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Abstract
We consider the problem of fairly allocating a set
of indivisible goods among n agents. Various fair-
ness notions have been proposed within the rapidly
growing field of fair division, but the Nash social
welfare (NSW) serves as a focal point. In part,
this follows from the ‘unreasonable’ fairness guar-
antees provided, in the sense that a max NSW allo-
cation meets multiple other fairness metrics simul-
taneously, all while satisfying a standard economic
concept of efficiency, Pareto optimality. However,
existing approximation algorithms fail to satisfy all
of the remarkable fairness guarantees offered by
a max NSW allocation, instead targeting only the
specific NSW objective. We address this issue by
presenting a 2 max NSW, Prop-1, 1/(2n) MMS,
and Pareto optimal allocation in strongly polyno-
mial time. Our techniques are based on a market
interpretation of a fractional max NSW allocation.
We present novel definitions of fairness concepts in
terms of market prices, and design a new scheme
to round a market equilibrium into an integral allo-
cation in a way that provides most of the fairness
properties of an integral max NSW allocation.

1 Introduction
We study the age old problem of fair allocation of goods
among agents with additive valuations. The formal study of
fair division of goods dates back to the cake cutting prob-
lem introduced by [Steinhaus, 1948]. In the simplest ver-
sion, two agents must agree on a way to split a heterogeneous
cake. The well known cut and choose protocol achieves two
standard notions of fairness: envy-freeness where every agent
weakly prefers their allocation over any other agents’ alloca-
tion, and proportionality where every agent receives at least a
1/n share of the goods.

Another fairness criterion, max Nash social welfare
(NSW), i.e., geometric mean of the agents’ valuations, also
yields envy-free and proportional allocations. NSW strikes
a balance between the perfectly efficient utilitarian objective,
maximizing the sum of agents’ valuations, and the undoubt-
edly fair egalitarian objective, maximizing the minimum val-
ued bundle. Further, an allocation which maximizes NSW

(max NSW) corresponds to a certain equilibrium of a linear
Fisher market which defines a fractional allocation and a set
of prices. This equilibrium, known as a competitive equi-
librium of equal incomes, yields an allocation that is not only
envy-free and proportional [Varian, 1976], but also Pareto op-
timal (PO), a standard notion of economic efficiency. Then,
fractional max NSW allocations are both fair and efficient.

When goods are indivisible, no algorithm can ensure either
envy-freeness or proportionality, e.g., consider allocating a
single good between two agents. This motivates the need for
alternate concepts of fairness. One choice is to provide addi-
tive approximations. In an envy-free up to one good (EF-1)
allocation each agent weakly prefers her bundle after remov-
ing some good from another agent’s bundle. Similarly, an
allocation is proportional up to one good (Prop-1), if each
agent values her bundle at least a 1/n share of the goods af-
ter adding some good not allocated to her. A maximin share
(MMS) offers an intriguing alternative relaxation to propor-
tionality. The idea is a natural generalization of the cut and
choose protocol from the cake cutting problem. Suppose we
allow one agent to choose a partition of the goods into n bun-
dles (one for each agent), with the caveat that the other agents
get to choose a bundle before her. In the worst case, she re-
ceives her least preferred bundle. Clearly, the agent must se-
lect a partition that maximizes the value of her least preferred
bundle. We call the value of this bundle the agent’s maximin
share (MMS). In an αMMS allocation, α ∈ [0, 1], each agent
receives a bundle she values at least α MMS.

NSW also serves as a major focal point in fair division of
indivisible goods. Caragiannis et al. [2016] present a com-
pelling argument in favor of the ‘unreasonable’ fairness of
max NSW allocations. Analogous to the case of divisible
goods, an integral max NSW allocation is EF-1 (and therefore
Prop-1 [Conitzer et al., 2017]), Ω(n−1/2) MMS, and PO.

1.1 Our Contribution
As a testament to its inherent fairness, NSW has been redis-
covered in multiple contexts and employed in wide variety of
applications to ensure fair outcomes. Much of its ‘unreason-
able’ fairness stems from the fact a max NSW allocation also
meets multiple, sometimes conflicting, fairness notions si-
multaneously, all while still satisfying the standard economic
notion of efficiency, Pareto optimality.

However, finding an integral max NSW allocation is APX-
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hard [Lee, 2017]. Moreover, existing approximations only
target the NSW objective, falling short of the array of fairness
properties found in a true max NSW allocation. Thus, current
literature leaves a clear gap between all of the strong fairness
guarantees offered by a max NSW allocation and its approxi-
mations. This begs the question: Does an approximation exist
that more closely resembles all the remarkable properties of
a true max NSW allocation? In this paper, we definitively an-
swer yes. Specifically, we provide an algorithm which yields
a 2 max NSW, Prop-1, 1/(2n) MMS, and PO allocation. We
also note that none of the previous algorithms achieves these
bounds, and we provide counterexamples in Section 5.

