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Abstract

Coordination on an optimal policy between in-
dependent learners in fully cooperative stochastic
games is difficult due to problems such as rela-
tive overgeneralization and miscoordination. Most
state-of-the-art algorithms apply fusion heuristics
on agents’ optimistic and average rewards, by
which coordination between agents can be achieved
implicitly. However, such implicit coordination
faces practical issues such as tedious parameter-
tuning in real world applications. The lack of an
explicit coordination mechanism may also lead to
a low likelihood of coordination in problems with
multiple optimal policies. Based on the necessary
conditions of an optimal policy, we propose the ex-
plicitly coordinated policy iteration (EXCEL) algo-
rithm which always forces agents to coordinate by
comparing the agents’ separated optimistic and av-
erage value functions. We also propose three so-
lutions for deep reinforcement learning extensions
of EXCEL. Extensive experiments in matrix games
(from 2-agent 2-action games to 5-agent 20-action
games) and stochastic games (from 2-agent games
to 5-agent games) show that EXCEL has better per-
formance than the state-of-the-art algorithms (such
as faster convergence and better coordination).

1 Introduction

As the extension of reinforcement learning (RL) to the multi-
agent domain, multi-agent reinforcement learning (MARL)
has been widely studied over the last twenty years [Bugoniu
et al., 2008; Shoham er al., 2003]. Different from single-
agent RL where an agent maximizes its expected accumula-
tive rewards, MARL is more complicated which involves dif-
ferent types of agent relationship (competition, cooperation,
or mixture of the both), various learning goals (e.g., conver-
gence and rationality [Bowling and Veloso, 2002]), and many
domain-specific problems (such as equilibrium selection).
Stochastic game (a.k.a. Markov game) [Littman, 1994,
Hu and Wellman, 2003] is commonly used to formulate a
multi-agent system due to its simplicity and generality. In this
paper, we focus on learning in fully cooperative stochastic
games where all agents receive the same reward signal from
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the environment. As distinguished by Claus and Boutilier,
joint action learner (JAL) and independent learner (IL) are
two major learning paradigms of multi-agent reinforcement
learning [Claus and Boutilier, 1998]. In cooperative settings,
the main difference between the two paradigms is that a JAL
agent can observe the other agents’ actions whereas an IL
agent cannot. Although JAL agents can utilize more informa-
tion, combinatorial explosion of joint action space and strong
observability assumption [Matignon et al., 2012] make them
less scalable than IL agents in practice.

In this paper, we study the independent-learner form of
MARL for fully cooperative stochastic games. Early work
in this domain can be dated back to the average-based meth-
ods such as decentralized Q-learning [Tan, 1993] and the op-
timistic (or maximum-based) methods such as distributed Q-
learning [Lauer and Riedmiller, 2000]. However, both the
two categories of methods have limited success due to prob-
lems such as relative overgeneralization [Wiegand, 2003],
miscoordination [Claus and Boutilier, 1998] and stochastic-
ity. For better handling these problems, later works choose
to combine the two categories of methods in different ways,
such as using different learning rates [Matignon et al., 2007]
and applying decreasing leniency [Panait er al., 2006; Wei
and Luke, 2016]. Recently, the combination of deep rein-
forcement learning (DRL) [Mnih ef al., 2015] and existing
algorithms have also been investigated [Omidshafiei et al.,
2017; Palmer et al., 2018].

To summarize, the key to the success of the state-of-the-art
algorithms is the implicit coordination facilitated by different
fusion heuristics of optimistic and average rewards. How-
ever, achieving excellent performance in practice by such im-
plicit coordination mechanisms is a non-trivial task which
requires deep understanding, careful implementation and te-
dious parameter-tuning of these algorithms. Without an ex-
plicit coordination mechanism which actively guides agents,
the likelihood of coordination may still be low in problems
with multiple optimal policies. In this paper, we propose an
algorithm called explicitly coordinated policy iteration (EX-
CEL) which constantly forces agents to coordinate during the
learning process. The idea is to always let agents try poten-
tially optimal actions indicated by their separated optimistic
and average value functions. Our contributions are as follows.

e Based on an agent’s optimistic and average functions,
we identify the necessary conditions of an optimal pol-
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icy, according to which we give the action selection
strategy and propose our cooperative IL algorithm.

