
Compact Representation of Value Function
in Partially Observable Stochastic Games

Karel Horák1 , Branislav Bošanský1 , Christopher Kiekintveld2 and Charles Kamhoua3

1Czech Technical University in Prague, FEE, Department of Computer Science
2The University of Texas at El Paso, Computer Science Department

3Army Research Laboratory, Network Security Branch
{horak, bosansky}@agents.fel.cvut.cz, cdkiekintveld@utep.edu, charles.a.kamhoua.civ@mail.mil

Abstract
Value methods for solving stochastic games with
partial observability model the uncertainty of the
players as a probability distribution over possible
states, where the dimension of the belief space is
the number of states. For many practical problems,
there are exponentially many states which causes
scalability problems. We propose an abstraction
technique that addresses this curse of dimensional-
ity by projecting the high-dimensional beliefs onto
characteristic vectors of significantly lower dimen-
sion (e.g., marginal probabilities). Our main con-
tributions are (1) a novel compact representation
of the uncertainty in partially observable stochas-
tic games and (2) a novel algorithm using this rep-
resentation that is based on existing state-of-the-
art algorithms for solving stochastic games with
partial observability. Experimental evaluation con-
firms that the new algorithm using the compact rep-
resentation dramatically increases scalability com-
pared to the state of the art.

1 Introduction
Partially Observable Stochastic Games (POSGs) are a very
general model of dynamic multi-agent interactions under
uncertainty, and they can be used for modeling dynamic
problems where players can react to other players based
on limited, imperfect observations. Examples include pa-
trolling [Basilico et al., 2009; Vorobeychik et al., 2014;
Brazdil et al., 2018] where a defender protects a set of tar-
gets against an attacker, pursuit-evasion games [Chung et al.,
2011] where a pursuer is trying to find and apprehend an
evader. Security games including green security games [Fang
et al., 2015; 2016] and cybersecurity games [Nguyen et al.,
2017]) can also be generalized so that the defender can ob-
serve and react to attackers during the game.

Unfortunately, computing optimal strategies in POSGs is
highly intractable from the algorithmic perspective, even in
the two-player zero-sum setting. When both players have par-
tial information about the environment, the players may need
to reason not only about their belief over possible states, but
also about the belief the opponent has over the possible states,
beliefs over beliefs, and so on. Restricting to subclasses of

POSGs where this issue of nested beliefs does not arise al-
lows us to design and implement algorithms that are guar-
anteed to converge to optimal strategies [Horák et al., 2017;
Horák and Bošanský, 2019]. However, the scalability of the
current algorithms even for this case is limited.

One of the fundamental problems is the complexity of rep-
resenting and reasoning about uncertainty over a potentially
very large state space. In these POSGs (as in single-agent Par-
tially Observable Markov Decision Processes (POMDPs)),
beliefs are probability distributions over the possible states.
This is a well-known disadvantage of these models, since
memory and computation time grow rapidly due to the curse
of dimensionality. Taking a related approach to previous
work on POMDPs (e.g., in [Roy et al., 2005; Li et al., 2010;
Zhou et al., 2010]), we address this problem by introducing a
compact representation of the uncertainty in POSGs, and we
develop a novel algorithm based on this representation that
dramatically improves the scalability.

As a motivating domain, we consider a cybersecurity ex-
ample where an attacker uses lateral movement actions to ex-
pand his control in a network without being detected. The
defender tries to observe the attacker and take actions to
protect the network by reconfiguring honeypots. A perfect-
information version of this problem was proposed in [Kam-
dem et al., 2017], however, we focus on a more realistic
model where the defender has a limited information about
the attacker. This version of the lateral movement game
with uncertainty can be modeled as a one-sided POSG (OS-
POSG) [Horák et al., 2017]. Originally, the belief of the de-
fender is defined over the possible subsets of resources that
the attacker may currently control in the network. This rep-
resentation scales exponentially in the size of the network so
it is intractable for all but the smallest examples. We return
to our motivating domain in Section 4 where key steps of our
novel algorithm are discussed specifically for this domain.

Our main technical contribution is replacing the repre-
sentation of beliefs over the exponential number of possi-
ble states using a compact characteristic vector that captures
key information but reduces the dimensionality of the beliefs.
Specifically, we propose using the marginal probability of
each resource being infected as a characteristic vector instead
of explicitly considering all possible subsets of infected re-
sources. While this offers a path to scaling to much larger
problems, it has consequences for the solution quality as well

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

350

as the construction of the solution algorithm. Many compo-
nents of state-of-the-art POSG solvers are based on manipu-
lating the full belief distribution and we show how these can
be redesigned to operate on more compact characteristic vec-
tors. We formally define the fixed-point equation, show that
the value function in the compact representation is still a con-
vex function, and that solving a compact representation of the
game yields a lower bound on the value of the original game.
For our motivating domain, the novel algorithm operating on
the compact representation scales orders of magnitude better
with a negligible loss in quality (less than 1%) compared to
the state of the art algorithm.

