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Abstract

We present a novel anytime heuristic (ALMA), in-
spired by the human principle of altruism, for solv-
ing the assignment problem. ALMA is decentral-
ized, completely uncoupled, and requires no com-
munication between the participants. We prove
an upper bound on the convergence speed that
is polynomial in the desired number of resources
and competing agents per resource; crucially, in
the realistic case where the aforementioned quanti-
ties are bounded independently of the total number
of agents/resources, the convergence time remains
constant as the total problem size increases.

We have evaluated ALMA under three test cases:
(1) an anti-coordination scenario where agents with
similar preferences compete over the same set of
actions, (ii) a resource allocation scenario in an ur-
ban environment, under a constant-time constraint,
and finally, (iii) an on-line matching scenario using
real passenger-taxi data. In all of the cases, ALMA
was able to reach high social welfare, while being
orders of magnitude faster than the centralized, op-
timal algorithm. The latter allows our algorithm to
scale to realistic scenarios with hundreds of thou-
sands of agents, e.g., vehicle coordination in urban
environments.

1

One of the most relevant problems in multi-agent systems
(MADS) is finding an optimal allocation between agents. This
pertains to role allocation (e.g., team formation for au-
tonomous robots [Gunn and Anderson, 2013]), task assign-
ment (e.g., employees of a factory, taxi-passenger matching
[Varakantham et al., 2012]), resource allocation (e.g., park-
ing spaces / charging stations for autonomous vehicles [Geng
and Cassandras, 2013]), etc. What follows is applicable to
any such scenario, but for concreteness we will refer to the
allocation of a set of resources to a set of agents, a setting
known as the assignment problem, one of the most fundamen-
tal combinatorial optimization problems [Munkres, 1957].
When designing algorithms for assignment problems, a
significant challenge emerges from the nature of real-world
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applications, which is often distributed and information-
restrictive. Even in decentralized algorithms, the number
of communication rounds required grows with the size of
the problem. However, in practice the real-time constraints
impose a limit on the number of rounds, and thus on the
size of the problem that can be solved within them. More-
over, sharing plans and preferences creates high overhead,
and there is often a lack of responsiveness and/or communi-
cation between the participants [Stone et al., 2010]. Achiev-
ing fast convergence and high efficiency in such information-
restrictive settings is extremely challenging. Yet, humans are
able to routinely and robustly coordinate in similar everyday
scenarios, often with no explicit communication. One driving
factor that facilitates human cooperation is behavioral con-
ventions [Lewis, 2008]. Inspired by human behavior, the
proposed heuristic is modeled on an altruistic convention.
This results to fast convergence to highly efficient allocations,
without any communication between the agents.

A distinctive characteristic of ALMA is that agents make
decisions locally, based on (i) the contest for resources that
they are interested in, (ii) the agents that are interested in the
same resources. If each agent is interested in only a subset
of the total resources, ALMA converges in time polynomial
in the maximum size of the subsets; not the total number of
resources. In particular, if the size of each subset is a con-
stant function of the total number of resources, then the con-
vergence time is constant, in the sense that it does not grow
with the problem size. The same is not true for other algo-
rithms (e.g., the optimal centralized solution) which require
time polynomial in the fofal number of agents/resources, even
if the aforementioned condition holds. The condition holds
by default in many real-world applications; agents have only
local knowledge of the world, there is typically a cost asso-
ciated with acquiring a resource, or agents are simply only
interested in resources in their vicinity (e.g., urban environ-
ments). This is important, as the proposed approach avoids
having to artificially split the problem in subproblems (e.g,
by placing bounds or spatial constraints) and solve those sep-
arately, in order to make it tractable. Instead, ALMA utilizes
a natural domain characteristic, not an artificial optimization
technique (i.e., artificial bounds). Coupled to the convergence
time, the decentralized nature of ALMA makes it applicable
to large-scale, real-world applications (e.g., [oT devices, in-
telligent infrastructure, autonomous vehicles, etc.).
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1.1 Our Results

Our main contributions in this paper are:

(1) We introduce a novel, anytime ALtruistic MAtching
heuristic (ALMA) for solving the assignment problem.
ALMA is decentralized, completely uncoupled (agents are
only aware of own history of action/reward pairs [Talebi,
2013]), and requires no communication between the agents.

(2) We prove that if we bound the maximum number of
resources an agent is interested in, and the maximum number
of agents competing for a resource, the expected number of
steps for any agent to converge is independent of the total
problem size. Thus, we do not require to artificially split the
problem, or similar techniques, to render it manageable.

