintains its original ranking.

We show that the two processes are equivalent, i.e., starting
from any initial set A0 each node has the same probability to
end up with c? in first position in both processes. This allows
us to compute the function F (A0), for a given A0, by simply
solving a reachability problem in graphs.

We denote by G the set of all possible live-edge graphs
sampled from G. For every G′ = (V,E′) ∈ G we denote by
P (G′) the probability that G′ is sampled, namely

P (G′) =
∏

v:(u,v)∈E′
buv

∏
v:6∃(u,v)∈E′

1−
∑

w:(w,v)∈E

bwv

 .

We denote by R(A0) the set of nodes reachable from A0 at
the end of the LCF process and by RG′(A0) the set of nodes
reachable fromA0 inG′ and by 1(G′,v) the indicator function
that is 1 if v ∈ RG′(A0) and 0 otherwise.
Lemma 1. For any seed set A0 and any node v it holds that

P (v ∈ R(A0)) =
∑
U⊆Nv

∑
u∈U

buv ·P ((R(A0) ∩Nv) = U) .

Lemma 1 tells us how to compute the probability that a
node v is reachable from A0 at the end of the LCF process
by using live-edge graphs or by using the probability of the
incoming neighbors of v to be reachable from A0. The next
theorem shows the equivalence between LTR and LCF .
Theorem 1. Given a set of initially active nodes A0, let
A′LTR and A′LCF be the set of nodes such that π̃v(c?) = 1
at the end of LTR and LCF , respectively, both starting from
A0. Then, for each v ∈ V , P (v ∈ A′LTR) = P (v ∈ A′LCF ).

Proof. We exclude from the analysis the nodes v with
πv(c?) = 1 since they keep their original ranking in both
models. Let us start by analyzing the LTR process. Let A
be the set of nodes activated in LTR from starting from A0.
Given a set U of in-neighbors of v, we can write the prob-
ability that v ∈ A′LTR given that U are the only active in-
neighbors of v (i.e. A ∩Nv = U ) as

P (v ∈ A′LTR | (A ∩Nv) = U)

= P

(
tv ≤

α(πv(c?))

πv(c?)− 1

∑
u∈U

buv

)
=

α(πv(c?))

πv(c?)− 1

∑
u∈U

buv.

The overall probability P (v ∈ A′LTR) is equal to∑
U⊆Nv

P (v ∈ A′LTR | (A ∩Nv) = U)P (U = (A ∩Nv))

=
α(πv(c?))

πv(c?)− 1

∑
U⊆Nv

∑
u∈U

buv ·P ((A ∩Nv) = U) .

Let us now analyze the LCF process. To have v ∈ A′LCF
we need that v ∈ R(A0) and that the coin toss has a positive
outcome. Thus, P (v ∈ A′LCF ) =

α(πv(c?))
πv(c?)−1P (v ∈ R(A0)) .

Finally, by using Lemma 1 and the equivalence between the
live-edge process and LTM [Kempe et al., 2015, Proposi-
tion 4.1]) the theorem follows.

We now exploit Theorem 1 to show how to compute the
value of F (A0). In the case of plurality rule we have that

F (A0) = E [|A′LTR|] =
∑
v∈V

P (v ∈ A′LCF )

= F (∅) +
∑

v∈V,πv(c?)>1

α(πv(c?))

πv(c?)− 1
P (v ∈ R(A0)) .

Thanks to Lemma 1, we can rewrite the above formula as

F (A0)− F (∅) =
m∑
r=2

α(r)

r − 1

∑
G′∈G

P (G′) |RG′(A0, V
r
c?)|,

where, for a graph G′ ∈ G and an integer r ≤ m, we denoted
by V rci the set of nodes that have candidate ci in position r
and RG′(A0, V

r
c?) = {v : v ∈ RG′(A0) ∧ πv(c?) = r}.

It follows that the function F (A0) is a non-negative linear
combination of functions |RG′(A0, V

r
c?)|. In the next lemma,

we show that these functions are monotone and submodular
w.r.t.A0 and this implies that also F (A0)−F (∅) is monotone
and submodular w.r.t. A0. Therefore, we can use GREEDY to
find a set A0 such that F (A0)−F (∅) is at least 1−1/e times
the optimum [Nemhauser et al., 1978].