2 One-sided POSGs
A one-sided partially observable stochastic game [Horák et
al., 2017], or OS-POSG, is an imperfect-information two-
player zero-sum infinite-horizon game with perfect recall rep-
resented by a tuple (S,A1, A2, O, T,R). The game is played
for an infinite number of stages. At each stage, the game is in
one of the states s ∈ S and the players choose their actions
a1 ∈ A1 and a2 ∈ A2 simultaneously. An initial state of
the game is drawn from a probability distribution b0 ∈ ∆(S)
over states termed the initial belief. The one-sided nature of
the game translates to the fact that while player 1 lacks de-
tailed information about the course of the game, player 2 is
able to observe the game perfectly (i.e., his only uncertainty
is the action a1 player 1 is about to take in the current stage).

The choice of actions determines the outcome of the
current stage: player 1 gets an observation o ∈ O and
the game transitions to a state s′ ∈ S with probability
T (o, s′ | s, a1, a2), where s is the current state. Furthermore,
player 1 gets a reward R(s, a1, a2) for this transition, and
player 2 receives −R(s, a1, a2). The rewards are discounted
over time with discount factor γ < 1.

OS-POSGs can be solved by approximating the optimal
value function V ∗ : ∆(S) → R, mapping beliefs b ∈ ∆(S)
of player 1 to his expected utility in belief b, using a pair of
value functions V and V (lower and upper bound on V ∗). The
algorithm from [Horák et al., 2017] refines these bounds by
solving a sequence of stage games and is guaranteed to con-
verge to an ε-approximation of the optimal solution. In each
of these stage games, the algorithm finds the optimal strate-
gies of the players in this stage (i.e., π1 ∈ ∆(A1) for player 1
and π2 : S → ∆(A2) for player 2) while assuming that the
current belief of player 1 is b and the play in the subsequent
stages yields values represented by value functions V or V ,
respectively. Solving the stage games also defines the fixed
point equation for V ∗ w.r.t. the dynamic operator H ,

V ∗(b) = HV ∗(b) = min
π2

max
π1

(
Eb,π1,π2 [R(·)] + (1)

+ γ
∑
a1,o

Prb,π1,π2
[a1, o] · V ∗(τ(b, a1, π2, o))

)
,

where τ(b, a1, π2, o) denotes the Bayesian update of the be-
lief of player 1 when he played a1 and observed o. Recall that
observations of player 1 depend both on the states of the game
and actions of player 2 who has complete information–hence
the dependency of Prb,π1,π2

[a1, o] on b and π2.

For piecewise-linear and convex V and V , a stage game
can be solved using linear programming. We show this linear
program for V (represented as a point-wise maximum over a
set Γ of linear functions αi : ∆(S)→ R).

min V , subject to: (2a)∑
a2

π2(s ∧ a2) = b(s) ∀s (2b)

V ≥
∑
s,a2

π2(s ∧ a2)R(s, a1, a2) + γ
∑
o

Va1o ∀a1 (2c)

ba1o(s′) =
∑
s,a2

π2(s ∧ a2)T (o, s′|s, a1, a2) ∀a1, o, s
′ (2d)

Va1o ≥
∑
s′

αi(s
′)ba1o(s′) ∀a1, o, αi (2e)

π2(s ∧ a2) ≥ 0 ∀s, a2 (2f)

In this linear program, player 2 seeks a strategy π2 for the cur-
rent stage of the game to minimize the utility V of player 1.
Here π2(s ∧ a2) stands for the joint probability (ensured
by (2b) and (2f)) that the current state of the game is s
and player 2 plays the action a2. Constraint (2c) stands
for player 1 choosing the best-responding action a1. Con-
straint (2d) expresses the belief ba1o in the subsequent stage
of the game when a1 was played by player 1 and observation
o was seen (multiplied by the probability of seeing that ob-
servation), and finally constraint (2e) represents the value of
V in the belief ba1o. Such a linear program can be then com-
bined with point-based variants of the value-iteration algo-
rithm, such as Heuristic Search Value Iteration (HSVI) [Smith
and Simmons, 2004; Horák et al., 2017].