Our techniques rely on a market interpretation of fractional
max NSW allocations. First, we present novel bounds on any
agent’s Prop and MMS guarantees in terms of market prices.
Then, we design a new scheme to round a market equilibrium
into an integral allocation in a way that provides most fairness
properties of an integral max NSW allocation.

1.2 Related Work

We focus on three of the most common notions of a fair allo-
cation: NSW, MMS, and Prop-1.1

NSW. [Cole and Gkatzelis, 2015] gave the first constant
factor (2.89) approximation algorithm to the NSW objective.
Later, [Cole et al., 2017] refined the analysis of the algo-
rithm, showing it yields a 2 max NSW allocation. More re-
cently, [Barman et al., 2018] designed an FPTAS that yields
a 1.45 max NSW, PO, and a (1 + ε) EF-1 allocation.

Prop-1. [Conitzer et al., 2017] introduced Prop-1 in the
context of fair division of public goods, i.e., where all agents
receive the same allocation. This generalizes the private
goods case we consider. The authors demonstrate a polyno-
mial time procedure to achieve a Prop-1 allocation, but leave
the problem of finding a Prop-1 and PO allocation in polyno-
mial time. The recent work of [Barman and Krishnamurthy,
2019] resolves this issue for private good setting by providing
an algorithm that yields a Prop-1 and PO allocation.

MMS. [Budish, 2011] defined maximin share which gives
an intuitive local measure of fairness of an allocation. [Bou-
veret and Lemaı̂tre, 2014] showed that an MMS allocation
exists in certain special settings. [Procaccia and Wang, 2014;
Kurokawa et al., 2016] obtained the surprising result that
MMS allocations might not exist, and showed the existence
of a 2/3 MMS allocation. [Amanatidis et al., 2017] obtained
a PTAS which finds a (2/3− ε) MMS allocation. Later, [Bar-
man and Krishna Murthy, 2017] and [Garg et al., 2019] ob-
tained simple algorithms to find a 2/3 MMS allocation. More
recently, [Ghodsi et al., 2018] gave a PTAS to find a (3/4−ε)
MMS allocation, and [Garg and Taki, 2019] obtained an al-
gorithm to find a state of the art 3/4 MMS allocation.

We note that none of the above algorithms yields a constant
factor approximation to max NSW, Prop-1, 1/(2n) MMS,
and PO allocation simultaneously in poly-time.

1[Amanatidis et al., 2018] survey the current landscape of fair
division and the relationship between various fairness concepts.

2 Preliminaries
We consider the fair allocation of a set M of m indivisible
goods among a setN of n agents. A fractional allocation x =
(xi)i∈N is an assignment of goods to agents. Agent i’s bundle
is xi = (xij)j∈M where xij ∈ [0, 1] is the fraction of good j
allocated to i. An allocation is integral, corresponding to the
case of indivisible goods, if xij ∈ {0, 1}, ∀i, j. We use the
notation A = (Ai)i∈N to denote integral allocations to avoid
confusion between fractional and integral allocations. That
is, Ai = {j ∈ M : xij = 1}. Let X = {x :

∑
i∈N xij ≤

1, ∀j ∈ M} be the set of feasible fractional allocations, and
A be the set of feasible integral allocations.

Let vij denote agent i’s valuation of good j, and for a bun-
dle xi, i’s valuation is vi(xi) =

∑
j∈M vijxij . When x is an

integral allocation, we overload the definition of vi as follows.
For any subset of goods S ⊆M , define vi(S) =

∑
j∈S vij .

NSW of an allocation is defined as

NSW (x) =
( n∏
i=1

vi(xi)
)1/n

.

A max NSW allocation maximizes NSW over all feasible
allocations, i.e., x∗ ∈ arg maxx∈X NSW (x). An allocation
x is an α max NSW allocation if αNSW (x) ≥ NSW (x∗)
for some α ≥ 1.

MMS of agent i ∈ N is defined as
MMSi = max

A∈A
min
Ak∈A

vi(Ak).

A maximin share allocation A satisfies vi(Ai) ≥ MMSi,
∀i ∈ N . For any α ∈ (0, 1), an α MMS allocation gives each
agent a bundle with value vi(Ai) ≥ αMMSi.