(3) We provide a thorough empirical evaluation of ALMA
on both synthetic and real data. In particular, we have eval-
uated ALMA under three test cases: (i) an anti-coordination
scenario where agents with similar preferences compete over
the same set of actions, (ii) a resource allocation scenario
in an urban environment, under a constant-time constraint,
and finally, (iii) an on-line matching scenario using real
passenger-taxi data. In all of the cases, ALMA achieves high
social welfare (total satisfaction of the agents) as compared
to the optimal solution, as well as various other algorithms.

Full Version

Please see [Danassis et al., 2019] for the full version of the
paper, which includes the converge proof of Theorem 2.1, and
the omitted details from Section 3, including, but not limited
to, the omitted graphs and tables.

1.2 Related Work

The assignment problem consists of finding a maximum
weight matching in a weighted bipartite graph and it is one
of the best-studied combinatorial optimization problems in
the literature. The first polynomial time algorithm (with re-
spect to the total number of nodes, edges) was introduced
by Jacobi in the 19th century [Borchardt and Jacobi, 1865]
[Ollivier, 20091, and was succeeded by many classical algo-
rithms [Munkres, 1957] [Edmonds and Karp, 1972] [Bert-
sekas, 1979] with the Hungarian algorithm of Kuhn 1955 be-
ing the most prominent one (see [Su, 2015] for an overview).
The problem can also be solved via linear programming
[Dantzig, 19901, as its LP formulation relaxation admits in-
tegral optimal solutions [Papadimitriou and Steiglitz, 1982].
In Section 3.3, we will apply ALMA on a non-bipartite set-
ting, which corresponds to the more general maximum weight
matching problem on general graphs. To compute the optimal
in this case, we will use the blossom algorithm of [Edmonds,
1965] (see [Lovéasz and Plummer, 2009]).

In reality, a centralized coordinator is not always available,
and if so, it has to know the utilities of all the participants,
which is often not feasible. In the literature of the assignment
problem, there also exist several decentralized algorithms
(e.g., [Giordani et al., 2010] [Ismail and Sun, 2017] [Zavlanos
et al., 2008] [Biirger er al., 2012] which are the decentralized
versions of the aforementioned well-known centralized algo-
rithms — see also [Kuhn et al., 2016] [Elkin, 2004] for gen-
eral results in distributed approximability under only local in-
formation/computation). However, these algorithms require
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polynomial computational time and polynomial number of
messages (such as cost matrices [Ismail and Sun, 2017], pric-
ing information [Zavlanos erf al., 2008], or a basis of the LP
[Biirger er al., 2012], etc.). Yet, agent interactions often re-
peat no more than a few hundreds of times. To the best of our
knowledge, a decentralized algorithm that requires no mes-
sage exchange (i.e., no communication network) between the
participants, and achieves high efficiency, like ALMA does,
has not appeared in the literature before. Let us stress the
importance of such a heuristic: as autonomous agents prolif-
erate, and their number and diversity continue to rise, differ-
ences between the agents in terms of origin, communication
protocols, or the existence of sub-optimal, legacy agents will
bring forth the need to collaborate without any form of ex-
plicit communication [Stone et al., 2010]. Finally, communi-
cation between participants creates high overhead as well.

ALMA is inspired by the allocation algorithm of [Cigler
and Faltings, 2013] (adapted in [Danassis and Faltings, 2019]
to solve resource allocation problems under rationality con-
straints). Using such a simple learning rule which only re-
quires environmental feedback, allows our approach to scale
to hundreds of thousands of agents. Moreover, it does not re-
quire global knowledge of utilities; only local knowledge of
personal utilities (in fact, we require knowledge of pairwise
differences which are far easier to estimate).

2 Altruistic Matching Heuristic

In this section, we define ALMA and prove its convergence
properties. We start by defining the assignment problem.
The assignment problem consists of finding a maxi-
mum weight matching in a weighted bipartite graph, G =
{NUR,E}. In the studied scenario, N = {1,...,N}
agents compete to acquire R = {1,..., R} resources. We as-
sume that each agent n is interested in a subset of the total re-
sources, i.e., R™ C R. The weight of an edge (n,r) € & rep-
resents the utility (u,,(r) € [0, 1]) agent n receives by acquir-
ing resource r. Each agent can acquire at most one resource,
and each resource can be assigned to at most one agent. The
goal is to maximize the social welfare (sum of utilities), i.e.,
MaXx >0 Z(n,r)eg Up (T)@p, -, subject to ZTl(n,T)EE T,y =
1,VYn € N, and an(n,r)eg ZTn,r =1,Yr € R.

