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Abstract

The fundamental assignment problem is in search
of welfare maximization mechanisms to allocate
items to agents when the private preferences over
indivisible items are provided by self-interested
agents. The mainstream mechanism Random Pri-
ority is asymptotically the best mechanism for this
purpose, when comparing its welfare to the opti-
mal social welfare using the canonical worst-case
approximation ratio. Despite its popularity, the ef-
ficiency loss indicated by the worst-case ratio does
not have a constant bound [Filos-Ratsikas ef al.,
2014]. Recently, [Deng et al., 2017] show that
when the agents’ preferences are drawn from a uni-
form distribution, its average-case approximation
ratio is upper bounded by 3.718. They left it as an
open question of whether a constant ratio holds for
general scenarios. In this paper, we offer an affir-
mative answer to this question by showing that the
ratio is bounded by 1/ when the preference values
are independent and identically distributed random
variables, where p is the expectation of the value
distribution. This upper bound also improves the
upper bound of 3.718 in [Deng et al., 2017] for the
Uniform distribution. Moreover, under mild condi-
tions, the ratio has a constant bound for any inde-
pendent random values. En route to these results,
we develop powerful tools to show the insights that
in most instances the efficiency loss is small.

1 Introduction

Studies in Mechanism Design focus on designing mecha-
nisms in which truth-telling is a dominant strategy, and so
the rational, risk-neutral agents are motivated to play their
truth-telling strategies. Subject to this qualitative constraint,
a truthful mechanism quantitatively optimizes an objective
such as social welfare or revenue. Build upon the classi-
cal Mechanism Design framework, Algorithmic Mechanism
Design [Nisan and Ronen, 1999] advances research and has
evolved to employing two typical analytic tools in Computer
Science. One of these tools imposes polynomial-time imple-
mentability on designing mechanisms, and the other evalu-
ates mechanism performances through the lens of the worst-
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case analysis. Typically, the (worst-case) approximation ra-
tio assesses to what extent a mechanism approximately op-
timizes an objective over all possible inputs and it is domi-
nated by the worst-case inputs [Procaccia and Tennenholtz,
2009]. There is now an extensive literature on topics in-
cluding matching [Dughmi and Ghosh, 2010; Anshelevich,
2016], scheduling [Koutsoupias, 2014; Christodoulou et al.,
2009], facility location [Filos-Ratsikas et al., 2015], kidney
exchange [Hajaj et al., 2015], fair division [Chen et al., 2013],
social choice [Anshelevich ef al., 2018], and auction design
[Hartline and Roughgarden, 2009; Mu’alem and Nisan, 2008;
Archer er al., 2003]. For a more detailed summary, we refer
the reader to [Nisan et al., 2007].

In the assignment problem (a.k.a., one-sided matching or
house allocation problem), there is a set of agents and a set
of items. The agents participate in a mechanism by reporting
their private preferences over the items. The mechanism then
assigns items to agents, according to a pre-defined allocation
function. The folklore mechanism Random Priority (a.k.a.,
Random Serial Dictatorship) is mainstream because it satis-
fies appealing properties including anonymity, truthfulness,
and ex-post Pareto efficiency. In addition, there exists no
mechanism that is ex-ante Pareto efficient while keeping the
first two desired properties [Zhou, 1990]. Random Priority
and its variants have notable practical applications. For ex-
ample, they are used in United States Naval Academy place-
ment [Roth and Sotomayor, 1990], social or government-
subsidised housing [Abdulkadiroglu and Sonmez, 1999],
graduate housing allocation at a large number of universities
[Abdulkadiroglu and Sénmez, 1998], and high school student
assignment in New York [Pathak and Sethuraman, 2011].

For the purpose of maximizing social welfare, i.e., the sum
of all agents’ utilities, Random Priority can only achieve a
©(1/4/n) fraction of the optimal social welfare in the worst
case, where n is the number of agents and items, and it
is asymptotically the best amongst all truthful mechanisms
[Filos-Ratsikas et al., 2014]. This negative result was con-
sidered a cautionary tale discouraging the wide applications
of Random Priority. Fortunately, the smoothed analysis and
average-case analysis mitigate it by revealing positive results
on social welfare approximation. In [Deng et al., 2017], the
authors show that when the worst-case inputs are subject to
small random noise, Random Priority attains social welfare
within a constant factor of the optimal welfare. In addition,
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when agents’ preferences are drawn from a uniform distribu-
tion, on average, the optimal social welfare is no more than
1 + e times of the social welfare attainable by Random Pri-
ority, where e is the Euler’s number. Therefore, on average,
the efficiency loss is small. The primal question that remains
open is: Does the constant average-case ratio result hold for
general probability distributions? In this paper, we partially
answer this question by showing the following results.

e When agents’ preference values are independent and
identically distributed random variables, the average-
case approximation ratio is upper bounded by 1/pu,
where p is the expectation of these random variables.

e When agents’ preferences values are independent but not
necessarily identically distributed random variables, un-
der mild conditions, the average-case approximation ra-
tio is upper bounded by a constant.

