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Abstract
We study the multistage K-facility reallocation
problem on the real line, where we maintain K fa-
cility locations over T stages, based on the stage-
dependent locations of n agents. Each agent is con-
nected to the nearest facility at each stage, and the
facilities may move from one stage to another, to
accommodate different agent locations. The ob-
jective is to minimize the connection cost of the
agents plus the total moving cost of the facilities,
over all stages. K-facility reallocation was intro-
duced by [de Keijzer and Wojtczak, 2018], where
they mostly focused on the special case of a single
facility. Using an LP-based approach, we present a
polynomial time algorithm that computes the opti-
mal solution for any number of facilities. We also
consider online K-facility reallocation, where the
algorithm becomes aware of agent locations in a
stage-by-stage fashion. By exploiting an interesting
connection to the classical K-server problem, we
present a constant-competitive algorithm for K = 2
facilities.

1 Introduction
Facility Location is a classical problem that has been widely
studied in both combinatorial optimization and operations
research, due to its many practical applications. It provides a
natural model for industrial planning, network design, machine
learning, data clustering and computer vision [Drezner and
Hamacher, 2002; Lazic, 2011; Caragiannis et al., 2016; Betzler
et al., 2013]. In its basic form, K-Facility Location instances
are defined by the locations of n agents in a metric space. The
goal is to find K facility locations so as to minimize the sum
of distances of the agents to their nearest facility.

In many natural location and network design settings, agent
locations are not known in advance. Motivated by this fact,
[Meyerson, 2001] introduced online facility location problems,
where agents arrive one-by-one and must be irrevocably as-
signed to a facility upon arrival. Moreover, the fast increasing
volume of available data and the need for responsive services
has led to online clustering algorithms [Liberty et al., 2016],
trading off the quality against the consistency of the clusters
over time. In practical settings related to online data clustering,

new data points arrive, and the decision of clustering some
data points together should not be regarded as irrevocable (see
e.g., [Fotakis, 2011] and the references therein).

More recently, understanding the dynamics of temporally
evolving social or infrastructure networks has been the central
question in many applied areas such as viral marketing, urban
planning etc. Dynamic facility location proposed by [Eisenstat
et al., 2014] is a new tool to analyze temporal aspects of such
networks. In this time dependent variant of facility location,
agents may change their location over time and we look for
the best tradeoff between the optimal connections of agents
to facilities and the stability of solutions between consecutive
timesteps. The stability of the solutions is modeled by intro-
ducing an additional moving cost (or switching cost), which
has a different definition depending on the particular setting.

In this work, we study the multistage K-facility realloca-
tion problem on the real line, introduced by [de Keijzer and
Wojtczak, 2018]. In K-facility reallocation, K facilities are
initially located at (x01, . . . , x

0
K) on the real line. Facilities are

meant to serve n agents for the next T days. At each day, each
agent connects to the facility closest to its location and incurs
a connection cost equal to this distance. Agent locations may
change every day, thus we have to move facilities accordingly
so as to reduce the connection cost. Naturally, moving a fa-
cility is not for free, but comes with the price of the distance
that the facility was moved. Our goal is to specify the exact
positions of the facilities at each day so that the total connec-
tion cost plus the total moving cost is minimized over all T
days. In the online version of the problem, the positions of the
clients at each stage t are revealed only after determining the
locations of the facilities at stage t− 1.

For a motivating example, consider a company willing to
advertise its products. So, it organizes K advertising cam-
paigns at different locations of a large city for the next T days.
Based on planned events, weather forecasts, etc., the company
estimates a population distribution over the locations of the
city for each day. Then, it decides to compute the best possible
campaign reallocation with K campaigns over all days (see
also [de Keijzer and Wojtczak, 2018] for more examples).

[de Keijzer and Wojtczak, 2018] fully characterized the op-
timal offline and online algorithms for the special case of a
single facility and presented a dynamic programming algo-
rithm for K ≥ 1 facilities with running time exponential in
K. Despite the practical significance and the interesting theo-
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retical properties of K-facility reallocation, its computational
complexity and its competitive ratio (for the online variant)
are hardly understood.