2.1 Learning Rule

This section describes the proposed heuristic (ALMA:
ALtruistic MAtching heuristic) for weighted matching. We
make the following two assumptions: First, we assume
(possibly noisy) knowledge of personal preferences by each
agent. Second, we assume that agents can observe feedback
from their environment. This is used to inform collisions and
detect free resources. It could be achieved by the use of vi-
sual, auditory, olfactory sensors etc., or by any other means
of feedback from the resource (e.g., by sending an occupancy
message). Note here that these messages would be between
the requesting agent and the resource, not between the partic-
ipating agents themselves, and that it suffices to send only 1
bit of information (e.g., 0, 1 for occupied / free respectively).

ALMA learns the right action through repeated trials as
follows. Each agent sorts his available resources (possi-
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bly R™ C R) in decreasing order of utility (ry,7o,...,
Ti,Tit1,---,TRn). The set of available actions is denoted as
A={Y,A.,,...,A .}, where Y refers to yielding, and
A, refers to accessing resource r. Each agent has a strat-
egy (gn) that points to a resource and it is initialized to the
most preferred one. As long as an agent has not acquired a
resource yet, at every time-step, there are two possible sce-
narios. If g, = A, (strategy points to resource ), then agent
n attempts to acquire that resource. If there is a collision, the
colliding parties back-off with some probability. Otherwise,
if g, = Y, the agent choses a resource 7 for monitoring. If
the resource is free, he sets g,, < A,. Alg. 1 presents the
pseudo-code of ALMA, which is followed by every agent in-
dividually. The back-off probability (P, (-)) and the next re-
source to monitor (S, (+)) are computed individually and lo-
cally based on the current resource and each agent’s utilities,
as will be explained in the following section. Finally, note
that if the available resources change over time, the agents
simply need to sort again the currently available ones.

2.2 Back-off Probability & Resource Selection

Let R be totally ordered in decreasing utility under <,,, Vn €
N. If more than one agent compete for resource r; (step 4
of Alg. 1), each of them will back-off with probability that
depends on their utility loss of switching to their respective
remaining resources. The loss is given by Eq. 1.

k
3 () alry)
losst, = 7= 1
0ss,, P (1)
where k € {i +1,..., R"} denotes the number of remaining

resources to be considered. For k = ¢ + 1, the formula only
takes into account the utility loss of switching to the immedi-
ate next best resource, while for £ = R"™ it takes into account
the average utility loss of switching to all of the remaining re-
sources. In the remainder of the paper we assume k = ¢ + 1,
ie., loss’, = u,(r;) — un(riz1). The actual back-off prob-
ability can be computed with any monotonically decreasing
function f on [0ss,, i.e., Py(ri,<n) = fn(lossi). In the
evaluation section, we have used two such functions, a lin-
ear (Eq. 2), and the logistic function (Eq. 3). The parameter €
places a threshold on the minimum / maximum back-off prob-
ability for the linear curve, while  determines the steepness
of the logistic curve.

1—e¢, if loss < e
f(loss) = < e, if 1 —loss <e 2)
1 —loss, otherwise
1
f(loss) = 3)

1+67'y(0.57loss)

Using the aforedescribed rule, agents that do not have good
alternatives will be less likely to back-off and vice versa. The
ones that do back-off select an alternative resource and ex-
amine its availability. The resource selection is performed
in sequential order, i.e., Sy, (Tprev, <n) = Tprev1, Where rprey
denotes the resource selected by that agent in the previous
round. We also examined using a weighted or uniformly at
random selection, but achieved inferior results.
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Algorithm 1 ALMA: Altruistic Matching Heuristic.

Require: Sort resources (R™ C R) in decreasing order of
utility r1, 7o, . .. s iy Titly -+ -y TRA.
Require: Initialize g, <— A, and rpry < 71.
1: procedure ALMA
if g, = A, then
Agent n attempts to acquire 7. Set rpry < 7.
if Collision(r) then
back-off (set g, <— Y') with prob. P, (r, <p).
else (g, =Y)
1 MONItors 7 <— Sy (Tprevs <n). Set T'prey — 7.
if Free(r) then set g, < A,.