We note that the 1/p upper bound for the i.i.d. case improves
the 3.718 upper bound for the Uniform distribution UJ0, 1],
as its expectation y = % and 1/u yields an upper bound of
2. Taken together, these results further pin down the wide-
applicability of the Random Priority mechanism, for which
the worst-case analysis is insufficient to manifest.

To achieve these results, we employ the Central Limit The-
orems and carefully calibrate the values of some parameters
in a few building blocks to ascertain the rate that the prop-
erly normalized sum of preference values converges to a Nor-
mal distribution. By successfully compositing these building
blocks together, we bound the average-case ratios.

1.1 Related Work

The one-sided matching problem was introduced in [Hylland
and Zeckhauser, 1979] and has been studied extensively ever
since. Over the years, several different mechanisms have
been proposed with various desirable properties related to
truthfulness, fairness and economic efficiency with Proba-
bilistic Serial [Abdulkadiroglu and Sénmez, 2013; Bhalgat et
al., 2011; Bogomolnaia and Moulin, 2001; Katta and Sethu-
raman, 2006] and Random Priority [Abdulkadiroglu and
Sonmez, 1998; Svensson, 1999; Christodoulou et al., 2016;
Aziz et al., 2013] being the two prominent examples. In
the indivisible goods setting, the Top Trading Cycles (TTC)
method is well-studied and generalized to investigate vari-
ous problems. In particular, [Abdulkadiroglu and S6nmez,
1998] proposed an adaptation of the TTC method and estab-
lished an equivalence between the adapted mechanism and
Random Priority. [Kesten, 2009] proposed several exten-
sions of these popular mechanisms and presented an equiv-
alence result between those mechanisms in terms of eco-
nomic efficiency. In the presence of incentives, the assign-
ment problem was extensively studied in Computer Science
and Economics over the years [Zhou, 1990; Dughmi and
Ghosh, 2010; Mennle and Seuken, 2014]. We refer the inter-
ested reader to surveys [Abdulkadiroglu and Sonmez, 2013;
Sénmez and Unver, 2011]. [Bhalgat et al., 2011] studied the
approximation ratio of matching mechanisms, when the ob-
jective is maximization of ordinal social welfare, a notion of
efficiency that they define based solely on ordinal informa-
tion.
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Under the average-case analysis framework, [Zhang, 2018]
tackled the scheduling unrelated machines problem and
showed that the average-case approximation ratio of the
mechanism devised in [Koutsoupias, 2014] is upper bounded
by a constant, when the machines’ costs follow any indepen-
dent and identical distribution.

A similar notion but fundamentally different to our ap-
proach exists in Bayesian analysis [Chawla and Sivan, 2014;
Hartline and Lucier, 2010]. We leave a more detailed dis-
cussion of the two notions to the next section after formally
present the definition of the average-case approximation ra-
tio, to highlight the comparison.

2 Preliminaries

We study the one-sided matching problem that consists of
n agents and n indivisible items. The agents are endowed
with von Neumann - Morgenstern utilities over the items.
Throughout the paper, we denote the utility derived by agent
i on obtaining a unit amount of item j by a;;. In particu-
lar, following the classical literature [Zhou, 1990; Barbera,
20101, agents’ preferences a;; are represented by unit-range
values. That is, with normalization, any agent ¢’s valuation
on its most preferred item is 1, i.e., max;{a;;} = 1, and its
valuation on the least preferred item is 0, i.e., min;{a;; } = 0.
However, note that our model would be more general and
some calculations would be cleaner if we drop these con-
straints but only require that 0 < a;; < 1, Vi,j € [n]. A
valuation profile (or interchangeably, an instance) of agents’
preferences can be represented by a matrix A = [aij]nxn,
where the row vector (a;1, . - . , a4, ) indicates the valuation of
agent ¢’s preference.