In this work, we resolve the computational complexity of
K-facility reallocation on the real line and take a first step
towards a full understanding of the competitive ratio for the
online variant. More specifically, in Section 3, we present
an optimal algorithm with running time polynomial in the
combinatorial parameters of K-facility reallocation (i.e., n,
T and K). This substantially improves on the complexity of
the algorithm, presented in [de Keijzer and Wojtczak, 2018],
that is exponential in K. Our algorithm solves a Linear Pro-
gramming relaxation and then rounds the fractional solution
to determine the positions of the facilities.

Interestingly, the extreme points of the K-facility reallo-
cation polytope (as described in in Figure 2) do not need to
be integral. This is true even for the polytope of K-facility
location (a.k.a. K-median, where T=1) on the line (see e.g.,
[de Vries et al., 2007]). Moreover, there are examples of clas-
sical optimization problems (e.g. Minimum Spanning Trees,
Maximum Bipartite Matching) with integral LP formulations,
where the the natural time-evolving LP formulations (which
are similar to the LP formulation in Figure 2) are not inte-
gral and have large integrality gaps [Gupta et al., 2014]. Our
main technical contribution is to show that a simple rounding
scheme yields an integral solution that has the exact same cost
as the optimal fractional one.

Our second main result concerns the online version of the
problem with K = 2 facilities. We start with the observation
that online K-facility reallocation problem with K ≥ 2 facili-
ties is a natural and interesting generalization of the classical
K-server problem, which has been a driving force in the devel-
opment of online algorithms for decades. The key difference
is that, in the K-server problem, there is a single agent that
changes her location at each stage and a single facility has
to be relocated to this new location at each stage. Therefore,
the total connection cost is by definition 0, and we seek to
minimize the total moving cost.

From a technical viewpoint, the K-facility reallocation
problem poses a new challenge, since it is much harder to track
the movements of the optimal algorithm as the agents keep
coming. It is not evident at all whether techniques and ideas
from the K-server problem can be applied to the K-facility re-
allocation problem, especially for more general metric spaces.
As a first step towards this direction, we design a constant-
competitive algorithm, when K = 2. Our algorithm appears
in Section 4 and is inspired by the double coverage algorithm
proposed for the K-server problem [Koutsoupias, 2009].

We can cast the K-facility reallocation problem as a clus-
tering problem on a temporally evolving metric. From
this point of view, K-facility reallocation problem is a dy-
namic K-median problem. A closely related problem is the
dynamic facility location problem, [Eisenstat et al., 2014;
An et al., 2017]. Other examples in this setting are the
dynamic sum radii clustering [Blanchard and Schabanel,
2017] and multi-stage optimization problems on matroids and
graphs [Gupta et al., 2014].

In [Friggstad and Salavatipour, 2011], a mobile facility
location problem was introduced, which can be seen as a one

(1) min
T∑
t=1

[∑
i∈C

∑
j∈V

d(Loc(i, t), j)xtij +
∑
k∈F

Stk

]
∑
j∈V

xtij = 1 ∀i ∈ C, t ∈ {1, T}

xtij ≤ ctj ∀i ∈ C, j ∈ V, t ∈ {1, T}

ctj =
∑
k∈F

f tkj ∀j ∈ V, t ∈ {1, T}∑
j∈V

f tkj = 1 ∀k ∈ F, t ∈ {1, T}

Stk =
∑
j,l∈V

d(j, l)Stkjl ∀k ∈ F, t ∈ {1, T}∑
j∈V

Stkjl = f tkl ∀k ∈ F, l ∈ V, t ∈ {1, T}∑
l∈V

Stkjl = f t−1kj ∀k ∈ F, j ∈ V, t ∈ {1, T}

xtij , f
t
kj , S

t
klj ∈ {0, 1} ∀k ∈ F, j ∈ V, t ∈ {1, T}

Figure 1: Formulation of K-facility reallocation

stage version of our problem. They showed that even this
version of the problem is NP -hard in general metric spaces
using an approximation preserving reduction to K-median
problem.