We propose three solutions for fitting optimistic value
functions by deep neural networks and make extensions
of our algorithm to the DRL domain.

Results from extensive experiments in tabular and func-
tion approximation settings show that our algorithm out-
performs current state-of-the-art algorithms in many as-
pects (e.g., higher probability of coordination, faster
convergence and better asymptotic performance).

The rest of this paper is organized as follows. Section 2 gives
background and reviews related work of this paper. Section 3
provides the details of our algorithm. Section 4 shows exper-
imental results and Section 5 finally makes conclusions.

2 Background

In this section, we review key concepts of multi-agent rein-
forcement learning and briefly introduce related work.

2.1 Multi-Agent Reinforcement Learning

Stochastic games are widely adopted as the model of
multi-agent reinforcement learning (MARL) [Littman, 1994;
Greenwald and Hall, 2003; Hu and Wellman, 2003]. It can be
treated as an extension of MDP to the multi-agent domain.

Definition 1. An n-agent (n > 2) stochastic game is a tuple
(N, S, {A:i}1,{Ri}[-1, P), where N is the set of agents,
S is the state space, A; is the action space of agent i (i =
1,...,n). Let A= Ay x --- x A, be the joint action space.
R; : S x A — R is the reward function of agent i and
P:S x AxS —[0,1] is the transition function.

In a stochastic game, the accumulative discounted re-
ward of each agent is determined by the joint policy of all
agents. We denote the policy of an agent i (¢ € N) by
m 8§ x A; — [0,1] and the joint policy of all agents by
7 = (7, ..., T, ). From agent i’s perspective, 7 can be also
written as (7;, m_;), where 7_; is the joint policy of all other
agents. Specially, a fully cooperative stochastic game is a tu-
ple (N, S, {A;}" ;,R,P) where all agents share the same
reward function R.

The majority of MARL algorithms for stochastic games
can be organized as joint action learner (JAL) and indepen-
dent learner (IL). As indicated by the names, JAL agents
can perceive other agents’ actions (and sometimes rewards
as well) and IL agents only make decisions from their local
viewpoints. As a consequence, the former can directly at-
tribute each reward signal to the corresponding joint action of
all agents while the latter cannot distinguish between differ-
ent reward signals with the same own action taken. Formally,
cooperative JAL agents try to maximize the joint action value
function Q™ (s,a) = E,,{ Yoreo Yeriiklse = s,ap = a},
where (s,a) is a state-joint-action pair, 7 is the discount
rate, ¢ is any time step, and 7.y is the reward at time step
(t + k). As IL agents only have local action observation,
their value functions are often defined as a projection from
the joint value function space to the local value function space
qi(s,a;) = V;Q(s, a), where g; is the local value function of
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agent i, (s, a;) is a state-local-action pair, ¥; denotes any pro-
jection for agent 7, and a is a joint action containing a;.

2.2 Related Work

The earliest attempt of IL algorithm in multi-agent systems
is decentralized Q-learning [Tan, 1993] which uses an av-
erage projection to construct each agent’s local value func-
tion: ¢;(s,a;) = Zaﬂ_ m_i(a_;)QT(s,a;,a—;). The rela-
tive overgeneralization problem caused by the average pro-
jection and the lack of coordination limit the availability of
decentralized Q-learning. Distributed Q-learning [Lauer and
Riedmiller, 2000] uses an optimistic projection g;(s,a;) =
max,_, Q*(s,a;,a_;) to address the relative overgeneraliza-
tion problem and explicitly coordinates agents by a policy
locking mechanism. Despite of the theoretical guarantee in
deterministic environments, being highly optimistic makes
distributed Q-learning vulnerable to stochasticity. For bet-
ter handling problems such as relative overgeneralization,
miscoordination, and stochasticity, later works apply opti-
mism in a more cautious way. Representative methods in-
clude hysteretic Q-learning (HYQ) which uses two differ-
ent learning rates to perform Q-value update with positive
and negative TD-errors respectively[Matignon et al., 20071,
the FMQ algorithm which adopts Boltzmann action selection
based on the combination of average and optimistic rewards
[Kapetanakis and Kudenko, 2002], and lenient learner which
shifts gradually from an optimistic learner to an average
learner by applying decreasing leniency [Panait er al., 2006;
Wei and Luke, 2016]. With the development of deep MARL
[Lowe et al., 2017; Foerster et al., 2018], there have been at-
tempts which extend existing algorithms with deep learning
models [Omidshafiei et al., 2017; Palmer et al., 2018].

