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Abstract
We study how stability can be maintained even after
any set of at most k players leave their groups, in the
context of hedonic games. While stability proper-
ties ensure an outcome to be robust against players’
deviations, it has not been considered how an unex-
pected change caused by a sudden deletion of play-
ers affects stable outcomes. In this paper, we pro-
pose a novel criterion that reshapes stability form
robustness aspect. We observe that some stability
properties can be no longer preserved even when
a single agent is removed. However, we obtain
positive results by focusing on symmetric friend-
oriented hedonic games. We prove that we can ef-
ficiently decide the existence of robust outcomes
with respect to Nash stability under deletion of any
number of players or contractual individual stabil-
ity under deletion of a single player. We also prove
that symmetric additively separable games always
admit an individual stable outcome that is robust
with respect to individual rationality.

1 Introduction
Coalition formation is everywhere in human activities. Com-
panies group their employers into project teams. Countries
form coalitions to promote international trade among them.
Individuals interact with each other and form groups in order
to achieve objectives they cannot seek for on their own.

Hedonic coalition formation games (for short, hedonic
games), introduced by Bogomolnaia and Jackson [2002] and
Banerjee et al. [2001], provide an elegant framework to for-
mulate coalition formation. In these games, each player has a
preference over the coalitions to which she belongs, and de-
sirable outcomes often correspond to stable partitions. The
basic intuition behind stable partitioning is that group struc-
tures need to be robust under certain changes within the sys-
tem; that is, outcomes must be immune to players’ coalitional
or individual deviations to other coalitions.

In many real-world scenarios, however, groups may en-
counter unexpected changes and challenges, imposed from
the outside of the system. For instance, a certain country can
go bankrupt and be enforced to leave a political alliance. In
this respect, a group structure that satisfies a standard stability

requirement can become immediately unstable due to unex-
pected circumstances. A case in point is a political coalition
of three countries with one intermediate country connecting
two other countries who are enemies to each other: if the in-
termediate player happens to disappear from the coalition,
one cannot maintain the stability of the whole system.

In this paper, we propose a novel criterion that redefines
stability from robustness aspect. We define an outcome to be
robust with respect to a certain stability requirement α if re-
moving any set of at most k players still preserves α. Besides
the preceding example of a political alliance, there are several
applications of hedonic games, such as project team forma-
tion [Okimoto et al., 2015], research team formation [Alcalde
and Revilla, 2004], and group activity selection [Darmann
et al., 2017], in which unexpected players’ non-participation
may severely affect stability of the system. To the best of our
knowledge, however, no attempt has been ever made to con-
nect two important considerations, robustness and stability.
Our goal is to make the first step filling this gap.

We focus on friend-oriented games, introduced by Dim-
itrov et al. [2006], where players’ preferences are succinctly
encoded via the binary friendship relations. While it is known
that such games always guarantee the existence of stable out-
comes, we observe that a simple example of one player con-
necting two enemies shows impossibility in maintaining most
of the stability properties, such as core stability, Nash stabil-
ity, individual stability, and contractual individual stability.
Not surprisingly, this negative result holds even under a very
small change of the system, i.e., only a single player can dis-
appear.

Given these non-existence results, we investigate the com-
putational complexity of deciding the existence of a robust
outcome in a symmetric friend-oriented game. Specifically,
we show that we can efficiently decide the existence of an
outcome that is robust with respect to Nash stability, irre-
spective of the number of players leaving the game. We then
prove that any symmetric friend-oriented game admits a poly-
nomial time algorithm that finds a robust outcome with re-
spect to contractual individual stability in case of removing a
single player. To this end, we obtain a non-trivial character-
ization of games whose corresponding robust outcomes are
non-empty. Moreover, we complement this result by showing
that the problem becomes NP-hard when k = 2. We also show
that the positive results do not extend to individual stability:
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NS-robustness polytime (Cor. 1)
IS-robustness NP-complete (k = 1) (Th. 6)
CIS-robustness polytime (k = 1) (Th. 4)

NP-complete (k = 2) (Th. 5)
IS & IR-robustness exists and polytime (Th. 8)

Table 1: Overview of our complexity results in a symmetric friend-
oriented game, where k is the maximum number of players who can
leave the entire game.

we prove that the associated problem for individual stability
is NP-hard even when only a single player is allowed to leave.

Finally, we consider the question of whether a minimum
stability requirement, individual rationality, can be main-
tained while ensuring that an outcome of a game itself satis-
fies stronger stability desiderata. It turns out that when play-
ers have symmetric additively separable preferences, an in-
dividually stable partition which is robust with respect to in-
dividual rationality always exist. Our complexity results are
summarized in Table 1.