Online facility location problems and variants have been
extensively studied in the literature, see [Fotakis, 2011] for
a survey. [Divéki and Imreh, 2011] studied an online model,
where facilities can be moved with zero cost. As we have
mentioned before, the online variant of the K-facility reallo-
cation problem is a generalization of the K-server problem,
which is one of the most natural online problems. [Koutsou-
pias, 2009] showed a (2K − 1)-competitive algorithm for
the K-server problem for every metric space, which is also
K-competitive, in case the metric is the real line [Bartal and
Koutsoupias, 2000]. Other variants of the K-server prob-
lem include the (H,K)-server problem [Bansal et al., 2017;
Bansal et al., 2018], the infinite server problem [Coester
et al., 2017] and the K-taxi problem [Fiat et al., 1990;
Coester and Koutsoupias, 2019].

2 Problem Definition and Preliminaries
Definition 1 (K-Facility Reallocation) We are given a tuple
(x0, C) as input, where the vector x0 = (x01, . . . , x

0
K) de-

scribes the initial positions of the facilities. The positions of
the agents over time are described by C = (C1, . . . , CT ). The
position of agent i at stage t is αti and Ct = (αt1, . . . , α

t
n)

describes the positions of the agents at stage t.
Definition 2 A solution of K-Facility Reallocation Problem is
a sequence x = (x1, . . . , xT ). Each xt = (xt1, . . . , x

t
K) is a

K dimensional vector that gives the positions of the facilities
at stage t and xtk is the position of facility k at stage t. The
cost of the solution x is

Cost(x) =
T∑
t=1

[ K∑
k=1

|xtk − xt−1k |+
n∑
i=1

min
1≤k≤K

|αti − xtk|
]
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Given an instance (x0, C), the goal is to find a solution
x that minimizes the Cost(x). The term

∑T
t=1

∑K
k=1 |xtk −

xt−1k | describes the cost for moving the facilities from place
to place and we refer to it as moving cost, while the term∑T
t=1

∑n
i=1 min1≤k≤K |αti − xtk| describes the connection

cost of the agents and we refer to it as connection cost.
In the online setting, we study the special case of 2-

facility reallocation problem. We evaluate the performance
of our algorithm using competitive analysis; an algorithm
is c-competitive if for every request sequence, its online
performance is at most c times worse (up to a small ad-
ditive constant) than the optimal offline algorithm, which
knows the entire sequence in advance. Due to space lim-
itations, most proofs are omitted and can be found in
https://128.84.21.199/pdf/1905.12379.pdf.

3 Polynomial Time Algorithm
Our approach is a typical LP based algorithm that consists of
two basic steps.

• Step 1: Expressing the K-Facility Reallocation Problem
as an Integer Linear Program.

• Step 2: Solving fractionally the Integer Linear Program
and rounding the fractional solution to an integral one.

3.1 Formulating the Integer Linear Program
A first difficulty in expressing the K-Facility Reallocation
Problem as an Integer Linear Program is that the positions on
the real line are infinite. We remove this obstacle with help
of the following lemma proved in [de Keijzer and Wojtczak,
2018].

Lemma 3.1 Let (x0, C) an instance of the K-facility reallo-
cation problem. There exists an optimal solution x∗ such that
for all stages t ∈ {1, T} and k ∈ {1,K},

x∗tk ∈ C1 ∪ . . . ∪ CT ∪ x0

According to Lemma 3.1, there exists an optimal solution
that locates the facilities only at positions where either a agent
has appeared or a facility was initially lying. Lemma 3.1
provides an exhaustive search algorithm for the problem and
is also the basis for the Dynamic Programming approach in [de
Keijzer and Wojtczak, 2018]. We use Lemma 3.1 to formulate
our Integer Linear Program.