A different approximation scheme is used for the upper
bound V on V ∗. Instead of using the point-wise maximum
over a set of linear functions αi ∈ Γ, V is expressed using
a set Υ = {(b(i), y(i)) | 1 ≤ i ≤ |Υ|} of points (where b(i)

is the coordinate of a point in the belief space, and y(i) is its
associated value). The lower convex hull of this set of points
is then formed to obtain the value of V (b),

V (b) = min
λ∈R|Υ|≥0

 ∑
1≤i≤|Υ|

λiy
(i) | 1Tλ = 1,

∑
1≤i≤|Υ|

λib
(i) = b

 .

(3)
Here, λ stands for the coefficients of a convex combination
of points in Υ (requiring that the convex combination of the
coordinates b(i) of the points matches the belief b). Con-
straint (2e) can then be adapted to use this representation of
V as detailed in [Horák and Bošanský, 2016].

3 Compact Representation of V ∗

The dimension of the value function V ∗ is the number of
states, which is exponential in the size of the network for our
motivating domain. We propose an abstraction scheme called
summarized abstraction to decrease the dimensionality of the
problem by creating a simplified representation of the beliefs
over the state space.

We associate each belief b ∈ ∆(S) in the game with its
characteristic vector χ(b) = A · b (for some fixed matrix

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

351

A ∈ Rk×|S| where k � |S|) and we define an (approximate)
value function Ṽ ∗ : Rk → R over characteristic vectors.

The main goal is to adapt algorithms based on value it-
eration to operate over the more compact space Rk instead
of the original belief space ∆(S). First, we adapt the fixed
point equation (1) for OS-POSGs to work with compact Ṽ ∗
(instead of original V ∗). We let the player 2 choose any be-
lief that is consistent with the current characteristic vector χ
(by adding an extra minimization term), and we replace the
value of belief b, V ∗(b), by the value of its characterization
Ṽ ∗(A · b). We also denote this compound function Ṽ ∗ ◦A.

Ṽ ∗(χ) = H̃Ṽ ∗(χ) = min
b|Ab=χ

min
π2

max
π1

(
Eb,π1,π2

[R] + (4)

+ γ
∑
a1,o

Prb,π1,π2
[a1, o] · Ṽ ∗(A · τ(b, a1, π2, o))

)
Next, we show that the value function Ṽ ∗ satisfying the fixed
point equation (4) (and obtained as a limit of applying oper-
ator H̃) provides a valid lower bound on the solution of the
original game representation over the belief space.

Theorem 1. Ṽ ∗(χ(b)) ≤ V ∗(b) for every b ∈ ∆(S).

Proof sketch. Let Ṽ0 be arbitrary and V0(b) = Ṽ0(χ(b)).
Construct sequences {Ṽt}∞t=0 and {Vt}∞t=0 such that Ṽt+1 =

H̃Ṽt and Vt+1 = HVt. Assume Ṽt(χ(b)) ≤ Vt(b) for ev-
ery b (which holds for t = 0). Now H(Ṽt ◦ A) ≤ HVt.
The extra minimization over beliefs b in H̃Ṽt can only de-
crease the utility and hence Ṽt+1(χ(b)) = H̃Ṽt(χ

(b)) ≤
H(Ṽt ◦ A)(b) ≤ HVt(b) = Vt+1(b). This extends to the
limits Ṽ ∗ and V ∗.

Note that the equation (4) can also be solved using linear
programming. Consider a lower bound ṼLB on Ṽ ∗ formed
as a point-wise maximum over linear functions αi(χ) =
(a(i))Tχ+z(i). We modify the linear program (2) by consid-
ering that the belief b is a variable (constrained by χ),

constraints (2b), (2c), (2d), (2f) (5a)∑
s

b(s) = 1 (5b)

A · b = χ (5c)
b(s) ≥ 0 ∀s , (5d)

and we replace the constraint (2e) to account for different rep-
resentation of ṼLB by

χa1o = A · ba1o ∀a1, o (5e)

qa1o = 1T · ba1o ∀a1, o (5f)

Va1o ≥ (a(i))T · χa1o + z(i) · qa1o ∀a1, o, αi , (5g)

where qa1o = 1T · ba1o is the probability that o is generated
when player 1 uses action a1.

Observe that the only constraints with non-zero right-hand
side in this new linear program are constraints (5b) and (5c).
This is critical in the following proof that Ṽ ∗ is convex.

Algorithm 1: HSVI algorithm for OS-POSGs when
summarized abstraction is used.

