
Schelling Games on Graphs

Edith Elkind1 , Jiarui Gan1 , Ayumi Igarashi2 ,
Warut Suksompong1 and Alexandros A. Voudouris1
1Department of Computer Science, University of Oxford

2Department of Mathematical Informatics, University of Tokyo
{edith.elkind, jiarui.gan, warut.suksompong, alexandros.voudouris}@cs.ox.ac.uk,

igarashi@mist.i.u-tokyo.ac.jp

Abstract
We consider strategic games that are inspired by
Schelling’s model of residential segregation. In our
model, the agents are partitioned into k types and
need to select locations on an undirected graph.
Agents can be either stubborn, in which case they
will always choose their preferred location, or
strategic, in which case they aim to maximize the
fraction of agents of their own type in their neigh-
borhood. We investigate the existence of equilib-
ria in these games, study the complexity of finding
an equilibrium outcome or an outcome with high
social welfare, and also provide upper and lower
bounds on the price of anarchy and stability. Some
of our results extend to the setting where the pref-
erences of the agents over their neighbors are de-
fined by a social network rather than a partition into
types.

1 Introduction
In 2015, African Americans constituted 83% of the popula-
tion of the City of Detroit. At the same time, the neighbor-
ing Oakland County was 77% white, and in the city of Dear-
born in Detroit metropolitan area about 30% of the residents
were Arab Americans. Similar phenomena can be observed
in many other major metropolitan areas around the globe.
In the developed world, the leading cause of such popula-
tion patterns is not direct discrimination, which is typically
illegal; rather, it is the residents themselves who tend to se-
lect neighborhoods where their ethnic or social group is well-
represented. Schelling [1969; 1971] proposed the following
stylized model of this phenomenon: Agents of two different
types are placed on a line or on a grid, and are assumed to
be happy if at least a fraction τ of the agents within distance
w from them are of the same type, for some parameters τ
and w; unhappy agents can either jump to empty positions or
swap positions with other agents. Using simple experiments,
Schelling showed that, even in cases where the agents are not
opposed to integration (τ < 1/2), this behavior leads to al-
most complete segregation.

In the 50 years since Schelling’s pioneering paper, this seg-
regation model attracted the attention of many researchers,
mostly in sociology and economics [Alba and Logan, 1993;

Benard and Willer, 2007; Benenson et al., 2009; Clark
and Fossett, 2008; Pancs and Vriend, 2007; Young, 2001;
Zhang, 2004a; Zhang, 2004b], but recently also in computer
science [Barmpalias et al., 2014; Barmpalias et al., 2015;
Brandt et al., 2012; Immorlica et al., 2017]. While the early
work in this area was mainly empirical, the more recent pa-
pers have provided theoretical analysis. In particular, it was
proved that the local behavior of unhappy agents is likely
to create very large regions consisting of agents of the same
type, even when τ is small, i.e., even when the agents them-
selves are tolerant towards having neighbors of the other type.
The vast majority of this work was based on Schelling’s origi-
nal model, where agents’ behavior was explained by a simple
stochastic model rather than strategic considerations.

An alternative approach is to assume that the behavior of
each agent is strategic, and exploit tools and techniques from
non-cooperative game theory to analyze the induced games.
To the best of our knowledge, there are only two papers in the
literature that pursue this agenda. Specifically, Zhang [2004b]
considered a model with transferable utility where agents pre-
fer to be in a balanced neighborhood. More recently, Chauhan
et al. [2018] investigated a setting that is closer to Schelling’s
motivating scenario and incorporates the idea that, in addition
to preferences over the composition of their neighborhood,
agents may also have preferences over locations. In the model
of Chauhan et al. [2018], there are two types of agents, and an
agent i’s happiness ratio is defined as the fraction of agents
of i’s type among i’s neighbors. Each agent has two further
parameters: a tolerance threshold τ ∈ (0, 1) and a preferred
location. An agent’s primary goal is to find a location where
her happiness ratio exceeds the tolerance threshold; if no such
location is available, she aims to maximize her happiness ra-
tio. An agent’s secondary goal is to minimize the distance
to her preferred location. To achieve these goals, agents can
either swap locations (swap games) or jump to unoccupied
locations (jump games). The main contribution of the paper
is to identify conditions under which agents are guaranteed to
converge to an equilibrium; for instance, the authors establish
that in jump games, convergence is guaranteed if agents have
no preferred locations and the underlying network is a ring.