3 Methodology

This section introduces the methodology of this work. We
begin with our motivation and then provide algorithm details.

3.1 Motivation

Generally, most of the state-of-the-art algorithms
[Kapetanakis and Kudenko, 2002; Matignon ef al., 2007,
Matignon er al., 2008; Wei and Luke, 2016] can be treated
as the combination of optimistic methods and average-based
methods. On one hand, learning optimistic values (or utility)
can filter penalty resulted from other agents’ exploratory
behaviors and distinguish between optimal and suboptimal
actions. On the other hand, learning average values can
deal with stochastic rewards and transitions. By applying
simple or complex combination heuristics (e.g., decreasing
leniency), coordination is achieved implicitly. However,
achieving such implicit coordination in practice seems com-
plicated and difficult. As shown in Figure 1, one can imagine
that the learning process is a line segment where the implicit
coordination between agents is achieved at some point. But
where exactly the point is highly depends on algorithm
hyperparameters and cannot be ensured before coordination
really occurs. As a result, coordinating agents within pre-
defined learning rounds often requires deep understanding,
careful implementation and tedious parameter-tuning of
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Explicitly Coordinated Policy Iteration

Figure 1: The illustration of different IL algorithms. The solid line is
the learning process. The red, green, and blue circles are the implicit
coordination points of HYQ, LMRL2, and FMQ, which highly de-
pend on the hyperparameters. The gray dotted line is our algorithm
which explicitly and constantly coordinate agents.

the algorithms. Moreover, without an explicit coordination
mechanism which tells agents the way of improving policies,
the likelihood of coordination may still be low if there are
multiple optimal policies in a problem.

3.2 Algorithm

Instead of combining each agent’s optimistic and aver-
age value functions into one to achieve implicit coordina-
tion, we propose to maintain the two value functions sepa-
rately and explicitly coordinate agents by comparing the two
value functions. For a given cooperative stochastic game
(N,S,{A;}1,R,P), we define the optimistic value func-
tion of any agent ¢ (z € N)as

¢ (s,a;) = maXQ (s,ai,a—;) (1)
and the average value function of agent ¢ as
(s, a;) ZW Q™ (s,a5,a-;), 2

where s € S is a state, a; € A; is a local action of agent 7, Q*
and Q™ are the underlying joint action value functions of an
optimal joint policy and a given joint policy w = (71, ..., T ),
a_; and m_; are the joint action and joint policy of the other
agents. For any policy 7; of agent 7 and any state s, we de-
fine A7) = {a;|m(s,a;) > 0} to be the support of m;(s).
Formally, an optimal joint policy can be defined as follows.

Definition 2. A joint policy ™ of a cooperative stochastic
game (N, S,{A;}1_1, R, P) is optimal if and only if for any
agent i € N and any state s € S, it holds that

(1) qf (s,a;) = maxy ¢ (s, a;),Va; € AZ”(S),

2) ¢ (s, a;) = (s,al),Va; € AT,

The first equation indicates that 7r is a Nash equilibrium
and the second one indicates that this Nash equilibrium is
optimal. Therefore, from each agent ¢’s individual point of
view, the two equations can be used as a necessary condition
for determining whether the joint policy 7 is optimal.

opt
maxg/ g;

Action Selection

For any policy 7; of agent 4, define 7;*** to be a policy iden-
tical to 7; except that agent ¢ always takes action a; in state
s. We utilize a corollary of Definition 2 to guide the action
selection of each agent.
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Corollary 1. For any optimal joint policy 7 of a fully co-
operative stochastic game (N, S, {A;}?_,, R, P), any agent
i € N, any state s € S, and any action a; € AZ”(S), the joint
policy (m;** ,w_;) is also optimal.