Lemma 2. Given a graph G′ ∈ G and a positive integer r ≤
m , the size of RG′(A0, V

r
c?) in G′ is a monotone submodular

function of A0.

5 Maximizing the Score: Scoring Rule
In this section we extend the results of Section 4 to the gen-
eral case of the scoring rule, in which a scoring function f
assigns a score to each candidate according to the positions
he was ranked in the voters’ lists. The overall approach is
similar, but more general: We first define an alternative ran-
dom process, called Live-edge Dice Roll (LDR), and show its
equivalence to LTR; then we use LDR to compute F (A0)
and show that it is a monotone submodular function of the ini-
tial set of active nodesA0. This latter result allows us to com-
pute a set A0 that has an approximation guarantee of 1− 1/e
on the maximization of the score of the target candidate with
GREEDY. Process LDR is defined as follows.

Definition 2. Live-edge Dice Roll process (LDR):

1. Each node v ∈ V selects at most one of its incoming
edges with probability proportional to the weight of that
edge, i.e., edge (u, v) is selected with probability buv ,
and no edge is selected with probability 1−

∑
u∈Nv

buv .

2. Each node v with πv(c?) > 1 that is reachable from A0

in the live-edge graph rolls a biased πv(c?)-sided dice
and changes its list according to the outcome. This is
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equivalent to picking a random real number sv in [0, 1]
and setting the position of c? according to sv as follows:

π̃v(c?) =


1 if sv ≤ α(πv(c?))

πv(c?)−1 ,

` if α(πv(c?))
πv(c?)−`+1 < sv ≤ α(πv(c?))

πv(c?)−` ,

for ` = 2, . . . , πv(c?)− 1,
πv(c?) if sv > α(πv(c?)).

If π̃v(c?) 6= πv(c?), all candidates between π̃v(c?) and
πv(c?)− 1 are shifted down by one position.

We show that LTR and LDR have the same distribution.

Theorem 2. Given a set of initially active nodes A0 and
a node v ∈ V , let π̃LTRv (c?) and π̃LDRv (c?) be the po-
sition of node v at the end of LTR and LDR, respec-
tively, both starting from A0. Then, P

(
π̃LTRv (c?) = `

)
=

P
(
π̃LDRv (c?) = `

)
, for each ` = 1, . . . , πv(c?).

Proof. LetA be the set of active nodes at the end of the LTR
process that starts from A0. The probability that an active
node moves candidate c? from position r to position ` is:

P (r, `) :=


α(r)
r−1 if ` = 1,
α(r)
r−` −

α(r)
r−`+1 if ` = 2, . . . , r − 1,

1− α(r) if ` = r,

for each r, ` ∈ {1, . . . ,m}, ` ≤ r. In particular, for a node v,
the probability that the second step of LDR yields π̃v(c?) =
`, for ` = 1, . . . , πv(c?), is P(πv(c?), `).

We have that P
(
π̃LTRv (c?) = `

)
is equal to∑

U⊆Nv

P
(
π̃LTRv (c?) = `

∣∣ (A ∩Nv) = U
)
P ((A ∩Nv) = U) .

If U is the maximal subset of active neighbors of v (i.e., U =
A∩Nv), then we can write the probability that π̃LTRv (c?) = `
given U as follows:

P
(
π̃LTRv (c?) = `

∣∣ (A ∩Nv) = U
)
= P(πv(c?), `)

∑
u∈U

buv.

Therefore, P
(
π̃LTRv (c?) = `

)
is equal to

P(πv(c?), `)
∑
U⊆Nv

∑
u∈U

buvP ((A ∩Nv) = U) .

Recall that, in LDR, P
(
π̃LDRv (c?) = `

)
is equal to P(v ∈

R(A0)) ·P(πv(c?), `). By Lemma 1, it follows that

P(v ∈ R) =
∑
U⊆Nv

∑
u∈U

buvP ((R ∩Nv) = U)

and hence P
(
π̃LDRv (c?) = `

)
is equal to

P(πv(c?), `)
∑
U⊆Nv

∑
u∈U

buvP ((R(A0) ∩Nv) = U) .