The set of positions Pos = C1 ∪ . . . ∪ CT ∪ x0 can be
represented equivalently by a path P = (V,E). In this path
the j-th node corresponds to the j-th leftmost position of
Pos and the distance between two consecutive nodes on the
path equals the distance of the respective positions on the
real line. Now, the facility reallocation problem takes the
following discretized form: We have a path P = (V,E) that
is constructed by the specific instance (x0, C). Each facility k
is initially located at a node j ∈ V and at each stage t, each
agent i is also located at a node of P . The goal is to move the
facilities from node to node such that the connection cost of
the agents plus the moving cost of the facilities is minimized.

To formulate this discretized version as an Integer Linear
Program, we introduce some additional notation. Let d(j, l)

Algorithm 1: Algorithm for the offline case

Data: Given the initial positions x0 = {x01, . . . , x0K} of
the facilities and the positions of the agents
C = {C1, . . . , CT }.

• Build the path P and the Integer Linear Program (1).
• Solve the relaxation of the Integer Linear Program (1).
• Rounding 1: For each stage t ≥ 1:

– For m = 1, . . . ,K , find the node jtm such that∑jtm−1
`=1 ct` ≤ m− 1 ≤

∑jtm
`=1 c

t
`

– Set facility m at the respective position of node jtm
on the line, xtm ← d(j, 1) + minp∈C1∪...∪CT∪x0 p.

be the distance of the nodes j, l ∈ V in P , F be the set of
facilities and C be the set of agents. For each i ∈ C, Loc(i, t)
is the node where agent i is located at stage t. We also define
the following {0, 1}-indicator variables for all t ∈ {1, T}:
xtij = 1 if, at stage t, agent i connects to a facility located at
node j, f tkj = 1 if, at stage t, facility k is located at node j,
Stkjl = 1 if facility k was at node j at stage t− 1 and moved
to node l at stage t. Now, the problem can be formulated as
the Integer Linear Program depicted in Figure 1.

The first three constraints correspond to the fact that at every
stage t, each agent i must be connected to a node j where at
least one facility k is located. The constraint

∑
j∈V f

t
kj = 1

enforces each facility k to be located at exactly one node j.
The constraint Stk =

∑
j,l∈V d(j, l)Stkjl describes the cost

for moving facility k from node j to node l. The final two
constraints ensure that facility k moved from node j to node
l at stage t if and only if facility k was at node j at stage
t − 1 and was at node l at stage t (Stkjl = 1 iff f tkl = 1 and
f t−1kj = 1).

We remark that the values of f0kj are determined by the ini-
tial positions of the facilities, which are given by the instance
of the problem. The notation xtij should not be confused with
xtk that is the position of facility k at stage t on the real line .

3.2 Rounding the Fractional Solution
Our algorithm, described in Algorithm 1, is a simple rounding
scheme for the optimal fractional solution of the ILP of Fig-
ure 1. This simple scheme produces an integral solution that
has the exact same cost with the optimal fractional solution.

Lemma 3.2 Let x denote the solution produced by Algo-
rithm 1. Then,

Cost(x) =

T∑
t=1

[∑
i∈C

∑
j∈V

d(Loc(i, t), j)xtij +
∑
k∈F

Stk

]
where xtij , S

t
k denote the values of these variables in the opti-

mal fractional solution of the Integer Linear Program (1).

Lemma 3.2 is the main result of this section and it implies
the optimality of our algorithm. We remind that by Lemma 3.1
there is an optimal solution that locates facilities only in po-
sitions C1 ∪ . . . ∪ CT ∪ x0. This solution corresponds to
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an integral solution of our Integer Linear Program, meaning
that Cost(x∗) is greater or equal than the cost of the optimal
fractional solution, which by Lemma 3.2 equals Cost(x).

We dedicate the rest of the section to sketch the key steps
towards proving Lemma 3.2. The technical detailes are omit-
ted due to lack of space. Putting technicalities aside, the proof
is based on a simple and intuitive observation. For the rest
of the section, ctj , x

t
ij , f

t
j , S

t
kjl will denote the values of these

variables in the optimal fractional solution of the ILP (1).