This corollary provides a way of policy improvement ac-
cording to each agent’s optimistic and average value func-
tions: choosing the actions with maximal optimistic and av-
erage values since they could be a part of an optimal policy.
Also, Corollary 1 indicates that there is no need for each agent
1 to reconstruct the underlying policy ; from its value func-
tions and sample actions accordingly, because at least one
pure-strategy optimal policy can be derived from any mixed-
strategy optimal policy.

For an agent 7, we define the set of actions with maximal
optimistic values in state s as

MP = {azlqz (5,a:) = maxg;™ (s, aé)}»

i\s 3)
Denote our algorithm by A and the average value function
maintained by A for agent i by ¢*. Similarly, we define the
set of actions with maximal average values in state s as

“4)

A A A /
Mi,s {ai|Qi (s,a;) = H}IE}X% (57ai)}'
According to our discussion, agent ¢ can firstly choose
one action from the intersection ./\/lor’lﬂ./\/lA . However,

Opt N M#%_ may be empty during the learning process,
Wthh 1ndlcates that it is impossible to derive an optimal pol-
icy from the current value functions. In this case, we suggest
choosing the action with maximal average value from the set
MOP ' since MF must contain all optimal actions in state s if

q?p is well 1earnt. In summary, the principle is to increase the

likelihood of finding an optimal policy by always choosing
the action with the highest potential to be optimal.

Learning Value Functions
The average value function ¢** of agent i can be updated di-
rectly by a Q-learning rule [Watkins and Dayan, 1992]. Upon
receiving an experience (s, a;, 7, s'), ¢* is updated by

¢ (s, ai) + (1=a)q;* (s, a;) +a(r+ymax g (s, a;)), (5)

a;

where « is a learning rate. The way of updating the opti-
mistic value function ¢;* is similar to that of distribute Q-
learning, which changes the value ¢™ (s, a;) for state-action
pair (s, a;) only when an increase occurs:

(s, a5) (1 — @)g™ (s, ay) +amax{q§pt(s,ai>7

6
" ©®)

!

a.)}.

7 4y max g; ;
a;
Taking stochastic rewards and state transitions into account,
a learning rate « is also introduced here. In contrast, dis-
tributed Q-learning has no learning rate and is only applicable
in deterministic environments. However, Equation (6) can-
not deal with stochasticity alone since qut(s, a;) always in-
. . t
creases when a maximal target (i.e., r + y max,/ (s, al))
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Figure 2: The main flow of EXCEL in a 2-agent problem

is sampled and will finally converge to its upper bound rather
than the maximal expected value. To address this issue, note
that for an optimal joint policy 7r, it must hold that

opt

qr (s,a;) = ¢;* (s,a;),Vi,Vs,Va,; € A?i(s). @)

This motivates the idea that using the average value ¢ (s, a;)
to complement the optimistic value ¢;* "(s,a;). If the inter-
section MOP[ N ./\/lA is empty, which indicates that subopti-

mal actions mlght be overestimated due to their higher upper
bounds of optimistic values, then the optimistic values of the

actions in ./\/lopt will be reduced by
qu (Sv ai) — (1 )q;)pt(s’ ai) + ng&(sv al) Va; € M?p‘;’

where c is a complementary factor that is very small in the be-
ginning and increases every time MOP[ N M2, = () occurs.
The reason that ¢ should increase from a small value is that

MO\ M%, = () may also happen before the value func-
tlons are sufﬁ01ently evaluated. Thus, c can be also treated as
a measure of environment stochasticity. If /\/l(’pl AME, #0,
the value complement will be conducted on all actlons On
one hand, this would not change the agent’s behaviors if the
actions in the intersection really belong to an optimal policy.
On the other hand, the overestimation problem can be allevi-
ated if the environment is stochastic.