Our Contribution
The model of Chauhan et al. [2018] makes an important con-
tribution to the literature by enriching Schelling’s model with
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two additional components: agents who are fully strategic,
and location preferences. However, the resulting model of
agents’ preferences is quite complex, and, consequently, not
easy to analyze: the positive results in the paper are limited
to special cases of the utility function and highly regular net-
works. In this paper, we propose a simpler model that aims to
capture the same phenomena and is more amenable to formal
analysis.

Specifically, in our basic model the agents are partitioned
into k types and, just as in the work of Chauhan et al. [2018],
the set of available locations is represented by an undirected
graph, which we refer to as the topology. We also incorporate
location preferences in our model, but instead of assuming
that optimizing the distance to the preferred location is the
secondary goal of every agent, we assume that agents are ei-
ther stubborn, in which case they stay at their chosen location
irrespective of their surroundings, or strategic, in which case
they aim to maximize their happiness ratio by jumping to an
unoccupied location (we do not consider swaps in this paper).
Our model captures the fact that, in practice, many residents
(such as older people or those with underwater mortgages) are
unwilling to move even if they are no longer satisfied with
the composition of their neighborhood. Importantly, unlike
Chauhan et al. [2018] or Schelling in his original work, we
do not assume that agents have tolerance thresholds; rather,
a strategic agent is willing to move as long as there exists
another location with a better happiness ratio. Towards the
end of the paper (Section 6), we also discuss several variants
of this basic model. In particular, we show that some of our
positive results extend to the setting where there are no types,
but rather the agents are connected by a social network and
care about the fraction of their friends (i.e., their neighbors
in the social network) among their neighbors in the topology;
we refer to the resulting class of games as social Schelling
games.

The rest of the paper is organized as follows. We define
our model in Section 2. Then, in Section 3, we show that
for some classes of topologies, such as stars and graphs of
maximum degree two, our games always admit a pure Nash
equilibrium, i.e., the strategic agents can be assigned to the
nodes of the topology so that none of them wants to move to
a different location; this result holds even for social Schelling
games. In contrast, an equilibrium may fail to exist even if the
topology is acyclic and has maximum degree four. In Sec-
tion 4, we complement this result by presenting a dynamic
programming algorithm that decides whether an equilibrium
exists on a tree topology; this algorithm runs in polynomial
time if the number of types is bounded by a constant. For
more general topologies, we prove that deciding whether an
equilibrium exists is an NP-complete problem. Similar hard-
ness and easiness results hold for the problem of maximizing
the social welfare (the total utility of all strategic agents). In
Section 5, we study the effect of the strategic behavior on the
social welfare, by bounding the price of anarchy [Koutsou-
pias and Papadimitriou, 1999] and the price of stability [An-
shelevich et al., 2008]. In particular, we show that even in the
absence of stubborn agents it may be impossible to achieve
the maximum social welfare in equilibrium. In Section 6 we
discuss several variants and extensions of our model and es-

tablish some preliminary results for these new models, as well
as outline directions for future work.

Other Related Work
Due to space constraints, we omit the survey of the literature
on non-strategic variants of the Schelling model; for an ac-
cessible introduction, see chapter 4 in the book of Easley and
Kleinberg [2010].

Besides the work of Chauhan et al. [2018], which was
discussed in detail earlier, our model shares a number of
properties with hedonic games [Drèze and Greenberg, 1980;
Bogomolnaia and Jackson, 2002]; these are games where
agents split into coalitions, and each agent’s utility is deter-
mined by the composition of her coalition. Specifically, in
fractional hedonic games [Aziz et al., 2017] the relationships
among the agents are described by a weighted directed graph,
where the weight of an edge (i, j) is the value that agent i
assigns to agent j, and an agent’s utility for a coalition is her
average value for the other members in the coalition. If the
graph is undirected and all edge weights take values in {0, 1},
it can be interpreted as a friendship relation; then an agent’s
utility in a coalition is computed as the fraction of her friends
among the coalition members, which is very similar to how
utilities are defined in social Schelling games. On the other
hand, the type-based model is closely related to the Bakers
and Millers game discussed by Aziz et al. [2017]. This con-
nection between Schelling games and hedonic games moti-
vates much of the discussion in Section 6. Of course, a fun-
damental difference between hedonic games and our setting
is that in the former agents derive their utilities from pairwise
disjoint coalitions, whereas in our model utilities are derived
from (overlapping) neighborhoods.