Definition 3 V +
t denotes the set of nodes of P with a positive

amount of facility at stage t. Formally,

j ∈ V +
t if and only if ctj > 0

Nodes in V +
t are ordered from left to right and when we refer

to the j-th node of V +
t , we mean the j-th left most node.

Observation 1 The set of nodes at which agent i connects at
stage t are consecutive nodes of V +

t .

The term consecutive nodes of V +
t has the following inter-

pretation: every node j ∈ V between two of the consecutive
nodes of V +

t either belongs to the these consecutive nodes of
V +
t or does not belong to V +

t . Observation 1 follows from
the fact that at any stage t, agent i connects to the nodes of
V +
t that are closest to Loc(i, t) and have a total amount of

facility (ctj) at least 1. It is not hard to see that if these nodes
are not consecutive nodes of V +

t , then the connection cost of
i at stage t can be decreased, which contradicts the optimality
of the optimal fractional solution. We use Observation 1 to
prove Lemma 3.2 under the following assumption.

Assumption 1 Let f tjk and ctj be either 1/N or 0 for some
positive integer N .

Assumption 1 is not satisfied in general by the fractional
solution of the LP (1). Actually, each Stkj` is either 0 or
Atkj`/N

t
kj`, for some positive integers Atkj`, N

t
kj`, and each

positive f tkj is of the form Btkj/N , where N = ΠSt
kj`>0N

t
kj`

(since f tkj =
∑
j∈V S

t
kj`).

However, starting from a fractional solution of the LP (1),
we can enforce Assumption 1 for a (possibly exponentially)
large N , if we create enough collocated copies of each point
(j, t) and equi-distribute the values of f tjk and ctj over them.
The crucial observation is that We need Assumption 1 just to
simplify the analysis. After we show (i) how to transform a
fractional solution so that it satisfies Assumption 1 ; and (ii)
that under Assumption 1, Algorithm 1 computes an optimal
integral solution, we observe that the facility locations of
Algorithm 1 can be derived from the fractional solution in
linear time. In the following, show that under Assumption 1,
Algorithm 1 computes an integral optimal solution with cost
no larger than the cost of the initial fractional solution.

We note that |V +
t | = KN , since there are exactly K facil-

ities. By Assumption 1, each facility k places an amount of
facility 1/N to exactly N nodes of V +

t at each stage t. Now,
observe that the connection cost only depends on the values
ctj , meaning that the matching between facilities and nodes of
V +
t only influences the moving cost of the optimal fractional

solution. Thus, the optimal fractional solution chooses this

matching so as to minimize the fractional moving cost. This
optimal matching is the one presented in Statement 1.

Statement 1 Let the facilities be ordered from left to right
according to their initial positions. The m-th facility places
amount of facility f tmj = 1/N from the (m− 1)N + 1 to the
mN node of V +

t , ∀t ≥ 1.

Now, consider the following N integral solutions: The p-th
solution locates at stage t, facilitym at the (m−1)N+p node
of V +

t . These integral solutions are denoted as {Solp}Np=1 and
notice that Algorithm 1 produces Sol1.

Let MovCostti(Solp), ConCostti(Solp) denote the mov-
ing cost of the facilities and the connection cost of agent i at
stage t in the integral solution Solp respectively. By the con-
struction of the above integral solutions and by Statement 1,
the following equality follows:

1

N

N∑
p=1

MovCost(Solp) =
T∑
t=1

∑
k∈F

Stk (1)

Now, Observation 1 comes into play: each agent i connects
to N consecutive nodes of V +

t . We denote this set of nodes
as V +

ti . By the construction of the solutions {Solp}Np=1, each
Solp locates exactly one facility to exactly one node of V +

ti .
Moreover, xtij = 1/N for all j ∈ V +

ti , since by Assumption 1,
ctj = 1/N or 0. Using the last two facts, one can prove that:

1

N

N∑
p=1

ConCostti(Solp) =
∑
i∈C

∑
j∈V

d(Loc(i, t), j)xtij (2)

Summing Equation (2) over all i and t, and adding it to
Equation (1) gives us, that 1

N

∑N
p=1 Cost(Solp) equals

T∑
t=1

[∑
i∈C

∑
j∈V

d(Loc(i, t), j)xtij +
∑
k∈F

Stk

]
Since every Cost(Solp) is at least the fractional optimal cost,
we immediately obtain Lemma 3.2 (Sol1 is the solution pro-
duced by Algorithm 1).