1 Initialize ṼLB and ṼUB to lower and upper bound on Ṽ ∗

2 while ṼUB(χ0)− ṼLB(χ0) > ε do
3 Explore(χ0, ε, 0)

4 procedure Explore(χ, ε, t)
5 (b, π2)← optimal belief and strategy of player 2 in

H̃ṼLB(χ)
6 (a1, o)← select according to heuristic
7 χ′ ← τ(χ, a1, π2, o)

8 Update Γ and Υ based on the solutions of H̃ṼLB(χ)

and H̃ṼUB(χ)

9 if ṼUB(χ′)− ṼLB(χ′) > εγ−t then
10 Explore(χ′, ε, t+ 1)
11 Update Γ and Υ based on the solutions of

H̃ṼLB(χ) and H̃ṼUB(χ)

Theorem 2. Value function Ṽ ∗ is convex.

Proof. Consider a dual formulation of the linear program (2)
updated according to equations (5). Since the only non-zero
right-hand side terms in the primal are 1 and χ, the objective
of the dual formulation is o(χ) = χT · a + z. Moreover,
this is the only place where the characteristic vector χ oc-
curs. Hence the polytope of the feasible solutions of the dual
problem is the same for every characteristic vector χ ∈ Rk
and o(χ) (after fixing variables a and z) forms a lower bound
on the objective value of the solution for arbitrary χ. Since
we maximize over all possible o(χ) in the dual, the objective
value of the linear program (and also HṼLB) is convex in the
parameter χ.

Now, starting with an arbitrary convex (e.g., linear) Ṽ 0
LB,

the sequence of functions {Ṽ tLB}∞t=0, where Ṽ t+1
LB = H̃Ṽ tLB,

is formed only by convex functions. Therefore, the fixed
point Ṽ ∗ is also a convex function.

3.1 HSVI Algorithm for Compact POSGs
The Algorithm 1 we propose for solving abstracted games
is a modified version of the original heuristic search value
iteration algorithm (HSVI) for solving unabstracted OS-
POSGs [Horák et al., 2017]. The key difference is that we
use the value functions ṼLB and ṼUB (instead of V and V)
and we have modified all parts of the algorithm to use the
abstracted representation of the beliefs.

First, we initialize bounds ṼLB and ṼUB (line 1) to valid
piecewise linear and convex lower and upper bounds on Ṽ ∗

(using sets Γ of linear functions αi = (a(i))Tχ + z(i) and Υ
of points (χ(i), y(i))). Then, we perform a sequence of trials
(lines 2–3) from the initial characteristic vector χ0 = Ab0

until the desired precision ε > 0 is reached.
In each of the trials, we first compute the optimal optimistic

strategy of player 2, which in this case is the selection of the
belief b and strategy π2 (line 5). Next, we choose the ac-
tion a1 of player 1 and the observation o (lines 6–7) so that
the excess approximation error ṼUB(χ′) − ṼLB(χ′) − εγ−t
in the subsequent stage (where the belief is described by a

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

352

characteristic vector χ′ = τ(χ, a1, π2, o)) is maximized. If
this excess approximation error is positive, we recurse to the
characteristic vector χ′ (line 10).

Before and after the recursion we update the bounds
ṼLB(χ) and ṼUB(χ) using the dynamic operator H̃ (lines 8
and 11). The update of ṼUB is straightforward and a new
point (χ, H̃ṼUB(χ)) is added to Υ. To obtain a new linear
function to add to the set Γ, we use the objective function
o(χ) = χT · a + z (after fixing variables a and z) of the dual
linear program to (5) that forms a lower bound on Ṽ ∗.

4 The Lateral Movement POSG
We now specify the approach for a cybersecurity problem of
detecting and mitigating lateral movement of an attacker in a
network. The game is played on a directed acyclic graphG =
(V,E), where the vertices V = {v1, . . . , v|V |} are sorted in
topological order. The goal of the attacker is to reach vertex
v|V | from the initial source of the infection v1 by traversing
the edges of the graph, while minimizing the cost to do so.