Explicitly Coordinated Policy Iteration

The rules for action selection and updating value functions
together form a typical policy iteration loop. We name
our method explicitly coordinated policy iteration (EXCEL)
since it explicitly forces agents to coordinate in every state.
Figure 2 intuitively depicts the main flow of EXCEL in a 2-
agent problem. The details of EXCEL are shown in Algo-
rithm 1 from agent ¢’s point of view. To compute the greedy
action a; (at line 7), there is no need to compute the set
M, since af must be in M2 if MP ML, # 0. The
Value complement mechamsm (hnes 15 to 23)’is similar to
the recursive frequency maximum Q-value (RFMQ) heuristic
[Matignon et al., 2012] since they both have the form of lin-
ear interpolation and both their learning steps are a measure
of stochasticity. However, the two mechanisms are essen-
tially different because the former is a way of overcoming the
overestimation of optimistic values based on the property of
an optimal policy (i.e., Eq. (7)) while the latter is a way of
biasing the evaluation of actions with optimistic rewards.

3.3 DRL Extensions

For applications in high-dimensional state space problems,
we also extend our algorithm to the deep reinforcement learn-
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Algorithm 1: Explicitly Coordinated Policy Iteration

Input: Learning rate «, discount rate -y, exploration factor ¢,
maximal complementary factor cmax, increment of
complementary factor Ac

1 Vs € S,Va; € Ai, ¢ (s,a:) < 0,45 (s,a:) + 0;
2 foreach episode do

3 Initialize state s;

c<+0;

repeat

./\/lopl — { ilg™ (s, a:) = max,/ aP (s, az)}

a; < arg MaX s ¢ o i A(s,al);

4
5

6

a; + e-greedy(a;);
Receive the experience (s, a;,T,s');
6% =1+ ymaxys ¢ (s',af) — gi' (s, a:);
i (s,ai) = qi' (s, @) + ad™;
JP 7 4+ ymax,s g;F (s,
if 67 >0 then

L qopl S az
M, {ailal (s,a:) = maxy; g (s,a)) 1
Recompute M, ;
it ML M., = 0 then
¢+ min{c + Ac, cmax };
foreach a; € M‘;” * do

| (s, 81) « (1=c)g™ (5, a0) +eal (5, :);

opt

a;) = ¢;° (s, a:);

opt

— q"(s,a;) + ad™

21 else
22

23

foreach dz S A~ do
L dM(s @) (1=0)q (s, i) +eal (s, a0);

54 s';
until s is a terminal state;

24
25

ing domain. We adopt the same framework of deep Q-
learning network (DQN) [Mnih ef al., 2015] for learning the
agents’ optimistic and average value functions. The learn-
ing tricks such as experience replay and target networks are
also utilized. However, we found that using only samples
with positive TD-errors to update the optimistic value func-
tions may cause the overestimation problem even in deter-
ministic environments. With neural networks as the value
function representation, samples with positive TD-errors may
result from the output values of the network rather than the
true rewards. Before the network is well fitted, such unre-
liable samples may be generated frequently. Therefore, for
learning accurate optimistic values, the samples with neg-
ative TD-errors may be also useful. Given agent i’s op-
timistic value function ¢;* and a sample (s,a;,r,s'), let
§ =1 +v¢"(s,a;) — max, ¢;*' (s, a’) be the original TD-
error. Let 1, be the function LWthh is 1 when p is true and 0
when p is fa]se. For utilizing (s, a;,r, ") in gradient compu-
tation when 6 < 0, we propose three methods which compute
a corrected TD-error §°* based on d:

(1) negative threshold method which makes the TD-error 0
if ¢ is less than a negative threshold: 0°"' = 145>4,,,0,

'min

where pin < 0 and |dy;n| Will decay to a small value,
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(2) weighted negative TD-error method which multiplies
negative TD-errors by a weight: §°" = max{1s-0, 5}9,
where [ decays from 1 to a small value,

(3) negative sampling method which samples negative TD-
errors by a ratio: 0°* = max{1,>,0,d}, where u is a
random variable uniformly distributed in [0, 1] and 7 is

a sampling ratio decaying from 1 to a small value.

As learning progresses, the three methods gradually reduce
the use of negative samples. This is different from pre-
vious algorithms which make use of negative samples by
a constant negative learning rate [Matignon et al., 2007,
Omidshafiei et al., 2017] and an increasing sampling ratio
[Wei and Luke, 2016; Palmer et al., 2018]. Besides, the three
methods indirectly implements value complement as the uti-
lization of negative samples also means the injection of av-
erage rewards into the optimistic value functions. Thus, the
linear interpolation of Algorithm 1 don’t have to be included
in the extension. The other components of Algorithm 1 can
be extended straightforwardly so we omit the details.