2.3 Altruism-Inspired Behavior

Human cooperation is unique in the sense that humans co-
operate with strangers, even if there are no prospects of fu-
ture interactions or reputation gains [Fehr and Rockenbach,
2004]. ALMA is inspired by the human principle of altruism
[Nowak and Sigmund, 2005] [Gintis, 2000]. We would ex-
pect an altruistic person to give up a resource either to some-
one who values it more, if that resulted in an improvement of
the well-being of society — which does not imply knowledge
of the preferences of others, rather than a general expecta-
tion — [Charness and Rabin, 2002], or simply to be nice to
others [Simon, 2016]. Such behavior is especially common
in situations where the backing-off subject has equally good
alternatives. E.g., in human pick-up teams, each player typi-
cally attempts to fill his most preferred position. If there is a
collision, a colliding player might back-off because his team-
mate is more competent in that role, or because he has an
equally good alternative, or simply to be polite; the player
backs-off now and assumes that role at some future game.
From an alternative viewpoint, following such an altruistic
convention leads to a faster convergence which outweighs the
loss in utility. Such conventions allow humans to routinely
and robustly coordinate in large scale and under dynamic and
unpredictable demand. Behavioral conventions are a funda-
mental part of human societies [Lewis, 2008], yet they have
not appeared meaningfully in empirical modeling of MAS.
Inspired by human behavior, ALMA attempts to reproduce
these simple rules in an artificial setting.

2.4 Convergence

Theorem 2.1. For N agents and R resources, the expected
number of steps until the system of agents following Alg. 1
converges to a complete matching is bounded by (4), where
p* = f(loss*), and loss* is given by the equation below.

O|R—7———|—=logN+R 4)

( 2(1—p*) \p*

loss™ = arg min ( min (loss]),1 — max (loss%))
loss?, reR,neEN reR,neN

Proof. To improve readability, we will only provide a sketch
of the proof. Please see [Danassis et al., 2019] for the com-
plete proof. The proof is based on [Danassis and Faltings,
2019] [Cigler and Faltings, 2013].
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We first assume that every agent, on every collision, backs-
off with the same constant probability p. We start with the
case of having IV agents competing for 1 resource and model
our system as a discrete time Markov chain. Intuitively, this
Markov chain describes the number of individuals in a de-
creasing population, but with two caveats: the goal (absorb-
ing state) is to reach a point where only one individual re-
mains, and if we reach zero, we restart. We prove that the ex-
pected number of steps until we reach a state where either 1

or 0 agents compete for that resource is O (% log N ) . More-

(1 p)

over, we prove that with high probability, 2 ( , only

1 agent will remain (contrary to reaching 0 and restartlng the
process of claiming the resource), no matter the initial num-
ber of agents. Having proven that, we move to the general
case of IV agents competing for I resources.

At any time, at most N agents can compete for each re-
source. We call this period a round. During a round, the
number of agents competing for a specific resource mono-
tonically decreases, since that resource is perceived as oc-
cupied by non-competing agents. Let the round end when
either 1 or 0 agents compete for the resource. This will re-

quire O (% log N ) steps. If all agents backed-off, it will take

on average R steps until at least one of them finds a free
resource. We call this period a break. In the worst case,
the system will oscillate between a round and a break. Ac-
cording to the above, one oscillation requires in expectation

O (l log N + R) steps. If R = 1, as mentioned in the pre-

vious paragraph, in expectation there will be (1_ ) oscil-

lations. For R > 1 the expected number of oscillations is
bounded by O (R 2 ) Thus, we conclude that if all the

agents back-off Wlth the same constant probability p, the ex-
pected number of steps until the system converges to a com-

plete matching is O ( 5= p) ( log N + R))

Next, we drop the constant probability assumption. Intu-
itively, the worst case scenario corresponds to either all agents
having a small back-off probability, thus they keep on com-
peting for the same resource, or all of them having a high
back-off probability, thus the process will keep on restart-
ing. These two scenarios correspond to the inner (%) and

outer (%) probability terms of bound (4) respectively.

Let p* = f(loss™) be the worst between the smallest or high-
est back-off probability any agent n € A can exhibit, i.e.,
having loss* given by Eq. 2.1. Using p* instead of the con-
stant p, we bound the expected convergence time according
to bound (4). O

It is worth noting that the back-off probability p* in bound
(4) does not significantly affect the convergence time. For
example, using Eq. 2 with a quite small e = 0.01, the result-
ing quantities would be at most 100 R log N, and 50 R?. Most
importantly, though, this is a rather loose bound (e.g., agents
would rarely back-off with probabilities as extreme as p*).