4 A Constant-Competitive Algorithm
In this section, we present an algorithm for the online 2-facility
reallocation problem and we discuss the core ideas that prove
its performance guarantee.

Our algorithm (Algorithm 2) consists of two major steps. In
Step 1, facilities are initially moved towards the positions of
the agents. We remark that in Step 1, the final positions of the
facilities at stage t are not yet determined. The purpose of this
step is to bring at least one facility close to the agents. This
initial moving consists of three cases (see Figure 2), depending
only on the relative positions of the facilities at stage t− 1 and
the agents at stage t.

In Step 2, our algorithm determines the final positions of
the facilities xt1, x

t
2. Notice that after Step 1, at least one of

the facilities is inside the interval [αt1, α
t
n], meaning that at

least one of the facilities is close to the agents. As a result,
our algorithm may need to decide between moving the second
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facility close to the agents or just letting the agents connect to
the facility that is already close to them. Obviously, the first
choice may lead to small connection cost, but large moving
cost, while the second has the exact opposite effect. Roughly
speaking, Algorithm 2 does the following: If the connection
cost of the agents, when placing just one facility optimally, is
not much greater than the cost for moving the second facility
inside [αt1, α

t
n], then Algorithm 2 puts the first facility to the

position that minimizes the connection cost, if one facility
is used. Otherwise, it puts the facilities to the positions that
minimize the connection cost, if two facilities are used. The
above cases are depicted in Figure 3. We formalize how this
choice is performed, introducing some additional notation.
Definition 4 • Ct = {αt1, . . . , αtn} denotes the posi-

tions of the agents at stage t ordered from left to right.
If |Ct| = 2k, k ∈ N>0, then MC is the interval
[αtn/2, α

t
n/2+1]. If |C| = 2k + 1, k ∈ N0, then MC

is a single point.
• H(C) denotes the optimal connection cost for the set C

when all agents of C connect to the just one facility. That
is H(C) =

∑
α∈C |α−MC |. We also define H(∅) = 0.

• C∗1t (resp. C∗2t) denotes the positions of the agents that
connect to facility 1 (resp. 2) at stage t in the optimal
solution x∗. C1t (resp. C2t) denotes the positions of the
agents that connect to facility 1 (resp. 2) at stage t in the
solution produced by Algorithm 2.

Despite its lengthy description, Algorithm 2 is rather simple.
Only the last two cases are difficult to handle, and we explain
them subsequently. The performance guarantee of Algorithm 2
is formally stated in Theorem 4.1.
Theorem 4.1 Let x = {xt1, xt2}t≥1 the solution produced by
Algorithm 2 and x∗ the optimal solution. Then,

Cost(x) ≤ 63 · Cost(x∗) + |x01 − x02|
where x01, x

0
2 are the initial positions of the servers.

We remark that the factor 63 in Theorem 4.1 can be im-
proved to 20, but this requires considering some additional
cases that are omitted for the sake of exposition. The rest of
the section is dedicated to provide a proof sketch of Theo-
rem 4.1. Before proceeding, we present Lemma 4.2 that is a
key component in the subsequent analysis and reveals the real
difficulty of the online 2-facility reallocation problem.
Lemma 4.2 Let the optimal solution x∗ and C∗1t, C

∗
2t the set

of agents that connect respectively to facility 1 and 2 at stage
t. Let the solution yt = (yt1, y

t
2) defined as follows:

ytk =

{
MC∗

kt
if C∗kt 6= ∅

x∗tk if C∗kt = ∅
Then the following inequality holds,

T∑
t=1

[ 2∑
k=1

H(C∗kt) + |ytk − yt−1k |
]
≤ 3 · Cost(x∗)