Initially, the attacker only controls the vertex v1, i.e., the
initial infection is I0 = {v1}. In every stage of the game,
the attacker chooses a directed path P = {P (i)}ki=1 (where
k is the length of the path) from any of the infected vertices
to the target vertex v|V |. Unless the defender takes counter-
measures, the attacker infects all of the vertices on the path,
including the target vertex v|V |, which ends the game. The at-
tacker pays the total cost of traversing the edges on the path,

c−,P =
∑

P (i)∈P

C(P (i)) , (6)

where C(P (i)) is a cost associated with taking edge P (i).
The defender tries to discover the attacker and increase his

costs by deploying a honeypot in the network. The honeypot
is deployed on an edge (denote this edge h) of the graph, and
is able to detect if the attacker traverses that specific edge.
Furthermore, it also increases the cost for using the edge h to
C(h). If the attacker observes that he has traversed a honey-
pot, he may decide to change his plan and therefore does not
execute the rest of his originally intended path P . The cost of
playing a path P against a honeypot placement h is therefore

ch,P =
∑

P (i)∈P≤h

C(P (i)) + 1h∈P · [C(h)− C(h)] (7)

where P≤h is the prefix of the path P until the interaction
with the honeypot edge h,

P≤h =

{
P h 6∈ P
{P (i)}ii=1 where P (i) = h otherwise .

(8)

Since the attacker does not necessarily continue to execute
his selected path P (because the defender can reconfigure the
position of the honeypot), the new infection Ih,P (i.e., state
of the game) becomes

Ih,P = I ∪ {v | (u, v) ∈ P≤h} . (9)

This problem can be formalized as a OS-POSG where the
states are possible infections (S = 2V), defender actions are

honeypot allocations (A1 = E), and actions A2 of the at-
tacker are paths in G reaching v|V |. Observations denote
whether the defender detected the attacker (i.e., h ∈ P) or the
attacker has reached the target v|V | while avoiding the detec-
tion, O = {det,¬det}1. Transitions follow the equation (9)
and observation det is generated iff the honeypot edge h has
been traversed. The reward of the defender is the negative
value of the cost of the attacker (R(h, P) = −ch,P), the dis-
count factor of the game is γ = 1 2, and the initial belief b0
of the game satisfies b0(I0) = 1.

4.1 Characteristic Vectors
The number of states in the game is exponential in the num-
ber of vertices of the graph, |S| = 2|V |−2 + 1 (we consider
that v1 is always infected and we treat all states where v|V | is
infected as a single terminal state of the game). We propose
using the marginal probabilities of a vertex being infected as
characteristic vectors χ ∈ R|V |, i.e.

χ
(b)
i =

∑
I∈S | vi∈I

b(I) , (10)

where I corresponds to some subset of possibly infected ver-
tices of the graph and b(I) denotes the original belief over this
subset of vertices being infected. Note that the linear projec-
tion introduced in equation (10) defines a projection matrix
A ∈ R|V |×|S| from Section 3.

4.2 Value Function Representation
The algorithm from Section 3.1 approximates Ṽ ∗ using a pair
of value functions, the lower bound ṼLB and the upper bound
ṼUB. While we have discussed representing the lower bound
using a set Γ of linear functions αi(χ) = (a(i))Tχ+z(i), rep-
resenting the upper bound is more challenging. In the original
algorithm, the value function V is defined (see equation (3))
over the probability simplex ∆(S). In that case, it suffices to
consider |S| points in Υ to define V for every belief. In con-
trast, the space of characteristic vectors here (i.e., marginal
probabilities) is formed by a hypercube [0, 1]|V | with 2|V |

vertices, which makes the straightforward point representa-
tion (using equation (3)) impractical.

However, we can leverage the fact that in this domain in-
fecting an additional node can only decrease the cost to the
target (and hence Ṽ ∗ is decreasing). Consider the dual for-
mulation of the optimization problem (3). In this formulation,
the projection of χ to the lower convex hull of a set of points
is represented by the optimal linear function aTχ+z defining
a facet of the convex hull (see Figure 1). Since Ṽ ∗ is decreas-
ing in χ, we can also enforce that aTχ + z is decreasing in
χ (i.e., add the constraint a ≤ 0 to the dual formulation).

1Since we assume a perfect-recall game, the defender knows the
current allocation of the honeypot and is able to infer the edge where
the attacker has been detected upon receiving det observation.

2While the original HSVI algorithm for OS-POSGs has been de-
fined and proven for problems with γ < 1, the convergence prop-
erties translate even to the undiscounted case in this case since the
game is essentially finite (in a finite number of steps, all vertices,
including v|V |, get infected and the game ends).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

353

R|V |

aTχ+ k

χ

Ṽ
U
B
(χ

)

Figure 1: Dual interpretation of the projection on the convex hull.

This additional constraint translates to changing the equality∑
1≤i≤|Υ| λiχ

(i) = χ in the primal problem to an inequality.