2 The Model
Let N = {1, . . . , n} be a set of n ≥ 2 agents. The agents
are partitioned into k ≥ 2 different types T1, . . . , Tk so that
∪j=1,...,kTj = N ; we write T = (T1, . . . , Tk). We say that
two agents i, j ∈ N , i 6= j, are friends if i, j ∈ T` for some
` ∈ [k]; otherwise we say that i and j are enemies. For each
i ∈ N , we denote the set of all friends of agent i by F (i).

A topology is an undirected graphG = (V,E) with no self-
loops. Each agent in N has to select a node of this graph so
that there are no collisions. The agents are classified as either
strategic or stubborn; let R and S denote these sets of agents
so that R ∪ S = N . Each stubborn agent occupies some
node of the topology and never moves away. We describe
the locations of the stubborn agents by an injective mapping
λ : S → V such that λ(i) is the node that agent i ∈ S
occupies. In contrast, strategic agents do not care about their
location per se, but want to be in a neighborhood that has a
large proportion of their friends, and are willing to move to a
currently unoccupied node in order to increase their utility.

A tuple I = (R,S, T , G, λ), where R is the set of strategic
agents, S is the set of stubborn agents, T = (T1, . . . , Tk) is
a list of types, G = (V,E) is a topology that satisfies |V | >
|R|+ |S|, and λ is an injective mapping from S to V , is called
a k-typed Schelling game or k-typed instance. Let I be the
set of all possible games.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

267



An assignment is a vector v = (v1, . . . , vn) ∈ V n such
that (1) vi = λ(i) for each i ∈ S and (2) vi 6= vj for all
i, j ∈ N such that i 6= j; here, vi is the node of the topology
where agent i is positioned. For a given assignment v and an
agent i ∈ N , let Ni(v) = {j ∈ N : {vi, vj} ∈ E} be the set
of neighbors of agent i. Let fi(v) = |Ni(v) ∩ F (i)| be the
number of neighbors of i in v who are her friends. Similarly,
let ei(v) = |Ni(v)| − fi(v) be the number of neighbors of i
in v who are her enemies. Following Chauhan et al. [2018],
we define the utility ui(v) of an agent i ∈ R in v to be 0 if
fi(v) = 0; otherwise, her utility is defined as the fraction of
her friends among the agents in the neighborhood:

ui(v) =
fi(v)

fi(v) + ei(v)
.

We say that an assignment v is a pure Nash equilibrium
(or, simply, equilibrium) of an instance I if no strategic agent
i has an incentive to unilaterally deviate to an empty node z of
G in order to increase her utility, i.e., for every i ∈ R and for
every node z ∈ V such that z 6= vj for all j ∈ R ∪ S it holds
that ui(v) ≥ ui(z,v−i), where (z,v−i) is the assignment
obtained by changing the i-th entry of v to z. Let EQ(I)
denote the set of all equilibria of game I .

The social welfare of an assignment v is defined as the total
utility of all strategic agents:

SW(v) =
∑
i∈R

ui(v).

Let v∗(I) be an assignment that maximizes the social welfare
for a given game I; we refer to it as an optimal assignment.

The price of anarchy (PoA) of game I with at least one
equilibrium is the ratio between the optimal social welfare
and the social welfare of the worst equilibrium; its price of
stability (PoS) is defined as the ratio between the optimal so-
cial welfare and the social welfare of the best equilibrium:

PoA(I) = sup
v∈EQ(I)

SW(v∗(I))

SW(v)
,

PoS(I) = inf
v∈EQ(I)

SW(v∗(I))

SW(v)
.

The price of anarchy and the price of stability are the suprema
of PoA(I) and PoS(I) over all I ∈ I such that EQ(I) 6= ∅,
respectively.

All omitted proofs can be found in the full version of this
paper [Elkind et al., 2019].