Finally, using [Kempe et al., 2015, Proposition 4.1], we get
that P ((R(A0) ∩Nv) = U) = P ((A ∩Nv) = U).

With some algebra, and by applying Lemma 1 and Theo-
rem 2, we get the following formulation of F (A0):

F (A0) =
m∑
r=1

r∑
`=1

f(`)P(πv(c?), `)
∑
G′∈G

P (G′) |RG′(A0, V
r
c?)|.

Therefore, F (A0) is a non-negative linear combination
of the monotone submodular function |RG′(A0, V

r
c?)| (see

Lemma 2), and hence F (A0) − F (∅) is also monotone and
submodular. Thus, we can use GREEDY to find a (1 − 1/e)-
approximation to the problem of maximizing the score of the
target candidate [Nemhauser et al., 1978].

6 Maximizing the Margin of Victory
In previous sections we have shown that the problem of max-
imizing the score of the target candidate can be approximated
within a factor 1−1/e by using GREEDY. In the following we
show how to achieve a constant factor approximation to the
original problem of maximizing the MOV by only maximiz-
ing the score of the target candidate. Given the equivalence of
LCF and LDR with LTR, we can formulate our objective
function as the average MOVG′ computed on a sampled live-
edge graph G′, namely E [MOV(A0)] = E [MOVG′(A0)],
where MOVG′(A0) = µG′(∅) − µG′(A0), and µG′ is the
change in margin on a fixed G′.

We formulate the margin on the live-edge graphs in a way
that is akin to that of [Wilder and Vorobeychik, 2018a]: We
can exploit such formulation to prove our constant factor
approximation with the same proof structure since also in
our case the objective function is monotone and submodular
(Lemma 2). For the plurality rule we have that

E [MOVG′(A0)] :=

m∑
r=2

α(r)

r − 1
|RG′(A0, V

r
c?)|

+min
cz

max
ci
|V 1
ci | − |V

1
cz |+

m∑
r=2

α(r)

r − 1
|RG′(A0, V

r
c? ∩ V

1
cz )|,

where: the first term is the number of points gained by c? after
LTR; the second term (the first inside the minimum) is the
number of points of the most voted opponent before LTR;
the third one is the total number of points that the most voted
opponent afterLTR had before the process; the fourth term is
the number of points that the most voted opponent after LTR
lost because of the shifting of c?. Similarly, for the general
case of arbitrary scoring rule we have

E[MOVG′(A0)] :=
m∑
r=2

r−1∑
`=1

P(r,`)|RG′(A0,V
r
c?)|(f(`)−f(r))

+ min
cz

(
max
ci

m∑
r=1

f(r)|V rci | −
m∑
r=1

f(r)|V rcz |

+
m∑
r=2

r−1∑
`=1

r−1∑
h=`

P(r, `) |RG′(A0, V
r
c?∩V

h
cz )|(f(h)−f(h+1))

)
where the meaning of the terms is similar to above. This lat-
ter formulation is just a generalization of the plurality case
whenever we choose f such that f(1) = 1 and f(r) = 0,
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for each r ∈ {2, . . . ,m}. In this way we would have that the
gain in score would be just 1 and that α(r)r−1 = P (r, 1).

In the following Theorem we prove that, up to the loss of a
constant-factor in the approximation ratio, it suffices to con-
centrate only on the score of the target candidate c? and not
on the margin w.r.t. the most voted opponent.
Theorem 3. GREEDY is a 1

3 (1 − 1/e)-approximation algo-
rithm for the problem of election control in arbitrary scoring
rule voting systems.

Roughly speaking, the factor 1
3 appears because we lower

bound three terms in the MOV formulation to reconstruct the
optimum in the approximation.

7 Destructive Election Control
In this section we focus on the destructive election control
problem. Here we define, for each node v ∈ V , the number
of positions of which c? shifts down after LTR process as

π↓v(c?) := min

m− πv(c?),
α(πv(c?))

tv

∑
u∈A, (u,v)∈E

buv

 .

The final position of c? in v will be π̃v(c?) := πv(c?)+π
↓
v(c?)

and the overall score that c? gets is

FD(A0) := E

[∑
v∈V

f(πv(c?) + π↓v(c?))

]
.