Prop-1 Proportionality (Prop) requires that each agent re-
ceive a bundle they value as at least as much as an equal share
of the goods, i.e., vi(Ai) ≥ 1

nvi(M), ∀i. A Prop-1 allocation
is proportional after adding a good not allocated to the agent.

vi(Ai) + max
j∈M\Ai

vij ≥ vi(M)/n, ∀i ∈ N.

PO An allocation x′ Pareto dominates another allocation x if
vi(x

′
i) ≥ vi(xi), ∀i ∈ N , and vk(x′k) > vk(xk) for some

agent k, i.e., if at least one agent’s utility improves without
sacrificing the utility of any other agent. An allocation x is
PO if no allocation x′ dominates x.

3 Linear Fisher Markets
Our algorithm relies on rounding a fractional allocation x ob-
tained from market equilibrium. In this section, we sum-
marize the relationship between the fractional NSW, the
Eisenberg-Gale (EG) program, and linear Fisher markets. Al-
though the agents in our problem do not spend any money, the
fictitious market interpretation provides useful information to
aid in rounding the fractional allocation.

Consider maximizing the NSW over fractional allocations,
which is equivalent to maximizing the sum of logarithms of
the agent valuations. This turns out to be a special case of well
known Eisenberg-Gale program [1959] where ei = 1, ∀i.

max
x∈X

n∑
i=1

ei log vi(xi) s.t.
n∑

i=1

xij ≤ 1, and xij ≥ 0, ∀i, j . (EG)
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3.1 A Market Interpretation
The central concept in the design of our algorithm plays off an
interpretation of solutions to (EG) as the equilibrium of a lin-
ear Fisher market. A Fisher market is the tuple 〈N,M, V, e〉,
where N is a set of n agents, M is a set of m goods,
V = (vi)i∈N defines the agents valuations, and e = (ei)i∈N
gives the agents’ budgets. In this setting, each agent seeks to
spend their budget on fractions of goods. The utility of agent
i for receiving xij amount of each good j is

∑m
j=1 vijxij .

A fractional allocation x and a price vector p = (pj)j∈M
correspond to primal and dual variables of (EG) respectively.
A pair (x̄, p̄) which solve (EG) defines an equilibrium.
Definition 1. The pair (x̄, p̄) are an equilibrium if: (i) all
goods are fully allocated

∑n
i=1 x̄ij = 1, ∀j ∈ M , (ii) all

agents spend their budget
∑m

j=1 x̄ij p̄j = ei, ∀i ∈ N , and
(iii) all agents only purchase maximum bang per buck (MBB)
goods, i.e., if x̄ij > 0, then j ∈ arg maxk∈M vik/p̄k.

We define the set of MBB goods for agent i as

MBBi = {j ∈M : j ∈ arg max
k∈M

vik/p̄k}. (1)

Spending Graph. Our algorithm exploits some structural
properties of equilibria. Namely, an equilibrium (x̄, p̄) ad-
mits a representation as a forest. First, we define a bipartite
graph using the vertices N ∪ M , with the set of agents N
on one side and the set of goods M on the other. Using the
fractional allocation x̄, we create the spending graph Q(x̄, p̄)
by adding a weighted edge (i, j) between agent i and good j
with weight x̄ij p̄j , if x̄ij > 0. Due to equilibrium condition
(iii), j ∈MBBi for each edge (i, j) of the spending graph.
Lemma 1. [Duan et al., 2016] It is always possible to rear-
range the agents’ spending to ensure the spending graph is a
forest.
Theorem 2. [Mas-Colell et al., 1995] Every Fisher market
equilibrium is Pareto optimal.

3.2 Spending Restricted Equilibrium
Equilibria of linear Fisher markets define fractional alloca-
tions x̄. Naturally, one hopes to devise a way to round x̄ into
an integral allocationA that, at least approximately, preserves
its strong fairness guarantees. However, [Cole and Gkatzelis,
2015] demonstrated that no rounding procedure yields a
meaningful approximation to the fractional max NSW, and
they gave a clever modification. Specifically, they relax the
constraint that all goods need to be fully allocated, and instead
require that the total spending on any good does not exceed 1,
the budget of an agent. That is, for all goods j ∈M , the total
spending on good j is

∑n
i=1 x̄ij p̄j = min(1, p̄j). The modi-

fied constraint slightly changes the equilibrium conditions.
Definition 2. A spending restricted (SR) equilibrium is a
fractional allocation x̄ and prices p̄ such that: (i’) the total
spending on each good j is

∑n
i=1 x̄ij p̄j = min(1, p̄j), and

conditions (ii) and (iii) of Definition 1 hold.
The condition (i’) of Definition 2 is the defining character-

istic of an SR equilibrium, and the only difference between
SR and Fisher equilibria. Notably, in an SR equilibrium all
agents still purchase only MBB goods, and we can rearrange

agents’ spending so that the resulting spending graph is a for-
est. Further, [Cole and Gkatzelis, 2015] provide a strongly
polynomial time algorithm to compute an SR equilibrium.
Note that we always compute SR equilibrium using agents’
budgets ei = 1, ∀i ∈ N .