3 Existence of Equilibria
In this section, we focus on the existence of equilibria. To
start, we observe that for highly structured topologies such as
paths, rings, and stars, there is always at least one equilibrium
assignment, and some such assignment can be computed ef-
ficiently. This can be shown directly, and also follows from a
more general result established in Section 6 (Theorem 6.1).
Theorem 3.1. Every k-typed Schelling game where the topol-
ogy is a star or a graph of maximum degree 2 admits at least
one equilibrium assignment, which can be computed in poly-
nomial time.

𝛼

𝛽

Γ

Δ

Figure 1: Example of the topology used in the proof of Theorem 3.2
for k = 2.

However, in general, an equilibrium may fail to exist; this
holds even if the topology is acyclic and there are no stubborn
agents.
Theorem 3.2. For every k ≥ 2 there exists a k-typed instance
(R,S, T , G, λ) where S = ∅ and G is a tree that does not
admit an equilibrium.

Proof. Given k ≥ 2, we construct an instance with 2k + 1
agents per type; the total number of agents is n = k(2k + 1).
The topologyG = (V,E) is a tree that consists of |V | = n+1
nodes, which are distributed over four layers. Specifically, the
tree has a root α, which has one child β. Node β has 2k − 1
children; we denote the set of its children by Γ. Each node in
Γ has k children, which are the leaves of the tree; we denote
the set of all leaves by ∆. Figure 1 depicts the topology for
k = 2. Now, assume that there is an equilibrium assignment;
note that exactly one node is left empty. We consider four
cases depending on the location of the empty node.
Node α is empty. Assume that the agent occupying node

β is of type T . Then, since there are 2k other agents of
type T , there must exist some subtree rooted at a node
in Γ that contains both agents of type T and agents that
belong to other types. Then an agent of type T from this
subtree has an incentive to deviate to α.

Node β is empty. Assume that the agent occupying node
α is of type T ; note that her utility is 0. If she does not
have an incentive to deviate to β, it follows that no agent
of type T occupies a node in Γ. But then there is an
agent of type T who occupies a node in ∆; as her parent
is not of type T , her utility is 0, and she can increase it
by moving to β.

Some node γ ∈ Γ is empty. Consider the agents occupying
the children of γ; note that their utility is 0. If at least
two of them have the same type, each of them has an
incentive to deviate to γ in order to increase her utility
to at least 1

k . If all of them have different types, then
there is exactly one agent of each type in this set. In
particular, there is an agent i who has the same type as
the agent occupying β; then i can move to γ to increase
her utility.

Some node δ ∈ ∆ is empty. Let γ denote the parent of this
node, and suppose that γ is occupied by an agent i of
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type T . We say that an agent j of type T is hungry if
j 6= i and j is adjacent to at least one agent of a different
type; note that a hungry agent has an incentive to deviate
to δ. We claim that at least one agent is hungry. Indeed,
if β is occupied by an agent j of type T , then either j is
hungry or every agent in Γ \ {γ} is hungry. If the agent
in β is not of type T and there is an agent ` of type T in
Γ\{γ}, then ` is hungry. Finally, if no agent in Γ\{γ} is
of type T , there exists a leaf node not in γ’s subtree that
is occupied by an agent r of type T ; r is then hungry.

The proof is complete.

4 Computational Complexity
We now turn our attention to the computational complexity
of k-typed Schelling games. The main result of this section
is that finding an equilibrium assignment is computationally
intractable.
Theorem 4.1. For every k ≥ 2, given a k-typed Schelling
game I , it is NP-complete to decide whether I admits an
equilibrium assignment. The hardness result holds even if all
strategic agents belong to the same type.

Proof. We give a proof for k = 2; it is straightforward to
extend it to k ≥ 2, by adding isolated stubborn agents of
additional types. We will use a reduction from the CLIQUE
problem. An instance of this problem is an undirected graph
H = (X,Y ) and an integer s; it is a yes-instance if H has
a complete subgraph of size s. Given an instance 〈H, s〉 of
CLIQUE, we assume without loss of generality that s ≥ 5 and
construct an instance of our problem as follows:
• There are two agent types: red and blue.
• There are s strategic red agents; all remaining agents are

stubborn. We will describe the stubborn agents and their
locations when defining the topology.
• The topologyG = (V,E) consists of three disjoint com-

ponents G1, G2, and G3 such that
– G1 = (V1, E1), where V1 = X ∪W , |W | = s− 2,
E1 = Y ∪ {{v, w} : v ∈ X,w ∈ W}. There is a
stubborn blue agent at each node w ∈W ;