4 Experiments

We conduct two groups of experiments in this paper. The first
one is a test in matrix games and the second one is grid world
games in both tabular and function approximation settings.

4.1 Matrix Games

Denote the matrix game with n agents and m actions for each
agent by n ® m. In our experiment, n ranges from 2 to 5
and m ranges from 2 to 20. Let a; be an action of an agent
i and I(a;) be the index of a; (0 ~ m — 1). The utility
r(a) of a joint action @ = (aq,...,a,) is n x (m — 1) if
the indices of all agents’ actions are the same. Otherwise,
r(a) =max { >0 I(a;),n(m —1) = >0 I(a;)}.

We implement hysteretic Q-learning (HYQ) [Matignon
et al., 2007], lenient multi-agent reinforcement learning 2
(LMRL2) [Wei and Luke, 2016], and recursive frequency
maximum Q-value (RFMQ) [Matignon et al., 2012] to com-
pare with our algorithm EXCEL. Each test of an algorithm
in a specific game contains 20, 000 training periods and each
training period contains 10, 000 game plays. We test the per-
formance of each algorithm in both deterministic and stochas-
tic reward settings. Let r denote the original utility of a joint
action. In the stochastic reward problem, the utility of a non-
optimal joint action is sampled from a Gaussian distribution
with mean value r and 0.95 confidence interval [0.8r, 1.27]
while the utility of an optimal joint action is from a Gaus-
sian distribution with mean value r and 0.9 confidence inter-
val [0.77,1.3r]. Therefore, optimal joint actions have higher
utility variances than non-optimal joint actions. All the algo-
rithms except HYQ use a learning rate of 0.2. The positive
and negative learning rates of HYQ are 0.05 and 0.02, re-
spectively. The learning rate of frequency of RFMQ is 0.01.
The complementary factor of EXCEL increases from 0 to 1
with an increment 0.001. The algorithms EXCEL, HYQ, and
RFMQ adopt e-greedy exploration with e decaying from 1.0
to 0.1 exponentially by a factor 0.99977. LMRL2 uses Boltz-
mann exploration with the temperature of each action decay-
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Figure 3: Average rewards of each algorithm in matrix games

| 3®20-(D/S)  4®20-(D/S) 5 20-(D/S)

EXCEL | 0.999/0.999 0.995/0.993 0.975/0.983
HYQ 0.960/0.793 0.766/0.440 0.547/0.205
RFMQ || 0.999/0.540 0.953/0.255 0.971/0.177
LMRL2 || 0.353/0.811 0.198/0.497 0.095/0.182

Table 1: The coordination ratio of each algorithm in matrix games

ing from 50 to 0.1 by a factor 0.9. The moderation factors of
action selection and lenience for LMRL?2 are both 1.0.

Each game play in a training period is followed by a test
game play with deterministic rewards and no exploration.
Along a training period, we record the reward of each algo-
rithm in each test game play. We also record how many times
that an optimal policy is learnt among the 20, 000 rounds of
training, namely the coordination ratio. Due to space limi-
tation, we only show the results of the most difficult games
3 ® 20, 4 ® 20, and 5 ® 20 in Figure 3 and Table 1. Figure
3 shows that EXCEL converges faster and finally achieves
higher reward values than the other algorithms. The perfor-
mance gap between the algorithms is more obvious with re-
spect to the coordination ratio. As shown in Table 1, EX-
CEL always succeeds to coordinate agents (with at least 0.97
coordination ratio) while the coordination ratios of the other
algorithms decay rapidly as the number of agents increases.

4.2 Grid World Games

We use the grid world games shown in Figure 4 to test the per-
formance of our algorithm in stochastic games. The left one
in Figure 4 is a grid map for testing tabular algorithms and the
right one is a modified predator-prey (PP) game [Lowe et al.,
2017] for testing DRL algorithms. The agents (the red cir-
cles) are initially located in the central area and are required
to reach the same goal among the 4 goals (the green areas).
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(b) Predator-Prey Game

(a) Tabular Grid World

Figure 4: The grid world games adopted in the second experiment

In each step, the agents can choose to move in one of the four
directions left, right, up, and down or stay. Once an agent
reaches any of the four goals, the team reward will be added
by 10. If all agents reach the same goal, the team reward will
be directly set to 15n, where n is the number of agents.