A matching mechanism collects agents’ preference valua-
tions and output an assignment of items to them. Denote a
matching assignment by a matrix X = [;;],,xn, Where z;;
indicates the probability of agent ¢ receiving item j. So, a
mechanism is a mapping from the input instance A to an out-
put allocation X. Since there is an equal number of agents
and items, X will be a doubly stochastic matrix. According to
the Birkhoff - von Neumann Theorem, every doubly stochas-
tic matrix can be decomposed into a convex combination of
some permutation matrices. Therefore, any probabilistic allo-
cation X can be interpreted as a convex combination of a set
of deterministic allocations. We denote the set of all possible
instances by A and denote the set of all possible allocation
by X. Given a mechanism M and a valuation profile A € A,
as well as its allocation X(A) € X, we denote the expected
utility of agent ¢ by u;(X(A)) = 3, a;;x;; and denote the
expected social welfare by SW(X(A)) = >, u;i(X(A)).
When the context is clear, we drop the allocation notation
and simply refer them by u;(A) and SWy(A).

In Mechanism Design, agents are self-interested and may
misreport their values if that results in a better matching (from
their perspective). We are interested in truthful mechanisms,
under which agents cannot improve their utilities by misre-
porting. Formally, u;(a;,a_;) > u;(aj,a_;), Vi, where a; is
agent ¢’s true valuations, a_; is other agents’ valuations, and
a is any possible misreported valuation from agent ¢. The
mechanism which is the focus of this paper, Random Pri-
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ority (RP), is a truthful mechanism. It fixes an ordering of
the agents uniformly at random and then allocates them their
most preferred item from the set of available items based on
this ordering.

The canonical measure of efficiency loss due to the restric-
tion to the class of truthful mechanisms, compared to the op-
timal social welfare, is the worst-case approximation ratio,

SWopt(A)
Tworst (M) SUP ST(A)

where SWopt(A) = maxxex Y i, ui(X) is the optimal
social welfare which is equal to the value of the maximum
weight matching between agents and items. It is shown in
[Filos-Ratsikas ef al., 2014] that Random Priority achieves
the matching approximation ratio bound of ©(y/n). The
average-case approximation ratio of a truthful mechanism M
is the expectation of the ratio of the optimal social welfare to
the social welfare attained by mechanism M. That is,

SWOPT(A)] 7

SWi(A)
where the valuation variable a;; follows a distribution D.
This notion of average-case analysis is a pointwise division
that is in the same manner as the worst-case ratio 7y (M)
and the smoothed ratio studied in [Deng er al., 2017]. When
randomly draw an instance from a distribution, it informs us
the expected value of how far is the social welfare attainable
by a truthful mechanism M on the instance compared to the
optimal social welfare on the same instance.

In Bayesian mechanism design, the dominant approach
is the ratio of expectations, defined as E [SWopT(A)] <
r - E[SW\(A)]. When one’s interest is the expected social
welfare of a mechanism over all possible inputs compared
to the expected optimal social welfare, rather than a point-
wise comparison over the same instance, the ratio of expec-
tations would be more appropriate. In most cases, it is more
tractable, as it calculates two expectations separately.

Taverage(M) = E l:
Qijj ~D

3 Independent and Identically Distributed
Random Values

Subject to the unit-range normalization, there are two pre-
set values (0 and 1, respectively) in each row of a preference
matrix A. Let S be the set of indices such that their cor-
responding entries in A are preset. That is, S = {(i,75) :
a;;j = 0 or a;; = 1}. Obviously, |S| = 2n, where | * |
denotes the cardinality of a set!. In this section, we allow
the remaining n? — 2n values to be independent and iden-
tically distributed random variables following a distribution
D with expectation p and variance o2, i.e., a;; ~ DI[0,1],
Eplaij] = p, Var[a;;] = 02,Vi,j. We will show that the
average-case approximation ratio of RP is upper bounded by
a constant, for any distribution D[0, 1]. In order to prove
our main results, we partition the average-case ratio into two
cases according to the social welfare attainable by RP. We

"It does not matter which 2n of these valuations a;; are preset.
Our proofs hold for any choice of these 2n entries in A.
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carefully choose a scalar such that in one case, the probabil-
ity that the social welfare attainable by RP is smaller than the
scalar is asymptotically small (even if there is a large effi-
ciency loss in this case), and in the other case, the social wel-
fare attainable by RP is asymptotically close to the optimal
social welfare. En route to complying with these two condi-
tions simultaneously, we employ the Central Limit Theorem
and control the rate that the normalized sum of individual val-
ues converges to a normal distribution by carefully calibrating
a scalar.