– G2 is a complete bipartite graph with parts L and
R, |L| = s − 2, |R| = 4s. Of the 4s nodes in R,
2s+ 1 nodes are occupied by red agents and 2s− 1
nodes are occupied by blue agents;

– G3 has three empty nodes, denoted x, y, and z, and
121 nodes — 41 red and 80 blue — occupied by
stubborn agents. There is an edge between nodes
x and y; also, x is connected to 1 red agent and 2
blue agents; y is connected to 41 red agents and 80
blue agents, and z is connected to 5 red agents and
7 blue agents.

Note that a strategic red agent obtains a utility of 2s+1
4s =

1
2 + 1

4s by choosing an available node in G2 and a utility of
5
12 by choosing z. If she chooses x, her utility is 1

3 if y is
unoccupied and 1

2 otherwise. Similarly, if she chooses y, her
utility is 41

121 if x is unoccupied and 42
122 otherwise; note that

1
3 <

41
121 <

42
122 <

5
12 .

Now, suppose thatH contains a clique of size s. If strategic
red agents occupy the nodes of that clique, the utility of each
such agent is s−1

(s−1)+(s−2) = 1
2 + 1

4s−6 . Thus, by our choice
of parameters, no agent has a profitable deviation.

On the other hand, suppose thatH does not contain a clique
of size s. Assume for the sake of contradiction that there is
an equilibrium assignment v.

Suppose first that in v some strategic agents are located in
G1. It cannot be the case that each of them is adjacent to
s − 1 friends, as this would mean that their locations form a
clique of size s. Hence, at least one of these agents is adja-
cent to at most s − 2 friends. As this agent is also adjacent
to the s − 2 stubborn blue agents in W , her utility is at most
1
2 . By our choice of parameters, all unoccupied nodes of G2

offer a higher utility, namely, 1
2 + 1

4s . Thus, if there are strate-
gic agents in G1, all s − 2 nodes of G2 that are available to
strategic agents must be occupied. But then, there are at most
two strategic agents in G1, which means that their utility is at
most 1

s−1 <
1
3 (recall that we assume that s ≥ 5). This leads

to a contradiction, as these strategic agents would be better
off moving to G3 where their utility would be at least 1

3 .
Therefore, in equilibrium no strategic agent can be located

at a node of G1. Further, since all unoccupied nodes of G2

always offer more utility than any unoccupied nodes of G3

can offer, in equilibrium all nodes of G2 are occupied, and
the two remaining strategic agents must be inG3, with one of
x, y, and z left empty.

Suppose that z is empty. Then the agent located at y can
increase her utility from 42

122 to 5
12 by moving to z, a contra-

diction. If y is empty, the agent located at x can increase her
utility from 1

3 to 41
121 by moving to y, a contradiction. Finally,

if x is empty, the agent located at z can increase her utility
from 5

12 to 1
2 by moving to x, a contradiction. As we have

exhausted all possibilities, it follows that if G does not have a
clique of size s, then there is no equilibrium assignment.

The proof of Theorem 4.1 can be adapted to show that max-
imizing social welfare in Schelling games is NP-hard as well.

Theorem 4.2. For every k ≥ 2, given a k-typed Schelling
game I and a rational value s, it is NP-complete to decide
whether I admits an assignment with social welfare at least s.
The hardness result holds even if k = 2, all strategic agents
belong to one type, and the other type consists of a single
stubborn agent.

On the positive side, for small k we can efficiently decide
whether an equilibrium exists if the topology G is a tree. Our
algorithm is based on dynamic programming: it selects an
arbitrary node of G to be the root, and then for every node v
of G, it fills out a multidimensional table whose dimension
is linear in the number of types, proceeding from the leaves
to the root. It decides whether the given instance admits an
equilibrium by scanning the table at the root node.

Theorem 4.3. Given a k-typed Schelling game I with n
agents, where the topologyG is a tree, we can decide whether
I admits an equilibrium (and compute one if it exists) in time
poly(nk), i.e., this problem lies in the complexity class XP
with respect to the number of types k.
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Figure 2: The topology used in the proof of Theorem 5.1 for k = 2.