Apart from the convergence of the whole system, we are in-
terested in the expected number of steps any individual agent
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would require in order to acquire a resource. In real-world
scenarios, there is typically a cost associated with acquiring a
resource. E.g., a taxi driver would not be willing to drive to
the other end of the city to pick up a low fare passenger. As
a result, each agent is typically interested in a subset of the
total resources, i.e., R™ C R, thus at each resource there is
a bounded number of competing agents. Let R™ denote the
maximum number of resources agent n is interested in, and
N7 denote the maximum number of agents competing for re-
source 7. By bounding these two quantities (i.e., we consider
R™ and N to be constant functions of N, R), Corollary 2.1.1
proves that the expected number of steps any individual agent
requires to converge ! is independent of the total problem size
(i.e., N, and R), or, in other words, that the convergence time
is constant in these quantities.

Corollary 2.1.1. Let R* = |R"|, such that ¥r € R" :
up(r) > 0,and N" = |N"|, such thatVn € N : u,(r) > 0.
The expected number of steps until an agent n € N follow-
ing Alg. 1 converges is bounded by (5), where p}; = f(loss*)
and loss* is given by Eq. 6, independent of the total problem

size N, R.
)

L 10s50)) (6)

r 2
o) max R" ‘AAAAAZﬁLA
n €Upern N 2(1_pn)

(TER

— log(max N") + maxR"

1
jos re€R™ n'€Urern N

max
rER™,nE

min
" ne.

loss™ = arg min
lossT,

Nr(lo.ss;), 1-

Proof. The expected number of steps until an agent n € A
successfully acquires a resource is upper bounded by the to-
tal convergence time of the sub-system he belongs to, i.e.,
the sub-system consisting of the sets of R™ resources and
Urern N agents. In such scenario, at most max,crn N”
agents can compete for any resource. Using Theorem 2.1 for
maX,ern» N agents, maxXy ey, czn N7 R" resources, and
worst-case [oss* given by any agent in U,cr» N7 (i.e., Eq
6) results in the desired bound. Note that agents do not com-
pete for already claimed resources (step 8 of Alg. 1), thus the
convergence of an agent does not require the convergence of
agents of overlapping sub-systems. O

3 Evaluation

In this section we evaluate ALMA under various test cases.
For the first two, we focus on convergence time, and rel-
ative difference in social welfare (SW), i.e., (achieved —
optimal) /optimal. In every metric, we report the average
value out of 128 runs of the same problem instance. Er-
ror bars represent one standard deviation (SD) of uncertainty.
The third test case is an on-line setting, thus we report the
achieved SW (not the relative difference), and the empirical
competitive ratio (average out of 128 runs, as before). In Sec-
tion 3.1 we use the logistic function, while in 3.2 & 3.3 we
use the linear function (Eq. 2) with e = 0.1.

It is important to stress that our goal is not to improve
the convergence speed of a centralized, or decentralized algo-
rithm. Rather, the computation time comparisons of Sections

'In scenarios where R < N, or in case of deadlocks, conver-
gence implies that the state of the agent does not change.
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3.1 & 3.2 are meant to ground the actual speed of ALMA, and
argue in favor of its applicability on large-scale, real-world
scenarios. Given the nature of the problem, we elected to
use a specialized algorithm to compute the optimal solution,
rather than a general LP-based technique (e.g., the Simplex
method). Specifically, we opted to use the Hungarian algo-
rithm [Kuhn, 1955] which, first, has proven polynomial worse
case bound, and second, as our simulations will demonstrate,
can handle sufficiently large problems.

3.1 Test Case #1: Noisy Common Preferences

Setting As a first test case, we cover the extreme scenar-
ios. The first pertains to an anti-coordination scenario where
agents with similar preferences compete over the same set of
actions. We call this ‘noisy common preferences’ and model
the utilities as: Vn,n’ € N, |uy,(r) — uy ()| < noise, where
the noise is sampled from a zero-mean Gaussian distribution,
i.e., noise ~ A(0,0?). In the second scenario the utilities are
initialized uniformly at random for each agent and resource.