Lemma 4.2 indicates that the real difficulty of the problem
is not determining the exact positions of the facilities in the op-
timal solution, but to determine the service clusters that the op-
timal solution forms. In fact, if we knew the clusters C∗1t, C

∗
2t

Algorithm 2: Selecting xt1 and xt2
Data: At stage t ≥ 1 the new positions of the agents

Ct = {αt1, . . . , αtn}, ordered from left to right,
arrive

Step 1: Moving the facilities towards the agents
z1 ← xt−11 , z2 ← xt−12
if z1 > αtn then

move facility 1 to the left until it hits αtn
z1 ← αtn

end
if z2 < αt1 then

move facility 2 to the right until it hits αt1
z2 ← αt1

end
if z1 < αt1 and z2 > αtn then

move facility 1 to the right and facility 2 to the left
until a facility hits [αt1, α

t
n]

z1 ← z1 + min(|xt−11 − αt1|, |xt−12 − αtn|)
z2 ← z2 −min(|xt−11 − αt1|, |xt−12 − αtn|)

end
Step 2: Selecting the final position of the facilities

if αt1 ≤ z1 ≤ αtn and z2 − αtn ≥ 3H(Ct) then
put facility 1 to the median of Ct and move facility 2
to the left by 3H(Ct)
xt1 ←MCt , xt2 ← z2 − 3H(Ct)

end
if αt1 ≤ z2 ≤ αtn and αt1 − z1 ≥ 3H(Ct) then

put facility 2 to the median of Ct and move facility 1
to the right by 3H(Ct)
xt1 ← z1 + 3H(Ct), x

t
2 ←MCt

end
else

Compute the optimal partition (O1, O2) of Ct that
minimizes the connection cost at stage t.
Put facility 1 to the median of O1 and facility 2 to the
median of O2.
xt1 ←MO1 , x

t
2 ←MO2

end

then Lemma 4.2 provides us with a 3-approximation algorithm.
Obviously, this information cannot be acquired in the online
setting, since C∗1t, C

∗
2t depend on the future positions of the

agents that we do not know. We prove that Algorithm 2 has
an approximation guarantee of 21 with respect to the solution
y, that directly translates to an approximation guarantee of
63 with respect to Cost(x∗). The latter is formally stated in
Lemma 4.3 and is the main result of this section.

Lemma 4.3 Let x = {xt1, xt2}t≥1 be the solution produced
by Algorithm 2. Then, the cost paid by solution x at stage t,∑2
k=1 |xtk − x

t−1
k |+

∑n
i=1 mink=1,2 |xtk − αti|, is at most

21
2∑
k=1

[H(C∗kt) + |ytk − yt−1k |] + Φt(x
t)− Φt−1(xt−1)

where Φt(x1, x2) = 2(|x1 − yt1|+ |x2 − yt2|) + |x1 − x2|.
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xt−11 xt−12

αt1 αtn

If both facilities 1 and 2 are on the left of the agents, then
facility 2 is moved to the right until hitting the position of
the leftmost agent (the case with facilities 1 and 2 on the
right of agents is symmetric).

xt−11 xt−12

αt1 αtn

If facility 1 is on the left of the agents and facility 2 is on
the right of the agents, then both facilities are moved with
the same speed towards the interval [αt

1, α
t
n] until one of

them hits the interval.

Figure 2: Step 1 of Algorithm 2 is depicted.

Lemma 4.3 directly implies Theorem 4.1 by applying a
telescopic sum over all t and then applying Lemma 4.2. Notice
that the additive term |x01 − x02| in Theorem 4.1 comes from
the fact that Φ0(x0) = |x01 − x02|.

In the rest of the section, we present the proof ideas of
Lemma 4.3, which come together with explaining Steps 1
and 2 of our algorithm. In Step 1, note that since x01 ≤ x02,
then xt1 ≤ xt2 by our algorithm construction. Now, assume
that xt−12 ≤ αt1 (second case). Before deciding the exact
positions of the facilities, we can safely move facility 2 to
the right until reaching αt1. The term safely means that this
moving cost is roughly upper bounded by the moving cost∑2
k=1 |ytk − y

t−1
k |. This safe moving applies to all three cases

of Step 1 in Algorithm 2 and is formally stated in Lemma 4.4.