By slightly modifying our algorithm, we can compute an
assignment that maximizes the social welfare, either among
all assignments or among equilibria.
Corollary 4.4. Given a k-typed Schelling game, where G is
a tree, the problems of computing an equilibrium with max-
imum social welfare or a socially optimal assignment are in
XP with respect to k.

We have not been able to determine whether the problem
of computing an equilibrium assignment is fixed-parameter
tractable with respect to the number of types; we leave this
question for future work.

5 Price of Anarchy and Stability
In this section, we investigate the loss in social welfare caused
by strategic behavior, as measured by the price of anarchy and
the price of stability; unless otherwise specified, the topology
is assumed to be a connected graph.1 We start by establishing
bounds on the PoA for instances with no stubborn agents.
Theorem 5.1. For k-typed Schelling games with no stubborn
agents and n strategic agents, the PoA
• can be unbounded for each k ≥ 2;
• is Θ(n) when there are at least two agents per type;
• is k + o(1) if each type has the same number of agents.

Proof. Due to space constraints, we only prove the last claim.
For the lower bound, fix k ≥ 2, let ` ≥ 2 be a parameter

and consider an instance with k(` + 1) agents per type; alto-
gether there are n = k2(`+ 1) agents. The topology consists
of n+ 1 nodes and is defined as follows. There are k cliques
V1, . . . , Vk of size k` each, and a node y. In each clique Vi
there is a special node wi that is connected to y. Also, for
each i ∈ [k] there are k auxiliary nodes zi,1, . . . , zi,k; each of
these nodes is connected to a distinct set of ` nodes in Vi. Let
zi,i be the auxiliary node that is connected to wi. Figure 2
illustrates this topology for k = 2.

There is an optimal assignment where all k(` + 1) agents
of type Ti are placed at the nodes of clique Vi and the cor-
responding auxiliary nodes, so that all agents are connected
only to agents of the same type and have maximum utility 1.
Therefore, the optimal social welfare is k2(`+ 1).

1To see that the PoA can be unbounded if the topology is not
connected, consider a topology that contains a connected component
W of size exactly n, as well as some other connected components:
any assignment of agents to nodes in W is an equilibrium, even if
its social welfare is 0.

In contrast, consider the following equilibrium assignment:
node y is empty, and for each i, j ∈ [k] all ` nodes in Vi that
are connected to the auxiliary node zi,j as well as zi,j itself
are occupied by agents of type Tj . Since node y is connected
to k nodes that are occupied by agents of different types, any
agent would get utility 1/k by deviating there. No agent oc-
cupying an auxiliary node has an incentive to deviate since
she is connected only to agents of her type. For every clique,
each agent is connected to exactly ` agents of the same type
(` − 1 of whom occupy nodes of the clique and one that oc-
cupies the corresponding auxiliary node) and (k− 1)` agents
of different type; thus, her utility is 1/k. Consequently, no
agent has an incentive to deviate, and the social welfare is
k · k` · 1k + k2 = k(`+ k). Hence, the PoA is at least k`+k

`+k ;
this expression becomes arbitrarily close to k as ` grows.

For the upper bound, consider an arbitrary instance with
n agents and k ≥ 2 types, where there are n/k agents per
type. We will show that the social welfare of any equilibrium
assignment is at least n/k − 1. The bound on the PoA then
follows, since the optimal social welfare is at most n.

Recall that we assume that the number of available nodes
exceeds the number of agents and the topology is connected,
so there must exist some empty node v with at least one non-
empty neighbor. Suppose that v is connected to xi agents of
type Ti, for i ∈ [k], and let s =

∑
i∈[k] xi. Consider an agent

of type Ti. A deviation to v would give her utility xi

s if she is
not connected to v, and utility xi−1

s−1 otherwise (for readability
we use the convention that 0

0 = 0). Since at equilibrium no
agent has any incentive to deviate, her utility is at least the
utility she would get by deviating to v. Therefore, the social
welfare at equilibrium is at least

SW(v) ≥
∑
i∈[k]

((n
k
− xi

) xi
s

+ xi
xi − 1

s− 1

)

≥ 1

s

∑
i∈[k]

((n
k
− xi

)
xi + xi(xi − 1)

)
=
n

k
− 1.

The proof is complete.