One of the tools that we use to control the convergence rate
is the Berry-Esseen Theorem [Durrett, 2011].

Theorem 1 (Berry-Esseen) For n > 1, let X1,--- , X, be
i.i.d. random variables such that E[X1] = 0 and D[X;] =
o2. Denote S, % and F,(z) = Pr{S, < z}.

Then

_ CE[X |

— 0_3\/5 )

where ®(x) is the cumulative distribution function of the
standard Normal distribution, and 0.409 < C' < 0.475.

Now we will use the Berry-Esseen Theorem and the Cen-
tral Limit Theorem to prove a key lemma.

sup P (¢) = (a)

Lemma 1 For a given preference instance A, the probabil-
ity that the social welfare SWrp(A) attainable by Random
Priority is less than ), is bounded by the following inequality.

1 C
+ ;
2nVrlnn  o3y/n(n—2)

where C' is the constant in the Berry-Esseen Theorem and

/\:1+u(n—2)—a\/@1mn.

Proof: Firstly, for any preference instance A, the social
welfare attainable by Random Priority is lower bounded by
the following inequality.

Pr{SWgrp(A) <A} <

1 n n
SWrp(A) 2 03 3 ay
ni3a j=1
1 1
=5 2 aity D ay
(i.4)€s (i.5)¢S
1
=1 + ﬁ Z CLZ'j.
(i,)€S

Therefore,

Pr{SWap(4) <A} <Pril+— 3 a4y <A

n
(1,5)€S
=Pr Z a;; <p-n(n—2)—oy2n(n—2)Inn

(4,5)€S
(1
Secondly, since a;; are ii.d. random variables and
Ela;;] = w, Var[a;;] = 0%,Vi, j, we know that a;; — u are
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i.i.d. random variables such that E[a;; — p] = 0, Var[a;; —  Theorem 2 The average-case approximation ratio of Ran-
u] = o2, Vi, j. Let dom Priority, when agents’ preferences are independent and
identically distributed random variables, is upper bounded by
T _ Z(LJ’)QS (aij — 1) the constant 1/, where (i is the expectation of these random

n(n=2) ov/n(n — 2) variables.
and G, (n—2)(7) = Pr{T},(n—2) < x}. Proof: To calculate the expectation of the ratio of the op-
Following Theorem 1, the random variables 7}, (,,—2y con- timal social welfare to the social welfare attained by RP, we

verge in distribution to the standard Normal distribution  partition the value space of the ratio into two cases according

N(0,1). Thatis, T},(,, o) 4, N(0,1). In addition, the rate of ~ to the threshold parameter A. In each case, we multiply the
convergence is bounded by ratio by the probability that the case occurs. That is,

C - E[las; — )’ SWopr(A)

— P(z)| < =0 T M weraee(RP) = 2Woprl)

Sl;p|Gn(n—2)(x) (I)(l)| =3 n(n — 2) T g (R ) ai,j}_zD SWRP(A)
_ c < Pr{SWgp(A) > A} - ;

—_ 3 — b
g n(n 2) + PI‘{SWRP(A) < )\} * T'worst

where (i,7) ¢ S, and the second inequality holds because

0 <a;; <1land 0 < p < 1. Therefore, Here we plugged in the fact that SWopr(A) < n, for any
c instance A.

|Pr{T,(n_2) <2} — ®(2)] < . V. In addition, as shown in [Filos-Ratsikas et al., 2014],

ody/n(n—2) Tworst ~ O(y/n), there exists a constant ¢y, such that 7y <

C c1 - +/n, for sufficiently large n. Also, it is obvious that
————— Pr{SWgxp(A) > A} < 1. Now, we plug in these fact and
o®y/n(n —2)  the results established in Lemma 1.