ṼUB(b) = min
λ∈R|Υ|≥0

 ∑
1≤i≤|Υ|

λiy
(i) | 1Tλ = 1,

∑
1≤i≤|Υ|

λiχ
(i) ≤ χ


(11)

Now it is sufficient that the set Υ contains just one point
(χ(i), y(i)) where χ(i) = 0|V | (instead of 2|V | points) to make
the constraint

∑
1≤i≤|Υ| λiχ

(i) ≤ χ satisfiable.
It is possible to adapt the constraint (5g) to use the repre-

sentation from (11), similarly to the original (unabstracted)
OS-POSGs [Horák and Bošanský, 2016], and obtain a linear
program to solve the stage games w.r.t. the upper bound.

4.3 Using Marginalized Strategies in Stage Games
The linear program formed by modifications from equa-
tions (5) still requires solving the stage game for the original,
unabstracted problem. In this section, we show that it is possi-
ble to avoid expressing the belief b explicitly, and to compute
the stage game directly using the characteristic vectors and
marginalized strategies of the attacker.

First, we present the representation of the stage-game
strategies of the attacker. Instead of representing joint prob-
abilities π2(I ∧ P) of choosing path P in state I , we only
model the marginalized probability π̃2(P) of choosing path
P aggregated over all states I ∈ S. Furthermore, we allow
the attacker to choose the probability ξ(P ∧ vi) that vertex vi
is infected while he opts to follow path P .∑

P

π̃2(P) = 1 (12a)

0 ≤ ξ(P ∧ vi) ≤ π̃2(P) ∀P, vi (12b)
π̃2(P) ≥ 0 ∀P (12c)

To ensure that the strategy represented by variables π̃2 and ξ
is feasible it must be consistent with the characteristic vector
χ, where χi is the probability that the vertex vi is infected
at the beginning of the stage. By marginalizing the variables
ξ(·) representing the joint probabilities we get∑

P

ξ(P ∧ vi) = χi ∀vi . (12d)

Furthermore, the path P must start in an already infected
vertex (denoted as Pre(P)), i.e., the conditional probability
Pr[Pre(P) ∈ I |P] of Pre(P) being infected when path P is
chosen has to be 1. Now, since ξ(P ∧ v) is the joint probabil-
ity, ξ(P ∧ v) = Pr[Pre(P) ∈ I |P] · π̃2(P),

ξ(P ∧ v) = π̃2(P) ∀P, v = Pre(P) . (12e)

This representation of attacker strategies is sufficient to ex-
press the expected immediate reward of the strategy π̃2, hence
the constraint (2c) can be changed to use the marginalized
strategies,

V ≥
∑
P

π̃2(P)ch,P +
∑
o

Vho ∀h ∈ E . (12f)

Importantly, we can also skip the computation of the be-
lief bho and compute the characteristic vector formed by the
marginals χho directly from the variables π̃2 and ξ. We now
present the equation to compute the updated marginal χh,det

given that the attacker has been detected while traversing the
honeypot edge h.

χh,det
i =

∑
P |h∈P∧P≤(·,vi)⊆P≤h

π̃2(P) +
∑

P |h∈P∧P≤(·,vi) 6⊆P≤h

ξ(P ∧ vi) (12g)

The first sum stands for the probability that the attacker is de-
tected while traversing edge h, but he infected vi beforehand.
The second sum represents the probability that the attacker
used edge h as well, but this time he has not infected vi us-
ing path P , however, the vertex vi has already been infected
before starting to execute path P .

Analogously, we can obtain the probability qh,det that the
attacker got detected while traversing edge h as

qh,det =
∑
P |h∈P

π̃2(P) . (12h)

We need not consider the subsequent stages where the at-
tacker has not been detected (i.e., ¬det observation has been
generated) or the honeypot edge h reaches the target vertex
v|V |. In both of these cases, the target vertex has been reached
and thus the value of the subsequent stage is zero.

4.4 Initializing Bounds
We now describe how we initialize bounds ṼLB and ṼUB

(line 1 of Algorithm 1). Denote by C∗(vi) and C
∗
(vi) the

costs of the shortest (i.e., cheapest) paths from vi to the target
v|V | when costs C and C, respectively, are used for all edges.

We initialize the lower bound ṼLB using two linear func-
tions α1(χ) = 0 and α2(χ) = (a(2))Tχ + z(i) such that
z(i) = C∗(v1) and a

(2)
i = min{C∗(vi)− C∗(v1), 0}.