In the setting considered in Theorem 5.1 the PoA improves
significantly if each type has the same number of agents. In
the presence of stubborn agents, to ensure that the PoA does
not depend on n, we additionally require that this constraint
holds both for strategic and for stubborn agents.
Theorem 5.2. For k-typed Schelling games with n agents the
PoA
• is Ω(n) for each k ≥ 2 even if each type has the same

number of agents;
• is k+ o(1) if each type has the same number of strategic

agents and the same number of stubborn agents.
Finally, we show that even the best equilibrium need not be

socially optimal, even if all agents are strategic.
Theorem 5.3. For k-typed Schelling games the PoS
• can be unbounded for each k ≥ 2;
• is at least 3 for each even k ≥ 2, if there is the same

number of stubborn agents per type;
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• is at least 34/33 for each k ≥ 2, even in the absence of
stubborn agents.

6 Variants and Extensions
Throughout this paper, we focused on a setting where agents
are classified into k types and their utilities are defined by
the proportion of their friends among their neighbors. In this
section, we introduce three variants of this model and briefly
discuss some preliminary results; a more thorough investiga-
tion of these alternative models is left for future work.

Schelling Games with Social Networks
In k-typed Schelling games, the friendship relation is defined
by types: an agent’s set of friends consists of all agents of the
same type. One can also consider a more general friendship
relation, defined by an arbitrary undirected graph G with ver-
tex set N , which we refer to as the social network: the set of
friends of agent i consists of all neighbors of i in G. We refer
to the resulting class of games as social Schelling games.

By definition, k-typed Schelling games form a subclass of
social Schelling games: a k-typed game corresponds to a so-
cial network consisting of k cliques. Hence, our next theorem
implies Theorem 3.1 in Section 3.

Theorem 6.1. Every social Schelling game where the topol-
ogy is a star or a graph of maximum degree 2 admits at least
one equilibrium, which can be computed in polynomial time.

Conversely, all our non-existence results (Theorem 3.2),
hardness results (Theorems 4.1 and 4.2) and lower bounds
on the PoA and PoS (Section 5) apply to social Schelling
games as well. In fact, maximizing the social welfare in so-
cial Schelling games is NP-hard even if all agents are strate-
gic (whereas our hardness reduction for k-typed games uses
stubborn agents). Moreover, this hardness result holds even if
G is a graph of maximum degree 2, i.e., social welfare maxi-
mization may be hard even when finding equilibria is easy.

Theorem 6.2. Given a social Schelling game I and a ratio-
nal value s, it is NP-complete to decide whether I admits an
assignment with social welfare at least s. The hardness result
holds even if all agents are strategic and even if G is a graph
of maximum degree 2.

Identifying special classes of social Schelling games that
allow for good upper bounds on the price of anarchy and the
price of stability is an interesting research direction. We note
that the upper bounds in Section 5 only apply to k-typed in-
stances with further restrictions on the structure of each type,
so they cannot be extended to the social setting.

Schelling Games with Enemy Aversion
In our model, if an agent is not adjacent to any friends, it
does not matter how many enemies she is adjacent to. This
is also the case in fractional hedonic games: agents are in-
different between being alone and being in coalitions con-
sisting of their enemies. This assumption makes sense when
the “enemies” of an agent are simply agents that do not con-
tribute to her welfare. However, an agent may prefer be-
ing alone to being in a group of enemies. In the context of
hedonic games, such preferences are modeled by modified

fractional hedonic games [Olsen, 2012; Elkind et al., 2016;
Monaco et al., 2018], where the utility of an agent in a coali-
tion with f friends and e enemies is f+1

f+e+1 , i.e., the agent
herself is included in the set of her friends.

Many of our results extend to this definition of utility. For
example, we can construct instances without equilibria even
for 2-typed games, using ideas similar to those in the reduc-
tion of Theorem 4.1. Further, for k-typed games with a tree
topology and a constant number of types, equilibrium exis-
tence can be decided in polynomial time, by adapting the
proof of Theorem 4.3. However, it remains an open question
if instances with no stubborn agents always admit an equilib-
rium in this model.