Results The convergence time for the system of agents is
linear to the number of resources R. ALMA requires approx-
imately 4 to 6 orders of magnitude less computation time, and
scales more gracefully, than the centralized Hungarian algo-
rithm. Note also that in real-world applications we would
have to take into account communication time, communica-
tion reliability protocols, etc., which create additional over-
head for the Hungarian or any other algorithm for the as-
signment problem. The relative difference in social welfare
reaches asymptotically zero as R increases. For a small num-
ber of resources, ALMA achieves the worst social welfare,
approximately 11% worse than the optimal. Intuitively this
is because when we have a small number of choices, a sin-
gle wrong matching can have a significant impact to the final
social welfare, while as the number of resources grow, the
impact of an erroneous matching is mitigated. For 16384 re-
sources we lose less than 2.5% of the optimal.

3.2 Test Case #2: Allocation in a Cartesian Map

In this section we examine the applicability of ALMA in
large-scale MAS. Specifically we are interested in resource
allocation in urban environments (e.g., parking spots / charg-
ing stations for autonomous vehicles, taxi - passenger match-
ings, etc.). The aforementioned problems become ever more
relevant due to rapid urbanization, and the natural lack of co-
ordination in the usage of resources. The latter result in the
degradation of response (e.g., waiting time) and quality met-
rics in large cities [Varakantham, 2016].

Setting Let us consider a Cartesian map representing a city
on which are randomly distributed vehicles and charging sta-
tions. The utility received by a vehicle n for using a charg-
ing station r is proportional to the inverse of their distance,
ie., up(r) = 1/d,, . Since we are in an urban environment,
let d,,  denote the Manhattan distance. Typically, there is a
cost each agent is willing to pay to drive to a resource, thus
there is a cut-off distance, upon which the utility of acquiring
the resource is zero (or possibly negative). This is a typi-
cal scenario encountered in resource allocation in urban en-
vironments, where there are spatial constraints and local in-
teractions. The way such problems are typically tackled, is
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Figure 1: (top) Average time (#steps) for an agent to acquire a re-
source (double log), (bottom) Relative difference in SW (%) (single
log), for increasing R, and N = R.

by dividing the map to sub-regions, and solving each indi-
vidual sub-problem. For example, Singapore is divided into
83 zones based on postal codes [Cheng and Nguyen, 2011],
and taxi drivers’ policies are optimized according to those
[Nguyen et al., 2017] [Varakantham er al., 2012]. On the
other hand, not placing bounds means that the current solu-
tions will not scale. To the best of our knowledge, we are the
first to propose an anytime heuristic for resource allocation
in urban environments that can scale in constant time with-
out the need to artificially split the problem. Instead, ALMA
exploits the two typical characteristics of an urban environ-
ment: the anonymity in interactions and homogeneity in sup-
ply and demand [Varakantham, 2016] (e.g., assigning any of
two equidistant charging stations to a vehicle, would typically
result to the same utility). This results in a simple learning
rule which, as we will demonstrate in this section, can scale
to hundreds of thousands of agents (we provide simulation
results with up to 131072 agents and resources).

Convergence Time We begin by placing a bound on the
maximum number of resources each agent is interested in,
and on the maximum number of agents competing for a re-
source, specifically R” = N" € {8,16,32,64,128}. Ac-
cording to Corollary 2.1.1, bounding these two quantities
should result in convergence in constant time. The latter is
corroborated by Fig. 1 (top), which shows that the average
time-steps until an agent successfully claims a resource re-
mains constant as we increase the total problem size (R, N).
Compared to the Hungarian algorithm, ALMA requires ap-
proximately 7 orders of magnitude less computation time, and
this number would grow boundlessly as we increase N, R.

Efficiency Along to the constant convergence time, Fig. 1
(bottom) demonstrates that ALMA is able to reach high qual-
ity matchings. As a reference, we have also included the cen-
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tralized greedy and the random solutions. The former goes
through the participating agents randomly, and assigns them
their most preferred, unassigned resource. For R > 2 re-
sources and different values of R", ALMA achieves between
1.9 — 12% loss in SW, while the greedy algorithm achieves
8.0 — 24% and the random algorithm 7.3 — 43.4%. While
the greedy algorithm seems to perform relatively well in this
test case, it does not take into account the utilities between
agents. ALMA is of a greedy nature as well, albeit it utilizes
a more intelligent backing-off scheme, thus there are scenar-
ios where ALMA would significantly outperform the greedy
(e.g., see Section 3.3). Finally, recall that ALMA operates in
a significantly harder domain with no communication, lim-
ited feedback, and time constraints. In contrast, the greedy
method requires either a central coordinator or message ex-
change (to communicate preferences and resolve collisions).