4 Approximation Algorithm
We present an algorithm that takes as input an SR equilibrium
(x̄, p̄), and outputs an integral allocation A = (Ai)i∈N that is
2 max NSW, 1/(2n) MMS, Prop-1, and PO.

We start with the important observation that the NSW,
MMS, and Prop-1 of an agent are scale invariant, i.e., for
any agent i and any c ∈ R+, scaling i’s valuations as
vij ← cvij , ∀j ∈ M doesn’t change the problem. Define
i’s MBB ratio αi := maxj vij/p̄j . It is useful to rescale
agents’ valuations, vij ← vij/αi. Notice that this implies
vij = p̄j , ∀j ∈MBBi, and vij < p̄j otherwise.

Definition 3. Given an equilibrium price vector p̄, we say
that an agent’s valuations are scaled to prices if: vij = p̄j for
all j ∈MBBi, and vij < p̄j otherwise.

4.1 Basic Bounds
Before discussing specifics of the rounding scheme, we estab-
lish upper bounds on the various fairness metrics. These re-
sults rely on a few properties of SR equilibria which provides
some insight on how to approach rounding the fractional allo-
cation x̄. To avoid repetition, let (x̄, p̄) be an SR equilibrium
and assume agents’ valuations are scaled to prices.

Lemma 3. [Cole and Gkatzelis, 2015] Let x∗ be an integral
max NSW allocation. Then,

∏n
i=1 vi(x

∗
i ) ≤

∏
p̄j>1 p̄j .

Next, we provide upper bounds on any agents’ proportion-
ality, Propi = vi(M)/n, and MMSi guarantees in an SR
equilibrium. Let H = {p̄j ∈M : p̄j > 1} be the set of high
priced goods, and L = M \H be the set of low priced goods.

Lemma 4. For agent i ∈ N , Propi(M) = vi(M)/n ≤
max(1,maxj∈M vij).

Proof. Since the budget of each agent is 1, the total spending
on all goods in an equilibrium is n. Also, the spending on
any good is capped at 1, so that the total spending on high
valued goods H is |H|. Therefore, since agents’ valuations
are scaled to prices∑

j∈L
vij ≤

∑
j∈L

p̄j = n− |H|, ∀i ∈ N . (2)

Fix an agent i and let v∗i = maxj∈M vij , then since
agents’ valuations are scaled to prices vi(M) =

∑
j∈L vij +∑

j∈H vij ≤ n−|H|+v∗i |H|. By considering the two cases:
v∗i > 1 or v∗i ≤ 1, the result follows easily.

Lemma 5. For any agent i ∈ N , MMSi ≤ 1.

Proof. Let MMSn
i (M) be agent i’s MMS given the goods

M and n agents, i.e., i must partition the goods of M into n
bundles in a way that maximizes the minimum valued bun-
dle. We first show that for any agent i, if we remove any
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other agent l and any good j, then MMSn−1
i (M \ j) ≥

MMSn
i (M).

LetB = (Bi)i∈N be the bundles i selects when calculating
her MMSn

i (M), i.e., vi(Bk) ≥ MMSn
i (M), ∀Bk ∈ B.

Wlog, assume Bn contains j. Suppose we redistribute the
goods of Bn \ j arbitrarily to the other bundles of B to create
a partition ofM \j into n−1 bundlesB′ = (B′1, . . . , B

′
n−1).

Then, vi(B′k) ≥ vi(Bk) ≥MMSn
i (M), ∀k ≤ n− 1.

Clearly, the above argument generalizes to the case of
removing k agents and k goods, i.e., MMSn−k

i (M \
{j1, . . . , jk}) ≥ MMSn

i (M), for any k < n and {jl}kl=1 ⊆
M . Applying this to the set of high valued goods H yields
MMSn

i (M) ≤ MMS
n−|H|
i (M \ H) = MMS

n−|H|
i (L).

Further, MMS
n−|H|
i (L) ≤ vi(L)/(n − |H|). Then, using

(2), MMSn
i (M) ≤ vi(L)

n−|H| ≤
1

n−|H|
∑

j∈L pj ≤ 1.