The problem can be defined as that of finding an initial set
of seed nodes A0 that maximizes the expected MOVD:

maxA0
E [MOVD(A0)] := E [µ(A0)− µ(∅)]

s.t. |A0| ≤ B,
Similarly to the constructive case we are able to achieve a
constant factor approximation, to do that we provide a re-
duction from the destructive to the constructive case. Given
an instance of destructive control, we build an instance of
constructive control in which we simply reverse the rank-
ings of each node and complement the scoring function to
its maximum value. Roughly speaking, this reduction main-
tains invariant the absolute value of the change in margin
of the score of any candidate between the two cases. For-
mally, for each v ∈ V , the new instance has a preference
list defined as π′v(c) := m − πv(c) + 1 for each candidate
c ∈ C, and, for each position r ∈ {1, . . . ,m}, has a scoring
function defined as f ′(r) := fmax − f(m − r + 1), where
fmax := maxr∈{1,...,m} f(r). For each v ∈ V , the ranking
of c? in the new instance is π′v(c?) := m− πv(c?) + 1.

For each solution A0 found in the new instance, i.e., a
constructive one, the overall score of c? after the process is
F ′(A0) := E

[∑
v∈V f

′(π′v(c?)− π′↑v (c?))
]
.

The reduction allows us to maximize the score of the target
candidate in the constructive case and then to map it back to
destructive case. Differently from the constructive scenario,
we get a factor 1

2 because we can reconstruct the optimum in
the approximation by only lower bounding two terms.
Theorem 4. GREEDY is a 1

2 (1 − 1/e)-approximation algo-
rithm for the problem of destructive election control in arbi-
trary scoring rule voting systems.

8 Conclusions and Future Work
We introduced Linear Threshold Ranking, which describes
the change of opinions taking into account the amount of ex-
ercised influence. We provided a constant factor approxima-
tion algorithm to the problems of constructive and destructive
election control in arbitrary scoring rule voting systems. We
simulated our model on real-world networks using synthetic
election data, i.e., random degrees of influences and random
preference lists. We used several combinations of parame-
ters (B, |C|, α, πv) on 4 networks exhibiting heterogeneous
topologies. We observed that GREEDY can find a solution that
makes the target candidate win the elections between 50%
and 88% of the times, depending on the scenario.

Nowadays social media are are significant sources of in-
formation for voters and the massive usage of these chan-
nels for political campaigning is a turning point. Potential
attackers can manipulate the outcome of elections through
the spread of targeted ads and/or fake news. Being able to
control the information spread can have a great impact, but
it is not easy to achieve since traditional media sources are
relatively transparent: It is essential to protect the integrity of
electoral processes to ensure the proper operation of demo-
cratic institutions. Our results indicate that social influence is
a salient threat to election integrity: We provide an approxi-
mation algorithm to maximize the MOV of a target candidate,
that could be used to control election results and is of funda-
mental importance to protect their fairness.

Compared to the only other work on election control via
social influence [Wilder and Vorobeychik, 2018a], we con-
sider general scoring functions and a more realistic model
(LTM instead of ICM) that takes into account the amount of
influence exercised on voters. We believe that our algorithm
could be used in real-life scenarios to predict election results
and to understand what degree of control has been exercised.
Our results assume the knowledge of information that is not
available, but can be estimated. Recent studies analyze the ro-
bustness of greedy w.r.t. inaccurate estimations of the degrees
of influence. Nevertheless, experiments on greedy algorithm
for Influence Maximization show that the worst case hard-
ness theoretical results do not necessarily translate into bad
performance on real-world datasets [He and Kempe, 2018].

As future research directions we would like to study our
model in a scenarios which are not currently captured, in-
cluding multi-winner and proportional representation sys-
tems. It is also worth to analyze approaches that mix con-
structive and destructive control. Moreover, we would like
to extend our model in order to consider a more uncertain
scenario, in which the preferences of voters are not known.
Finally, it would be interesting to study how to prevent elec-
tion control for the integrity of voting processes, e.g., through
the placement of monitors in the network [Zhang et al.,
2015; Amoruso et al., 2017] or by considering strategic set-
tings [Yin et al., 2018; Wilder and Vorobeychik, 2018b].
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