Anytime Property In the real world, agents are required to
run in real time, which imposes time constraints. Restrict-
ing the system to only 32, 256, and 1024 time-steps, results
in 1.25%, 0.12%, and 0.03% worse SW than the unrestricted
version, respectively (we do not suggest that this is the case in
any domain. For example, in the domain of Test Case #1, the
quality of the achieved matching decreases boundlessly as we
decrease the alloted time. Nevertheless, the aforedescribed
domain is a realistic one, with a variety of real-world applica-
tions). Finally, the repeated nature of such problems suggests
that even in the case of a deadlock, the agent which failed to
acquire a resource, will do so in some subsequent round.

3.3 Test Case #3: On-line Taxi Request Match

In this section we present a motivating test case involving
ride-sharing, via on-line taxi request matching, using real
data of taxi rides in New York City. Ride-sharing, offers
great potential in congestion relief and environmental sustain-
ability. In the past few years, several commercially success-
ful ride-sharing companies have surfaced (e.g., Uber, Lyft,
etc.), giving rise to a new incarnation of ride-sharing: dy-
namic ride-sharing, where passengers are matched in real-
time. Ride-sharing, though, results to some passenger disrup-
tion due to loss in flexibility, security concerns, etc. Compen-
sation comes in the form of monetary incentives, as it allows
passengers to share the travel expenses, and thus reduce the
cost. Ride-sharing companies account for a plethora of fac-
tors, like current demand, prime time pricing, the cost of the
route without ride-sharing, the likelihood of a match, etc. Yet,
a fundamental factor of the cost is the traveled distance.

In this test case, we attempt to maximize the total distance
saved, by matching taxi requests of high overlap (Fig. 2). The
setting is inherently an on-line setting, as a matching algo-
rithm is unaware of the requests that will appear in the future
and needs to make decisions before requests ‘expire’ (similar
to [Ashlagi er al., 2018]). ALMA fits such a scenario well,
as it involves large-scale matchings under dynamic demand,
it is highly decentralized, and partially observable.

Setting We use a dataset® of all taxi requests (p) in New
York City during one week (34077 requests). The data in-
clude pickup and drop-off times, and geolocations. Requests

’kaggle: /debanjanpaul/new-york-city-taxi-trip-distance-matrix/
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Figure 2: Example of the studied scenario. There are two passen-
gers (yellow and red) with high overlap routes. Each can drive on
their own to their respective destinations (dashed yellow and red line
respectively), or share a ride (green line) and reduce travel costs.

appear (become open) at their respective pickup time, and
wait k, time-steps to find a match. Let a time-step be one
minute. After k, time-steps we call request p, critical. If
a critical request is not matched, we assume they drive off to
their destination in a single passenger ride. Let open, critical
denote the sets of open, and critical requests respectively, and
let current = open U critical. To compute k,, we assume
the following: There is a minimum minW, and a maximum
maxW waiting time set by the ride-sharing company, i.e.,
minW < k, < maxW, Vp. Moreover, since each passenger
specifies his destination in advance, we can compute the trip
time (I,). Assuming people are willing to wait proportional to
their trip time, let &, = ¢ x [,,, where ¢ € [0, 1]. The parame-
ters minW, mazxW , and q can be set by the ride-sharing com-
pany. We report results on different values for all of the above
parameters. For each pair p;, p of requests, we compute the
driving distance (d,, ,, = min of all possible combinations
of driving between p1, p2’s pickup and drop-off) that would
be traveled if p;, po are matched, i.e., if they share the same
taxi. Subsequently, the utility of matching p; to po (distance
saved) i8 u,, (p2) = d,, p, (km). Given the on-line nature of
the setting, it might be beneficial to use the following non-
myopic heuristic: avoid matching low utility pairs, as long as
the requests are not critical, since more valuable pairs might
be presented in the future. Thus, if u,, (p2) < dpmin, and
p1, p2 ¢ critical, we do not match py, po. In what follows,
we select for each algorithm and for each simulation the value
dmin € {0,500, 1000, 1500, 2000} that results in the highest
score. To compute the actual trip time, and driving distance,
we have used the Open Source Routing Machine (project-
osrm.org), which computes shortest paths in road networks.