4.2 Rounding Algorithm
We explain the steps of our algorithm below and provide a
formal description in Algorithm 1, which we refer to as ALG.
Let (x̄, p̄) be an SR equilibrium. We assume agents’ valua-
tions are scaled for the prices p̄, and that the spending graph
is a forest, by Lemma 1. Let T denote the forest in the spend-
ing graph. In a tree t ∈ T , let Mt and kt be the set of goods
and the number of agents respectively. We note that the initial
steps are similar to ones in [Cole and Gkatzelis, 2015].

In Step 0, for each tree t ∈ T , we pick an arbitrary agent to
serve as the root, which we refer to as the root agent. Notice
that this gives the levels of each tree a particular structure. All
vertices at depth 1 are goods that the root agent spends on in
the fractional allocation x̄, vertices at depth 2 correspond to
agents purchasing some fraction of the goods at depth 1, and
so on. Since the tree t is part of the spending graph, all edges
connecting an agent i to goods j ∈Mt are in fact MMBi.

Observe that, if good j ∈ Mt is a leaf node with parent
agent i, then i is the only agent buying j in x̄. Hence, we
assign every leaf good to its parent agent in Step 1.

Step 2 assigns all goods j ∈ Mt such that p̄j < 1/2 to
their parent agent i. For any child agent k of good j, we
make k the root agent of the new tree formed by cutting the
edge between k and j in the spending graph, i.e., k becomes
the root of the subtree containing all goods and agents below
her. Notice that, since agents spend their entire budget of 1
and p̄j < 1/2, the newly created root agent k loses no more
than half her budget in this step.

In Step 3, for any j ∈ Mt with two or more child agents,
we cut the edges of all child agents except the one spending
the most on j, i.e., the agent i with the largest x̄ij . Similar to
Step 2, any other child agent k of j becomes the root agent
of a new tree. Also, notice that the root agent k of the newly
formed tree loses no more than half of her budget in this step
since the total spending on any good is capped at 1. Steps
2 and 3 endow the remaining trees with a specific structure.
Each tree t ∈ T contains kt agents and exactly kt − 1 unas-
signed goods from Mt. Further, each unassigned good has
exactly one parent agent and one child agent. In addition, all
unassigned goods are worth a least p̄j ≥ 1/2 to both the par-
ent and child agents. We offer a recursive rounding scheme
to meet all stated fairness notions in Step 4.

Algorithm 1: Rounding Algorithm
Input : SR equilibrium (x̄, p̄)
Output: A 2 max NSW, Prop-1, PO, 1

2n MMS
allocation

1 Initialize: Ai = ∅ for all i ∈ N .
2 Step 0: Select a root agent in each tree.
3 Step 1: Assign all leaf goods to their parent agents.
4 Step 2: Assign agents all child goods j s.t. p̄j < 1/2.
5 Step 3: For all goods j s.t. p̄j ≥ 1/2, cut edges

between j and all child agents except the one
spending the most on j, i.e., the largest x̄ij .

6 Step 4: For tree t with kt ≥ 2 agents, let Ni be the
neighbors of agent i in the tree t (parent and child
goods). Sort and relabel agents in decreasing order of
current total value, i.e., vi(Ai). Let
i∗ = min{i ∈ t : vi(Ai) + maxj∈Ni

vij ≥ 1}, and
remove i∗ from the tree.

7 Step 5: Assign all remaining goods in the tree.

In the recursion, we select the agent receiving the high-
est value allocation before the assignment of any remaining
goods in the tree, i.e., i ∈ arg maxk∈t vk(Ak) (ties are broken
arbitrarily). We test if adding either the agent’s parent good or
any of its child goods satisfy her Prop-1 guarantee. Formally,
letNi = {j ∈Mt : j is parent or child of i} be the neighbors
of i in the tree. Then, we check if vi(Ai)+maxj∈Ni

vij ≥ 1.
If this condition is satisfied, then we remove i from the tree.
Otherwise, we test the same condition for the second high-
est spending agent in the tree, and so on until we find an
agent that values her current allocation enough so that she can
meet the Prop-1 guarantee without receiving any item from
the matching tree (refer to Lemma 8).

At the start of Step 4, there are matchings that assign kt −
1 agents a good in the matching tree. Removing one agent
ensures that a perfect matching between remaining agents and
goods exists. In Step 5, we allocate all unassigned goods.

Theorem 6. ALG returns a 2 max NSW, Prop-1, 1/(2n) MMS,
PO allocation in strongly polynomial time.