Schelling Games with Linear Utilities
Throughout the paper we assume that an agent’s utility is de-
termined by the fraction of her friends among her neighbors.
Alternatively, an agent may simply care about the number
of friends in her neighborhood or the difference between the
number of friends fi and the number of enemies ei; more
broadly, her utility may be an arbitrary linear function of fi
and ei (in the context of hedonic games, this model corre-
sponds to a subclass of additively separable hedonic games;
see, e.g., the survey by Aziz and Savani [2016]). It turns
out that games of this form are potential games and therefore
have at least one equilibrium; also, in the absence of stubborn
agents there is always an equilibrium that is socially optimal.
Theorem 6.3. Consider a variant of the (social) Schelling
model where the utility of each agent i, who is adjacent to
fi friends and ei enemies, is αfi − βei for some α, β ≥ 0.
Then, every instance has an equilibrium assignment, which
can be computed in polynomial time. Moreover, if no agent is
stubborn, the price of stability is 1.

7 Conclusions
In this paper, we investigated Schelling games on graphs,
from the perspective of equilibrium analysis and the perspec-
tive of social welfare. Concerning equilibrium existence, our
positive results are rather limited in scope: while an equilib-
rium always exists for simple topologies, like stars and paths,
it may fail to exist even if the topology does not contain cy-
cles. It would be interesting to obtain a complete characteri-
zation of topologies that guarantee existence of equilibria.

For welfare maximization, a natural question is whether
one can efficiently compute assignments with nearly optimal
social welfare. We note that our NP-hardness reductions are
not approximation preserving, so they do not rule out this pos-
sibility. Another interesting algorithmic question is whether
the problem of computing equilibria in k-typed games re-
mains hard in the absence of stubborn agents; we conjecture
that this is indeed the case, but were unable to prove it.
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Greenberg. Hedonic coalitions: optimality and stability.
Econometrica, 48(4):987–1003, 1980.

[Easley and Kleinberg, 2010] David A. Easley and Jon M.
Kleinberg. Networks, Crowds, and Markets – Reasoning
about a Highly Connected World. Cambridge University
Press, 2010.

[Elkind et al., 2016] Edith Elkind, Angelo Fanelli, and
Michele Flammini. Price of Pareto optimality in hedonic
games. In Proceedings of the 20th AAAI Conference on
Artificial Intelligence (AAAI), pages 475–481, 2016.

[Elkind et al., 2019] Edith Elkind, Jiarui Gan, Ayumi
Igarashi, Warut Suksompong, and Alexandros A.
Voudouris. Schelling games on graphs. CoRR,
abs/1902.07937, 2019.

[Immorlica et al., 2017] Nicole Immorlica, Robert Klein-
berg, Brendan Lucier, and Morteza Zadimoghaddam.
Exponential segregation in a two-dimensional Schelling
model with tolerant individuals. In Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 984–993, 2017.

[Koutsoupias and Papadimitriou, 1999] Elias Koutsoupias
and Christos H. Papadimitriou. Worst-case equilibria. In
Proceedings of the 16th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 404–413,
1999.

[Monaco et al., 2018] Gianpiero Monaco, Luca Moscardelli,
and Yllka Velaj. Stable outcomes in modified fractional
hedonic games. In Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pages 937–945, 2018.

[Olsen, 2012] Martin Olsen. On defining and computing
communities. In Proceedings of the 18th Computing: Aus-
tralasian Theory Symposium (CATS), pages 97–102, 2012.

[Pancs and Vriend, 2007] Romans Pancs and Nicolaas J.
Vriend. Schelling’s spatial proximity model of segrega-
tion revisited. Journal of Public Economics, 91(1–2):1–
24, 2007.

[Schelling, 1969] Thomas C. Schelling. Models of segrega-
tion. American Economic Review, 59(2):488–493, 1969.

[Schelling, 1971] Thomas C. Schelling. Dynamic mod-
els of segregation. Journal of Mathematical Sociology,
1(2):143–186, 1971.

[Young, 2001] H. Peyton Young. Individual Strategy and
Social Structure: an Evolutionary Theory of Institutions.
Princeton University Press, 2001.

[Zhang, 2004a] Junfu Zhang. A dynamic model of resi-
dential segregation. Journal of Mathematical Sociology,
28(3):147–170, 2004.

[Zhang, 2004b] Junfu Zhang. Residential segregation in an
all-integrationist world. Journal of Economic Behavior
and Organization, 54(4):533–550, 2004.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

272