Benchmarks Each request runs ALMA independently.
ALMA waits until the request becomes critical, and then
matches it by running Alg. 1, where N' = critical, and
R = current. In this non-bipartite scenario, if an agent
is matched under his dual role as a resource, he is immedi-
ately removed. As we explained earlier, it is infeasible for an
on-line algorithm to compute the optimal matching over the
whole period of time. Instead, we consider just-in-time and
in batches optimal solutions. Specifically, we compare to the
following [Agatz et al., 2011] [Ashlagi et al., 2018]:

(1) Just-in-time Max Weight Matching (JiTMWM):
Waits until a request becomes critical and then computes
a maximum-weight matching of all the current requests.

(2) Batching Max Weight Matching (BMWM): Waits x
time-steps and then computes a maximum-weight match-
ing of all the current requests.
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Figure 3: Total distance saved (km) for various values of minW,
maxzW, q. (top, left) Pragmatic scenario, (top, right) Requests be-
come critical in one time-step, (bottom) Various levels of waiting
time (q) while minW = 0, maxW = oo, (double log. scale).

(1,3,0.1) (1,1,—) (0,00,0.1) (0,00,0.5) (0,00,1.0)
0.79 0.85 0.78 0.69 0.67

Table 1: The Empirical Competitive Ratio of ALMA, for different
values of (minW, maxW, q).

(3) Batching Greedy (BG): Waits = time-steps and then
greedily matches current requests (ties are broken ran-
domly). Unmatched open requests are removed.

We have also computed the off-line optimal matching and
report the empirical competitive ratio, i.e., the ratio of the
social welfare of the on-line algorithm over the welfare of the
optimal, as is common in the literature of competitive analysis
[Borodin and El-Yaniv, 2005].

Efficiency Fig. 3 presents the total distance saved (km) for
various values of minW, maxW, and q. ALMA loses 8.3%
of SW in the pragmatic scenario of Fig. 3 (top, left), and
6.5% when the requests become critical in just one time-step
(Fig. 3 (top, right)). If no bounds are placed on the minimum
and maximum waiting time (i.e., minW = 0, mazW = 00),
ALMA exhibits loss of 8 — 11.5% (Fig. 3, bottom). The
above are compared to the best performing benchmark on
each scenario (JiTMWM, or BMWM). Moreover, it signifi-
cantly outperforms every greedy approach. In the first sce-
nario the BGs lose between 35.8 — 53.5%, in the second be-
tween 24 — 68.2%, and in the third between 31.5 — 69%.

It is worth noting that ALMA requires just a broadcast of
a single bit to indicate the occupancy of a resource, while
the compared approaches require either message exchange for
sharing the utility table, or the use of a centralized authority.
For example, the greedy solution would require message ex-
change to communicate users’ preferences and resolve colli-
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sions in a decentralized setting, and every batching approach
would require a common centralized synchronization clock.

Table 1 presents the empirical competitive ratio for one
day. As we can see, even in the extreme, unlikely scenar-
ios where we assume that people would be willing to wait
for more than 10 or 20 minutes (large ¢q), ALMA achieves
high relative efficiency, compared to the off-line (infeasible)
benchmark. These scenarios are favorable for the off-line op-
timal, because requests stay longer in the system and there-
fore the algorithm takes more advantage of its foreseeing ca-
pabilities. In particular, ALMA achieves an empirical com-
petitive ratio of 0.67 for ¢ = 1 and even better ratios for more
realistic scenarios (as large as 0.85). In spite of the unpre-
dictability of the on-line setting, and the dynamic nature of
the demand, ALMA is consistently able to exhibit high per-
formance, in all of the employed scenarios.

4 Conclusion

Algorithms for solving the assignment problem, whether cen-
tralized or distributed, have runtime that increases with the
total problem size, even if agents are interested in a small
number of resources. Thus, they can only handle problems
of some bounded size. Moreover, they require a significant
amount of inter-agent communication. Humans on the other
hand are routinely called upon to coordinate in large scale,
and under dynamic and unpredictable demand. Inspired by
human behavior, we have introduced a novel anytime heuris-
tic (ALMA) for weighted matching. ALMA is decentralized,
requires only partial feedback, and has constant in the total
problem size running time, under reasonable assumptions on
the preference domain of the agents. The presented results
provide an empirical proof of the high quality of the achieved
solution in a variety of scenarios (synthetic and real data, time
constraints, on-line settings). As autonomous agents prolifer-
ate (IoT devices, intelligent infrastructure, autonomous vehi-
cles, etc.), having robust algorithms that can scale to hundreds
of thousands of agents is of utmost importance.
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