To initialize the upper bound ṼUB, we consider that exactly
one vertex vi is infected and we consider the most expensive
path C

∗
(vi) from vi to the target v|V |. We use the set Υ =

{(χ(j), y(j)) | 1 ≤ j ≤ |V |} of points to initialize ṼUB where

χ
(j)
i =

{
1 i = j

0 i 6= j
y(j) = C

∗
(vj) . (13)

5 Experimental Results
In this section we experimentally evaluate the scalability and
properties of our proposed abstraction technique based on
the model from Section 4. Unless otherwise stated, we con-
sider directed acyclic graphs generated from the Erdős-Rényi
model with probability p = 0.5 that each of the possible
edges is included. Furthermore, we make sure to include

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

354

5 6 7 8 9 10 11 12 13 14 15 16 17

10−2

10−1

100

101

102

103

Number of vertices |V |

L
O

G
R

un
tim

e
(s

)

Original (unabstracted)
Our approach (abstracted)

Figure 2: Comparison of the runtime of the original (unabstracted)
approach with the proposed one (using summarized abstraction).
Confidence intervals mark standard error.

edges (vi, vi+1) for 1 ≤ i ≤ |V | − 1. We set the costs
C(vi, vj) = j − i for every edge (vi, vj) ∈ E when the
honeypot is not deployed to (vi, vj). We do, however, ap-
ply a significant penalty for traversing a honeypot edge where
C(vi, vj) = j(j − i). This setting is used to model layered
networks typical of critical infrastructure [Kuipers and Fabro,
2006]. The attacker can either proceed to the subsequent layer
(using edge (vi, vi+1)), or use a shortcut (if available). The
costs C reflect the fact that the closer the attacker is to the tar-
get, the more secure the network is (i.e., he has to use a more
expensive exploit to proceed).

All of the experiments were run on a machine with an In-
tel i7-8700K and 32GB of RAM. We used CPLEX 12.7.1 to
solve the linear programs used in the algorithms.

5.1 Comparison with the Original Approach
We used a set of randomly generated graphs (varying the
number of vertices) and we attempted to solve these instances
using both the original (unabstracted) approach and the algo-
rithm we present in this paper. The parameters used for the
original algorithm follow the parameters proposed in [Horák
et al., 2017]. We modified the initialization of the bounds to
make it valid for the undiscounted problem in question. The
target precision ε = 0.1 was used for both algorithms.

Figure 2 shows the runtimes of the original algorithm ap-
plied to the unabstracted game and our proposed approach.
For small instances, the original approach is competitive and
outperforms our proposed approach. For larger instances,
however, the compact representation used in our approach
turns out to be significantly better. Moreover, the origi-
nal approach was unable to solve 50% of the 11-vertex in-
stances due to memory requirements. In contrast, our ap-
proach based on marginal probabilities did not exceed 1GB
of memory even when applied to the most challenging 17-
vertex instances.

5.2 Abstraction Quality
We now focus on the abstraction quality since the summa-
rized abstraction may lose information needed to derive the
optimal behavior. However, we show that with properly de-
signed characteristic vectors the quality loss can be minimal.

|V | 5 6 7 8 9 10
V (b0)−ṼLB(χ0)

ṼLB(χ0)
(in %) 0.8 0.9 1.0 0.7 0.7 0.5

Table 1: Empirical bound on the relative distance from the equilib-
rium of the unabstracted game based on 100 instances.

Due to the insufficient scalability of the original unab-
stracted approach, we can do the comparison only for graphs
with 5 ≤ |V | ≤ 10 vertices where the original approach
solved all of the instances. In Table 1, we present the em-
pirical bound on the relative distance from the equilibrium of
the unabstracted bound. We compare the upper bound V (b0)
computed by the original approach for the unabstracted game
with the lower bound ṼLB(χ0) on the quality of the strategy
when the abstraction is used. We depict the maximum rela-
tive error based on the 100 randomly generated instances for
each size of a graph. In all of the cases, the empirical upper
bound on the relative error (i.e., the worst-case possible qual-
ity loss due to abstraction) is below 1.0%. Note that in all of
the instances the quality of the strategy found by our novel
algorithm is within the bounds of the original approach (i.e.,
the empirical bounds are likely to be overestimated).

6 Conclusions
We focus on solving partially observable stochastic games
(POSGs) and the representation of partial information in
these games. In the existing algorithms, the dimension of the
belief space is equal to the number of possible states. This
fact limits the scalability since both required memory and
computation time grow rapidly. We introduce a novel abstrac-
tion method and an algorithm relying on a compact represen-
tation of the uncertainty in these POSGs. Our methodology
is domain-independent and we demonstrate it on a motivat-
ing example from cybersecurity where the defender protects a
computer network against an attacker who uses lateral move-
ment to reach the desired target. Experimental results show
that our novel algorithm scales several orders of magnitude
better compared to the existing state of the art with only a
negligible loss in quality (less than 1%). Our paper demon-
strates practical aspects of algorithms for solving subclasses
of POSGs and opens the possibility of using similar compact
representation for other domains.