1.1 Related Work
A similar notion of robustness appears in a variety of contexts
ranging from multi-agent systems to graph theory. In particu-
lar, the robustness concept adapted in this paper is close to the
notion of fault tolerance in the theory of distributed systems.
We refer the reader to the work of Fedoruk and Deters [2002]
for an overview on fault tolerance. Recent works of Kouvaros
and Lomuscio [2017] and Kouvaros et al. [2018] also con-
sidered a fault-tolerance problem in the context of temporal
epistemic specifications.

In cooperative games with transferable utility, several pa-
pers studied robustness against agent failures. Bachrach et
al. [2011] proposed the reliability extension of cooperative
games, where each agent has an independent failure prob-
ability. Okimoto et al. [2015] introduced a similar concept
to ours, so-called, k-robustness for team formation problems;
under their definition, each team needs to accomplish their
task even after k agents fail. Further, we note that our defi-
nition of robustness resembles some graph connectivity con-
cepts, such as the k-vertex-connectivity, capturing the robust-
ness of a given network (see, e.g., Schrijver [2003]).

Our work is related to the rich body of the literature on
the study of hedonic games [Bogomolnaia and Jackson, 2002;
Dimitrov et al., 2006; Aziz et al., 2014; 2017]. The relation
between stability and the networks capturing agents’ prefer-
ences has been fairly well-explored, in which the nodes of a
graph represent players and edges correspond to the degree
of preference [Bilò et al., 2014; Peters, 2016; Igarashi and
Elkind, 2016].
Full version. The full version of the paper is available on
arXiv [Igarashi et al., 2019]. It contains full proofs of Lemma
1, Corollary 1, and Theorems 2, 3, 4, 6, 7, 8.

2 Preliminaries
For a natural number s ∈ N, we write [s] = {1, 2, . . . , s}. A
hedonic game is defined as a pair (N, (�i)i∈N) where N = [n]
is a finite set of players and each �i is a preference over the

subsets of N (also referred to as coalitions); specifically for
every i ∈ N, we let Ni denote the collection of all coalitions
containing i; each �i describes a complete and transitive pref-
erence over the sets in Ni. Let �i denote the strict preference
derived from �i, i.e., S �i T if S �i T , but T �i S . For i ∈ N
and S ,T ∈ Ni, we say that player i strictly prefers a coalition
S to another coalition T if S �i T ; player i weakly prefers S
to T if S �i T . We call a coalition S ⊆ N individually rational
if every player i ∈ S weakly prefers S to {i}.

A preference profile (�i)i∈N is said to be additively separa-
ble if there exists a weight function w : N × N → R such that
for each i ∈ N and each S ,T ∈ Ni we have S �i T if and
only if

∑
j∈S w(i, j) ≥

∑
j∈T w(i, j) [Bogomolnaia and Jack-

son, 2002]; we will assume that w(i, i) = 0 for each i ∈ N.
An additively separable preference is said to be symmetric
if the weight function w : N × N → R is symmetric, i.e.,
w(i, j) = w( j, i) for all i, j ∈ N. We use the notation (N,w)
to denote an additively separable game with weight function
w : N × N → R. For additively separable games, each player
can consider every other player to be either a friend, a neu-
tral player, or an enemy; specifically, for each pair of distinct
players i, j ∈ N, we say that j is a friend of i if w(i, j) > 0,
and j is an enemy of i if w(i, j) < 0.

Dimitrov et al. [2006] introduced a subclass of additively
separable preferences, which they called friend-oriented pref-
erences. Under friend-oriented preferences, each player has
strong favour towards her friends: w(i, j) ∈ {n,−1} for each
i, j ∈ N with i , j. For a symmetric additively separable
game (N,w), let Gw denote the friendship graph where the set
of vertices is given by the set of players and two players i, j
are adjacent if and only if they are friends; each coalition S is
said to have minimum degree t if each player in S has at least
t other friends in S .

An outcome of a hedonic game is a partition of players
into disjoint coalitions. Given a partition π of N and a player
i ∈ N, let π(i) denote the unique coalition in π that contains
i. Much of the existing literature is concerned with outcomes
that satisfy certain stability requirements. A minimum stabil-
ity property we require is individual rationality. A partition
π of N is said to be individually rational (IR) if each player
prefers their coalition to staying alone, i.e., all coalitions in π
are individually rational. If we extend this to a group devia-
tion, we obtain the definition of the core. Specifically, a coali-
tion S ⊆ N strongly blocks a partition π of N if every player
i ∈ S strictly prefers S to her own coalition π(i). A partition
π of N is said to be core stable (CR) if no coalition S ⊆ N
strongly blocks π. We also consider deviations based on indi-
vidual movements. Specifically, consider a player i ∈ N and
a pair of coalitions S < Ni, T ∈ Ni. A player j ∈ S accepts
a deviation of i to S if j weakly prefers S ∪ {i} to S ; a player
j ∈ T accepts a deviation of i from T if j weakly prefers
T \ {i} to T . A deviation of i from T to S is an NS-deviation
if i strictly prefers S ∪ {i} to T , an IS-deviation if it is an NS-
deviation and all players in S accept it, and a CIS-deviation if
it is an IS-deviation and all players in T accept it. A partition
π is called Nash stable (NS) (respectively, individually stable
(IS) and contractually individually stable (CIS)) if no player
i ∈ N has an NS-deviation (respectively, an IS-deviation and
a CIS-deviation) from π(i) to another coalition S ∈ π or to ∅.
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Trivially, Nash stability implies individual stability, which
also implies contractually individual stability. Usually, core
stability does not imply the stability based on individual devi-
ations. However, we note that for a symmetric friend-oriented
game, core stability implies individual stability. Also, con-
tractual individual stability implies individual rationality with
symmetric friend-oriented preferences.