=

IN

2 (iggs(ais — 1) }
Pr Tz, — Oz
{ oy/n(n—2) = (=)

= Pr Z a;; <p-nn—2)+x-oy/n(n—2) n

(i-4)¢S Taverage(RP) < 1

v ) o 1+pun—2)—o @mn
< e Tdty —— Q2
/_oo V2m o3y/n(n —2) ) n [ 1 N C 1 e/
V/ 3 Sl — ol
Let x = —+v2Inn. Obviously, —x — +oco when n ap- 2nyminn - ody/n(n - 2)
proaches infinity. Following (2), we get that 1 1
Sﬁ 12, 1 _ov2hn
Pr Z aij < p-n(n—2) —ov2lnn-/n(n —2) mokm pn
(,5)€S + C1 n C-c
—V2lnn , C 2vmnlnn  o3y/n —2
< L —
_Lm V2r a3y/n(n —2) Since 1j|t\ < 1+ 2Jt|, when [t| < 1. As long as
_ /+Oo 1 e‘édt—k C 2_ P%n + ‘”5711“" < %, we conclude that
Va2inn V2w o3y/n(n —2)
< 1 e~mn 4 c (RP) < 1 149 2 1 n ov2lnn
=~ T = - T I S — _— e — —
V2mv/2Inn a3y/n(n —2) averee 1 n un
S c__ 3) ,_a . _Ca
2nvmlnn - o®y/n(n—2) 2vrnlnn  o3vn—2
Combining (1) and (3), we prove that 122 1 n ov2lan
1 C Cop op|n oun un
Pr{SWgp(A) <A} < + .
{SWar(4) J 2nvwlnn  o3y/n(n—2) N 1 n C-
0 2/mnlnn  o3v/n —2
We shall see that A was chosen such that A ~ ©O(n), 1
and Pr {SWgp(A) < A} ~ O(2). After establishing these - w
building blocks, we are ready to prove the main theorem of
this section. ]
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4 Independent but not Necessarily Identical
Random Values

In this section, we further generalize the results in Section 3
to the scenario that the n? — 2n elements in {a;;|(i,5) ¢ S}
are independent random values but are not restricted to fol-
lowing an identical distribution. So, they may have different
expectations E[a;;] = y;; and variance Varla;;] = 07}, Vi, .
We will show that under mild conditions, the average-case
approximation ratio of RP has a constant upper bound. The
primary obstruction in this generalization is the difficulty to
appropriately control the rate of convergence of the normal-
ized sum of the random values, in order to obtain a constant
upper bound. However, we are able to pinpoint a mild con-
dition, such that when the random variables a;; comply with
the condition, we can establish similar building blocks to the
last section. By carefully calibrating the parameter \, we can
assemble them in a compatible way to get a constant upper
bound.

Firstly, we identify the following mild conditions:

D) Yo jygs Hig = Un?)s () 3o, jy¢s 05 = w(n). Note
that there are n? — 2n elements in the set {a;;|(i,7) € S}.
so the first condition simply implies that there would not
be many of these a;; whose expectations are asymptotically
small. The second condition merely implies that the vari-
ances of the valuations are not too small. In other words,
the first condition excludes those instances that many agents’
preferences are negligible; the second condition requires their
preferences to admit a magnitude of variation.

Secondly, to control the rate of convergence, we will em-
ploy the following theorem which is a refined version of
the Berry-Esseen Theorem. It holds for non-identically dis-
tributed random variables [Esseen, 1945].

Theorem 3 Let 7, .- ,Z, be independent random vari-
ables such that E[Z;] = 0, D[Z;] = o2, and E[|Z;|]?
Denote X,, = 22tZn gpd F, (x) = Pr{X,, < z}. Then

V2 o7

there exists a constant C' such that
C’ -3 ElZilP

O(z)| € —="—5—,
OTHE
where ®(x) is the CDF of the standard Normal distribution.

Now, let Z;; := a;j — p1i;, where (i, j) ¢ S. Denote their
normalized sum of Z;; and the CDF of X, (,,_) by

i Zig

Xn(n—2) = g Y )

Zi,j Uzzj

Next, let A = 1 + Z”‘jfs/w — ¥Zun, \/Z(i,j)gs 0%

With this carefully chosen value of A\, we are able to show the
following lemma.

sup | Fy (z) —

Xn(n—2) ()

Lemma 2 For a given preference matrix A, the probability
that the social welfare SWgp(A) attainable by Random Pri-
ority is less than ), is bounded by the following inequality.

1 N c’
2 b
nvrlnn \/Zi’j oZ;

where C' is the constant in Theorem 3.