Acknowledgments
This research was supported by the Czech Science Founda-
tion (grant no. 19-24384Y) and by the Army Research Lab-
oratory and was accomplished under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA).
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

355

References
[Basilico et al., 2009] Nicola Basilico, Nicola Gatti, and

Francesco Amigoni. Leader-follower strategies for robotic
patrolling in environments with arbitrary topologies. In
8th International Conference on Autonomous Agents and
Multiagent Systems, pages 57–64, 2009.

[Brazdil et al., 2018] Tomas Brazdil, Antonin Kucera, and
Vojtech Rehak. Solving Patrolling Problems in the Inter-
net Environment. In 27th International Joint Conference
on Artificial Intelligence, 2018.

[Chung et al., 2011] Timothy H Chung, Geoffrey A
Hollinger, and Volkan Isler. Search and pursuit-evasion
in mobile robotics. Autonomous robots, 31(4):299–316,
2011.

[Fang et al., 2015] Fei Fang, Peter Stone, and Milind Tambe.
When Security Games Go Green: Designing Defender
Strategies to Prevent Poaching and Illegal Fishing. In 24th
International Joint Conference on Artificial Intelligence,
2015.

[Fang et al., 2016] Fei Fang, Thanh Hong Nguyen, Rob
Pickles, Wai Y. Lam, Gopalasamy R. Clements, Bo An,
Amandeep Singh, Milind Tambe, and Andrew Lemieux.
Deploying PAWS: Field optimization of the protection as-
sistant for wildlife security. In 30th AAAI Conference on
Artificial Intelligence, pages 3966–3973, 2016.

[Horák and Bošanský, 2016] Karel Horák and Branislav
Bošanský. A Point-Based Approximate Algorithm for
One-Sided Partially Observable Pursuit-Evasion Games.
In International Conference on Decision and Game The-
ory for Security, 2016.

[Horák and Bošanský, 2019] Karel Horák and Branislav
Bošanský. Solving Partially Observable Stochastic Games
with Public Observations. In 33rd AAAI Conference on
Artificial Intelligence, 2019.

[Horák et al., 2017] Karel Horák, Branislav Bošanský, and
Michal Pěchouček. Heuristic Search Value Iteration for
One-Sided Partially Observable Stochastic Games. In 31st
AAAI Conference on Artificial Intelligence, 2017.

[Kamdem et al., 2017] Gael Kamdem, Charles Kamhoua,
Yue Lu, Sachin Shetty, and Laurent Njilla. A markov
game theoritic approach for power grid security. In 37th
International Conference on Distributed Computing Sys-
tems Workshops, pages 139–144. IEEE, 2017.

[Kuipers and Fabro, 2006] David Kuipers and Mark Fabro.
Control systems cyber security: Defense in depth strate-
gies. United States. Department of Energy, 2006.

[Li et al., 2010] Xin Li, William K Cheung, and Jiming Liu.
Improving pomdp tractability via belief compression and
clustering. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 40(1):125–136, 2010.

[Nguyen et al., 2017] Thanh H. Nguyen, Michael P. Well-
man, and Satinder Singh. A Stackelberg Game Model for
Botnet Data Exfiltration. In International Conference on
Decision and Game Theory for Security, 2017.

[Roy et al., 2005] Nicholas Roy, Geoffrey Gordon, and Se-
bastian Thrun. Finding approximate pomdp solutions
through belief compression. Journal of artificial intelli-
gence research, 23:1–40, 2005.

[Smith and Simmons, 2004] Trey Smith and Reid Simmons.
Heuristic Search Value Iteration for POMDPs. In 20th
conference on Uncertainty in artificial intelligence, 2004.

[Vorobeychik et al., 2014] Yevgeniy Vorobeychik, Bo An,
Milind Tambe, and Satinder P. Singh. Computing So-
lutions in Infinite-Horizon Discounted Adversarial Pa-
trolling Games. In 24th International Conference on Au-
tomated Planning and Scheduling, 2014.

[Zhou et al., 2010] Enlu Zhou, Michael C Fu, and Steven I
Marcus. Solving continuous-state pomdps via density
projection. IEEE Transactions on Automatic Control,
55(5):1101–1116, 2010.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

356