4.3 Proof of Theorem 6
Observe that each step of ALG runs in strongly polynomial
time, and therefore so does ALG. In the following lemmas
we verify that all fairness concepts are satisfied. Let A =
(A1, . . . , An) be the final integral allocation output by ALG.

Lemma 7. A is Pareto optimal.

Proof. We define a modified Fisher market instance
(N,M, V, e′) using the same set of agents, goods and agent
valuations, but with different budgets. For each agent i, we
set their new budget as e′i =

∑
j∈Ai

p̄j . By Theorem 2, it
is enough to check the allocation A and prices p̄ satisfy the
equilibrium conditions (Definition 1). Obviously, all goods
are allocated, and each agent spends their entire budget by
construction. Observe that agent i’s allocation is a subset of
goods she spent on in the SR equilibrium, i.e., i purchases
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only MMB goods. It follows that A and prices p̄ are market
equilibrium for the Fisher market instance (N,M, V, e′).

The following observations play a key role the remaining
analysis. First, in the fractional allocation each agent receives
a bundle they value at 1. This follows from equilibrium con-
dition (ii) and the fact that valuations are scaled to prices, i.e.,
vi(x̄i) =

∑
j∈M p̄j x̄ij = ei = 1. Second, after complet-

ing Steps 0-3, all remaining trees t have exactly kt agents
and kt − 1 unassigned goods. We call these matching trees.
Further, every unassigned good in a matching tree has one
parent agent and one child agent. Finally, in each matching
tree t ∈ T , there exists at most one good j /∈ Mt such that
some agent i was spending on j in x̄, i.e., x̄ij > 0. To see
this, notice that we only cut edges of the spending graph in
Steps 2 and 3. If the edge between i and j is cut in either step,
then i was a child of j. After cutting the edge, i becomes the
root of a new tree. Since edges between root agents and their
child goods are never cut, then only the root agent can lose
one edge from the original spending graph.

The following lemma lower bounds the value of the bundle
any agent receives in a matching tree. This lemma is crucial
to proving the various fairness properties of ALG.
Lemma 8. In each matching tree t, the agent i removed in
Step 4 of ALG receives a bundle such that vi(Ai) ≥ 1/(2kt).

Proof. Let A′ = (A′1, . . . , A
′
n) be the agents’ allocations at

the beginning of Step 4. Also, letNi be the neighbors of agent
i in the matching tree (parent and child goods). Recall agent
i is removed from the tree if vi(A′i) + maxj∈Ni

vij ≥ 1.
First, we show that we can always find an agent satisfying

this condition. Observe that, at the beginning of Step 4, any
leaf agent i retains all edges in the original spending graph.
Also, she values her fractional allocation vi(x̄i) = 1, and
she has exactly one parent good, say j, in the matching tree.
Then, vi(A′i) = vi(x̄i)−x̄ijvij . Since good j is not integrally
assigned to i, x̄ij < 1. It follows that vi(A′i)+vij = vi(x̄i)+
(1− x̄ij)vij > vi(x̄i) = 1.

We show that i∗ removed from the tree in Step 4 receives a
bundle such that vi∗(Ai∗) ≥ 1/(2kt). Observe that there is at
most one good j /∈Mt that the root agent was spending on in
x̄, and the root spent no more than x̄ijpj ≤ 1/2. Therefore,
the total spending of agents in the tree on the goods of Mt,
together with the goods already assigned is at least kt − 1/2,
since all agents spend their entire budget in the equilibrium.
Also, the agents spend no more than kt−1 on the unassigned
goods in the matching tree, since (x̄, p̄) is an SR equilibrium.
This implies that some agent must receive at least 1/(2kt)
before Step 4. Recall that we check the agents in decreasing
order of the value of their bundle at the beginning of Step 4. If
the first agent is removed, then clearly she receives a bundle
worth at least 1/(2kt).

Suppose that the agent receiving the most at the beginning
of Step 4, say i, does not satisfy the condition. Then, vi(A′i)+
vij =

∑
k∈A′i

p̄k + p̄j < 1, ∀j ∈ Ni, since valuations are
scaled to prices. Therefore, if i and any good j ∈ Ni are
removed from the tree, then the remaining kt−1 agents spend
at least kt−1/2− (

∑
k∈A′i

p̄k + p̄j) ≥ kt−3/2 on the goods
ofMt \ j, and no more than kt−2 is spent on the other kt−2

unassigned goods of Mt \ j. Therefore, some agent must
receive a bundle worth at least 1/[2(kt − 1)]. Noting that all
leaf agents satisfy vi(A′i) + maxj∈Ni

vij ≥ 1, we can iterate
this argument to ensure the agent removed in Step 4 receives
a bundle worth at least 1/(2kt).