In the tabular grid world games, we implement the EX-
CEL, HYQ, LMRL2 algorithms and the swing between opti-
mistic or neutral algorithm (SOoN) [Matignon ez al., 2009].
The number of agents ranges from 2 to 4 and the correspond-
ing map sizes are 10 x 10, 6 x 6, and 5 x 5, respectively.
One episode of each game contains 25 steps of state transi-
tions. We make stochastic state transitions by assigning a 0.2
failure probability to the execution of actions. The team re-
ward is also made stochastic by sampling from a Gaussian
distribution with mean value r and 0.8 confidence interval
[0.57, 1.5r], where r is the original reward. The learning rates
of all algorithms are 0.2. The negative learning rate of HYQ is
0.08. The learning rate of the farsighted frequency of SOoN is
0.3. The EXCEL, HYQ, and SOoN algorithms use e-greedy
exploration strategy. In the 2-agent and 3-agent games, € de-
cays from 1 to 0.05 while in the 4-agent game it decays to
0.25 for ensuring sufficient exploration. The decay factor of
€ 15 0.9999 and the discount rate is 0.9. The other hyperpa-
rameters are the same as those in the matrix game experiment.
We record the total rewards of the agent team in each episode.

In the modified predator-prey (PP) game, we implement
our deep EXCEL algorithm (DEXCEL) with negative thresh-
old (NT), weighted negative TD-error (WNTD), and nega-
tive sampling (NS), respectively. We also implement the hys-
teretic deep Q-network (HDQN) [Omidshafiei et al., 2017]
and the lenient deep Q-network (LDQN) [Palmer et al., 2018]
for comparison. All these algorithms adopt the same Q-
network structure of two fully connected hidden layers with
64 units and relu activation functions. The network parame-
ters are optimized by Adam with a learning rate of 10~3 and
a batch size of 1024. The threshold 0, of the NT method
increases from —20 to 0 in 10, 000 episodes. The weight co-
efficient 3 of the WNTD method and the sampling ratio 7
of the NS method both decay from 1.0 to 10~ in 100, 000
episodes. The coefficient for negative update of HDQN is
0.4. LDQN uses retroactive temperature decay schedule and
the corresponding hyperparameters are p = —0.01, d = 0.95,
© = 0.9995, v = 1. For exploration, all the algorithms uses
e-greedy strategy with e decaying from 1 to 0.2 in 60,000
episodes. We range the number of agents from 3 to 5 and test
the total rewards of each algorithm in each episode.
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Figure 5: Average rewards of each algorithm in matrix games

Figure 5 contains the results of the tabular grid world and
the modified PP game. From the left column, it can be found
that our algorithm EXCEL again performs the best among all
the tested algorithms. The reward value that EXCEL con-
verges to in each of the three tabular games is very close to
the corresponding optimal value. The right column of Fig-
ure 5 shows that the negative threshold is the most effective
method for utilizing negative samples because DEXCEL-NT
significantly outperforms the other algorithms. DEXCEL-
WNTD and DEXCEL-NS also perform better than (or similar
to) HDQN and LDQN in the 3-agent and 4-agent PP games.
However, the two algorithms fail to outperform HDQN in the
5-agent PP game. But generally, the results demonstrate that
EXCEL has the ability to coordinate agents well.

5 Conclusion

In this paper, we propose an independent learner algorithm
called explicitly coordinated policy iteration (EXCEL) for
fully cooperative stochastic games. Instead of using an im-
plicit coordination mechanism, the EXCEL algorithm explic-
itly forces agents to coordinate by utilizing the necessary con-
ditions derived from the optimistic and average value func-
tions of an optimal policy. For applications in large-scale
problems, we propose three versions of deep EXCEL algo-
rithms which utilize negative samples differently. We con-
duct extensive experiments in matrix games and stochastic
games. The empirical results show that EXCEL converges
faster, achieves higher coordination ratio and better asymp-
totic performance than the state-of-the-art algorithms.
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