Lemma 4.4 Let z = (z1, z2) denote the values of the vari-
ables z1, z2 after Step 1 of Algorithm 2. Then,
2∑
k=1

|zk − xt−1k | ≤ 2

2∑
k=1

|ytk − yt−1k | − Φt(z) + Φt−1(xt−1)

Proof: Assume that xt−12 ≤ αt1. Then, Algorithm 2 will first
move facility 2 to αt1 (z1 = xt−11 , z2 = αt1), paying moving
cost equal to |αt1 − xt−12 |. This moving cost can be bounded
with the use of the potential function Φ. More specifically,
we have that Φt(z)−Φt(x

t−1) + Φt(x
t−1)−Φt−1(xt−1) ≤

Φt(z)− Φt(x
t−1) + 2

∑2
k=1 |ytk − y

t−1
k |.

In case where z1 = xt−11 , z2 = αt1, the difference Φt(z)−
Φt(x

t−1) in the potential function equals 2(|yt2 − αt1| − |yt2 −
xt−12 |) + |xt−11 − αt1| − |xt−11 − xt−12 |. By the definition of
solution y in Lemma 4.3, either yt1 or yt2 lies in the interval
[αt1, α

t
n]. The latter implies that yt2 is on the right of αt1. As a

result we have that Φt(z)−Φt(x
t−1) = −|z2− xt−12 |, which

completes the proof of Lemma 4.4 for this case of Step 1.
Notice that inequality (3) holds for all three cases of Step 1.

Thus, one just need to prove that Φt(z) − Φt(x
t−1) ≤

−
∑2
k=1 |zk − xt−1k | for the other two cases. The case

xt−11 ≥ αtn is just symmetric. Since either either yt1 or yt2
is in [αt1, α

t
n], it can be easily shown that Φt(z)−Φt(x

t−1) ≤
−
∑2
k=1 |zk − x

t−1
k | for the third case of Step 1. �

xt1
z1 z2

αt1 αtn

The first choice of Step 2 is depicted. In this case, the
facility initially lying inside the interval [αt

1, α
t
n] moves to

the median of agents. In this position, the connection cost
is minimized using one facility.

z1 xt1 xt−12

αt1 αtn

xt2

The second choice of Step 2 is depicted. Facilities are
placed to the positions, where the connection cost of the
agents is minimized using two facilities.

Figure 3: Step 2 of Algorithm 2 is depicted.

The proof of Lemma 4.4 reveals the basic idea in Step 1.
According to the geometry of the agents’ positions, we can
identify a safe move whose cost is also paid by solution y
for moving the servers. Moreover, this proof reveals why we
compare our algorithm with the solution y and not directly
with x∗. All these safe moves are based on the fact that either
yt1 or yt2 lies in the [αt1, α

t
n] (the latter does not necessarily hold

for x∗). Finally, the potential function Φt(x1, x2) is crucial,
since it permits safe moves, when all agents are on the right/left
of the facilities (first/second case) as well as when they are
contained in the interval [xt−11 , xt−12 ] (third case). This idea
was developed for the K-server problem [Koutsoupias, 2009].

Up next, we analyze the ideas of Step 2. We now need to
bound the connection cost plus some additional moving cost
from the point where the safe move stopped.

Lemma 4.5 Let xt = (xt1, x
t
2) denote the locations of facili-

ties at stage t after the execution of Step 2. Then,

2∑
k=1

[H(Ckt)+ |xtk−zk|] ≤ 21

2∑
k=1

H(C∗kt)−Φt(x
t)+Φt(z)

The proof of Lemma 4.5 is again based on the function
Φt(x1, x2). The difficult case is when y served the agents us-
ing both facilities, since y’s connection cost can be arbitrarily
smaller than H(Ct). The last case of Step 2 is easier, since
Algorithm 2 pays minimum connection cost.
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