Lemma 9. ALG returns a 1/(2n) MMS allocation.

Proof. By Lemma 5, MMSi ≤ 1 for all agents. Observe
that if agent i was never part of a matching tree, then she
receives a bundle worth at least 1/2. In a matching tree, every
agent, except the one removed in Step 4, receives one of the
unassigned goods they value vij = p̄j ≥ 1/2. Lemma 8
shows that i∗ removed from the tree receives bundle worth
at least 1/(2kt). Obviously, the size of any tree kt ≤ n. It
follows that all agents receive at least 1/(2n)MMSi.

Lemma 10. ALG returns a Prop-1 allocation.

Proof. Recall that Propi ≤ max(1,maxj∈M vij), by
Lemma 4. Therefore, for any i, if maxj∈M vij > 1, then the
Prop-1 condition is trivially satisfied. For this reason, assume
that maxj∈M vij ≤ 1, ∀i ∈ N .

The agent i∗ removed from a matching tree t during Step 4
clearly satisfies Prop-1. Suppose agent i receives good j in a
matching tree, i.e., vij = p̄j ≥ 1/2. We consider two cases.
If i has two or more child goods, then at least one child good,
say k, is not in her integral allocation Ai, and vik = p̄k ≥
1/2. Therefore, vi(Ai) + vik ≥ vij + vik ≥ 1. If i has at
most one child good (or is in a tree of size kt = 1), then there
is at most one good k in her fractional allocation that is not in
her integral allocation, i.e., vi(Ai) + vik ≥ vi(x̄i) = 1.

The next part is an adaptation of the analysis given in [Cole
et al., 2017]. Notice that all but one agent in each matching
tree receives a good with value p̄j ≥ 1/2. The remaining
agent, say r, was removed from the tree in Step 4, and she
receives at least vr = vr(Ar) ≥ 1/(2kt), by Lemma 8.
Lemma 11. In any matching tree t with kt ≥ 2 agents, the
minimum product of agents’ valuations is achieved when at
least k1 = b(kt − 2vr)/(1 + 2vr)c agents receive a bundle
worth at least 1.

Proof. Let A be an allocation with minimum product of the
agents’ valuations, and let A′ = (A′i)i∈N be the agents’ bun-
dles before Step 4. Recall that the agent r removed from
the tree satisfies vr(A′r) + vrj ≥ 1 for some j ∈ Nr,
and we check this condition in decreasing order of vi(A′i).
Therefore, for any i such that vi(A′i) > vr(A′r), we have
vi(Ai) < 1 since i receives a good j ∈ Ni. It follows that
for any of the agents receiving a bundle vi(Ai) ≥ 1, the to-
tal spending on the goods of Ai is no more than 1 + vr, i.e.,∑

j∈Ai
p̄j ≤ 1 + vr.

The proof follows by contradiction. Let qj ≤ 1 denote the
total spending on good j ∈Mt, and letM ′t be goods allocated
to the k1 agents receiving at least 1 and agent r. Then∑

j∈Mt\M′t

qj = kt − 1/2− [k1(1 + vr) + vr]

=
1

2
(kt − k1) +

1

2
kt − (

1

2
+ vr)(k1 + 1).
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Suppose, for contradiction, k1 +1 ≤ b(kt−2vr)/(1+2vr)c.
Then the remaining kt − k1 − 1 agents have value at least
(kt − k1)/2. Further, at least two of these agents receive a
bundle worth vi(Ai) > 1/2, otherwise the remaining agent
receives a bundle worth at least (kt−k1)/2−(kt−k1−2)/2 =
1, contradicting the definition of k1. However, if two agents,
say 1 and 2, receive bundles they value v1, v2 ∈ (1/2, 1), then
clearly giving agent 1 a bundle worth 1/2 and agent 2 a bundle
worth v1 + v2 − 1/2 produces a lower product of the agents’
valuations, a contradiction.

Lemma 12. [Cole et al., 2017] For any tree t with kt agents∏
i∈t

vi(Ai) ≥
1

2kt

∏
j∈Mt:p̄j>1

p̄j . (3)

Proof. This follows from Lemma 11 and the argument of
Lemma 26 in [Cole et al., 2017].

Lemma 13. ALG returns a 2 max NSW allocation.

Proof. Using the upper bound on the optimal integral NSW
from Lemma 3, we want to show that

2(
n∏

i=1

vi(Ai))
1/n ≥ (

∏
p̄j>1

p̄j)
1/n.