Pr{SWgp(A) <A} <
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= Pr(Xn(n—2) < l‘)

Proof:  On the one hand, SWrp(A) > 1+ £ 35, jyog @i
implies that

Pr {SWRP(A) S A} < Pr 1

Z aijg)\

( 0,5 ¢S
=Pr Z a;; < Z Hi; —V2Ilnn-
('L] s 7J)¢S ’J $S

“4)
On the other hand, according to Theorem 3, there exists a
constant C’, such that

C' -3, Bl 2y
(o) < O T Pl

2
(Z” Uin)
Since | Z;;| < 1, we have E[|Z;;]]* < E[|Z;;]]* = 77;. So,

Sup |FXn(n72) (I) -
x

C/

sup [Fix,(, 5 (2) = ®(z)| £ ————=

x 0.2

i,j 7 ij

Therefore, Vz,
O/
|PI‘ {Xn(n72) < :I,‘} — (I)(.I)’ < 5 s
i 9ij
a; 17 !
= |Pr ng — ®(x) SL

Zi,j Uzzj

IS WIEEN IS
ij i.j ij
r 1 2 c’
S/ —e Tdt + ————. )
—co V2 2
" 2055

Let x = —v2Inn. Obviously, —x — +oo when n ap-
proaches infinity. Following (5), we obtain that

D <D pis— >
7 ,] i,
—V2Inn

- /_Oo N

v2Ilnn -

1/2
e zdt+

Z 2
4,5 9ij
[ ——

V2mV/21n n

\/ i ¥
1

<ot
2 2
nvmwlnn \/Zi,j gij

Combining (4) and (6), we complete the proof. O
Finally, we are ready to prove the main theorem of this
section.

1

— lnn

(6)

Theorem 4 The average-case approximation ratio of Ran-
dom Priority, when agents’ preferences are independent but
not necessarily identically distributed random variables, is
upper bounded by a constant.
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Proof: We partition the value space of the ratio into two

cases according to the threshold parameter \. In each case,

we multiply the ratio by the probability that the case occurs.
SWopt(A)

That is,
{ SWrp(A) ]

< Pr{SWarp(A) > A} - ; + Pr{SWgrp(A) < A} - c1vn

E

a;;~Dj;

Taverage (RP) =

We assemble the above building blocks and get that
Taverage(RP) <1

1+21]Nu \/m

7]

1 ol
2nV/m1 * 2
nvmTinn \/Z” o

'Cl\/ﬁ

n? 1
< 5 02
Hi,j / V2%
1- ( 21nn. Z#i]‘ ZZU)

n c1 " eivn
2V lnn /ZOU

According to the first condition, there HH, dNy, such that
Yn > N, Eu < % Note that 0 < a;; < 1 and
0 < pij < 1,80 >y < n? hence% We
also know that >~ o2, 5 < n?. Together with the first condi-
2
tion, we have that v2Inn - sziffj — 0 an -
g ¥
when n — oo. Therefore, there 3Ny, such that when
\/2111n~/20';2j n
2 Mg N
n > max{ Ny, N1}, we have that

\/m,/ZU”

> 1.

1

n > Ni, 5. Hence, when

<

1 n
Tav RP) < —
a erage( ) 1 Z,LL7] Z,Uij
" c1 " eivn
2\/7mlnn \/z 0”
B 1 9 | V2Inn, /> oF n
g 1 > Hij Y
+ C1 Cl\/>
2\/7mlnn

%Z

Jn

Because of condition (ii), we know that —~ 0. In
conclusion, ’
1 1
Taverage(RP) = — +0 = —.
H K
O
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5 Conclusion

This paper extended the average-case analysis in [Deng et al.,
2017] from a uniform distribution to any independent distri-
bution and showed a constant upper bound of the approxima-
tion ratio. The average-case analysis complements classical
worst-case analysis when the worst-case performance is in-
sufficient to characterize the performance of a mechanism.
Our results further justify the wide-applicability of the Ran-
dom Priority mechanism.

There are a few technical points we would like to high-
light here. Firstly, the techniques presented in this paper
are probably applicable to analyzing other mechanisms and
other domains. Secondly, there are various generalizations of
the Berry-Esseen Theorem, and each of them may be cast to
prove similar results in Section 4. In an earlier version of the
present paper, we had also independently proved a version
of the convergence rate. The difference in utilizing different
versions of these theorems is that they each require a set of
conditions to make the rest of the proof work, and the inter-
pretations of those conditions could be different.

There are a number of problems remain open as well. For
example, one may be interested in investigating the average-
case ratio of Random Priority in correlated domains. Also,
it would be interesting to proving tighter bounds by making
more use of the structure of the assignment problem domain.
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