From Lemma 12, it follows that( ∏
i∈N

vi(Ai)
)1/n

=
(∏
t∈T

∏
i∈t

vi(Ai)
)1/n ≥ 1

2

( ∏
p̄j>1

p̄j
)1/n

,

since
∑

t∈T kt = n.

Proof. (Theorem 6) The approximation guarantees follow
immediately from Lemmas 7, 9, 10, and 13.

5 Examples
In this section we provide explicit examples to demonstrate
that existing approximation algorithms fail to satisfy either:
Prop-1, or a constant factor max NSW and MMS allocation.

Example 1. We show that the algorithm of [Barman and
Krishnamurthy, 2019], which gives a Prop-1 and PO allo-
cation, does not yield a α max NSW or β MMS alloca-
tion for any α, β > 0. The algorithm relies on rounding a
Fisher market equilibrium. Consider n identical agents, i.e.,
vi(·) = vj(·), ∀i, j ∈ N . We let v denote their common valu-
ation function. There are n goods where v(1) = n−1+1/n,
and v(j) = 1/n, ∀j ≥ 2. Clearly, the max NSW is positive.
Also, MMSi = 1/n for each agent i, since |M | = n.

Consider the fractional allocation x, where x1 =
(1/[n(n − 1 + 1/n)], 1, . . . , 1), and xi = (1/[n − 1 +
1/n], 0, · · · , 0), ∀i ≥ 2. In words, agents 2 through n spend
their budget on good 1 and receive nothing else, while agent 1
receives a smaller portion of good 1 and all goods 2 through
n. Define the prices pj = v(j), i.e., price of every good is
equal to the agents’ valuation. It is easily verified that equilib-
rium conditions (Definition 1) hold. Therefore, (x, p) defines
an equilibrium. However, regardless of rounding procedure,
n− 2 agents receive nothing in the integral allocation.

Figure 1: Spending graph for Example 3.

Example 2. We show that the algorithm of [Barman et al.,
2018] may not give a Prop-1 allocation. Recall, their algo-
rithm yields an (1 + ε) EF-1 allocation, i.e., (1 + ε)vi(Ai) ≥
vi(Aj \ g) for some g ∈ Aj . Fix ε > 0, and let k = d2/εe.

Consider an instance with two identical agents and |M | =
k + 4 goods, where v(j) = 1/k for all j ∈ {1, . . . , k + 3},
and v(k+4) = 1. Let the allocation be A1 = {1, . . . , k+3},
and A2 = {k + 4}. Then (1 + ε)v(A2) ≥ 1 + 2/k = (k +
3 − 1)/k = v(A1 \ j) ∀j ∈ A1, so that the allocation is
(1 + ε) EF-1. However, v(M) = 2 + 3/k. Then, Prop2 =
1 + 3/(2k) > 1 + 1/k = v2(A2) + vij , ∀j ∈ A1. We note
that if ε is chosen small enough based on instance size, then
[Barman et al., 2018] algorithm yields an EF-1, hence Prop-1
allocation. However, the runtime may not be polynomial.

Example 3. We show that [Cole and Gkatzelis, 2015] may
fail to yield a Prop-1 allocation. Figure 1 shows the spending
graph of an SR equilibrium. Agents are shown as circles, and
goods as squares. Directed arrows show the spending of each
agent. All agents, except b, share the same valuations, shown
below of each good. Agent b values all goods, except 7, the
same as other agents. However, b values good 7 at vb7 = 0.5
as shown in parenthesis. Their algorithm starts by selecting a
root agent for each tree. If agent a is picked, then goods 1, 2,
and 3 are assigned to a, cutting the edge between b and good
3, and making b the root of the tree shown in the dashed box.

First all leaf goods are assigned to their parent agent’s,
creating a partial allocation A′. Then the algorithm com-
putes a maximum weight matching to assign the remaining
goods in the dashed box. Weights in the matching are set as
log(vi(A

′
i) + vij) between i and j s.t. x̄ij > 0. It is easily

verified that all matchings have maximum weight, therefore
b may not be assigned to any additional goods. In this case,
b’s final allocation is good 4 with value vb(A′b) = 0.4. We
compute Propb = 11/12 > vb(Ab) + vbj , ∀j ∈M .

6 Conclusions and Future Work
We presented a market based approach to approximate max
NSW allocations. First, we gave novel bounds on any agent’s
Prop and MMS guarantees in terms of market prices. Then,
we designed a new scheme to round an SR equilibrium into a
2 max NSW, Prop-1, 1/(2n) MMS, and PO allocation. One
interesting direction for future work is improving the approx-
imation to meet EF-1 guarantees. Another avenue to pursue
is obtaining a constant factor NSW and MMS allocation.
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