Lemma 1 Let (N,w) be a symmetric friend-oriented game
(N,w). Then core stability implies individual stability. Fur-
ther, contractually individual stability implies individually ra-
tionality.

3 Agent Failure in Hedonic Games
Earlier we defined the robustness informally: A sudden dele-
tion of players upon an outcome should preserve the property
it has achieved before. We are now in a position to make the
definition more formal. For each S ⊆ N and i ∈ N, we denote
by �i |S the preference relation restricted to Ni ∩ 2S .

Definition 1 Given α ∈ {CR,NS,IS,CIS, IR} and a natural
number k > 0, a partition π is said to be α-robust under
deletion of at most k players if π satisfies the property α,
and for any S ⊆ N with |S | ≤ k, the partition π−S :=
{ S ′ \ S | S ′ ∈ π } still satisfies the property α in the sub-
game (N \ S , (�i |N\S )i∈N\S ). When k is clear from the context,
we will simply call such partition α-robust.

By definition, if an outcome is α-robust under deletion of
k + 1 players, then it is α-robust under deletion of any ` ≤ k
players. Also, fixing parameter k, the relations between the
above robustness concepts are the same as those among the
corresponding stability concepts. Namely, we have the fol-
lowing containment relation among the classes of outcomes:
NS-robust ⊆ IS-robust ⊆ CIS-robust and CR-robust ⊆
IR-robust. Also, by Lemma 1, CR-robustness implies IS-
robustness and CIS-robustness implies IR-robustness for a
symmetric friend-oriented game.

It is known that a stable outcome of a symmetric friend-
oriented game is guaranteed to exist and can be found in poly-
nomial time: a partition that divides the players into the con-
nected components satisfies the preceding stability require-
ments. However, the example below illustrates that even when
players have symmetric friend-oriented preferences, an α-
robust partition under deletion of a single player may not exist
for any α ∈ {CR,NS , IS ,CIS }.

Example 1 Consider a symmetric friend-oriented game
(N,w) with three players a, b, and c. The friendship graph
Gw forms a star with the center being b (Figure 1).

a b c

Figure 1: Non-existence of a CR-robust partition for symmetric
friend-oriented games.

Suppose that π is CIS-robust under deletion of a single
player. First, suppose π = {{a, b, c}}. Then, without b, the

coalition is not individually rational, a contradiction. Second,
suppose π = {{a}, {b, c}} or π = {{a, b}, {c}}. Then, if the player
who belongs to the same coalition as b disappears, player
b would have a CIS-deviation to the other coalition, a con-
tradiction. Third, if π = {{a}, {b}, {c}}, it would not satisfy
contractually individual stability, a contradiction. Finally, if
π = {{a, c}, {b}}, then π would not be individually rational,
a contradiction. We have exhausted all possible cases and
hence the game admits no CIS-robust partition. This means
that the game does not have an α-robust outcome for any
α ∈ {CR,NS , IS ,CIS }. �

4 NS-robustness
We saw that a symmetric friend-oriented game may not admit
an NS-robust outcome. In this section, we show that deciding
the existence of an NS-robust outcome remains easy for a
symmetric friend-oriented game. We warm up by observing
that in order to preserve individual rationality, each coalition
must be a clique or have minimum degree at least k + 1.

Lemma 2 For any symmetric friend-oriented game, k > 0,
and any IR-robust partition π, each S ∈ π is either a clique
or has minimum degree at least k + 1.

Proof: Let π be an IR-robust partition. Suppose towards a
contradiction that there is a coalition S ∈ π such that S does
not form a clique and there is a player i ∈ S who has at most
k friends in S . This means that by IR-robustness, S has size
at most k + 1; otherwise, removing all i’s friends in S would
violate individual rationality for i. Now since S is not a clique,
there is a player j who has an enemy in S . Observe that j has
at most k − 1 friends in S , since S has size at most k + 1 and
at least one of the players is an enemy of j. Hence if all the
friends of j in S disappear, this would cause the deviation of
j to staying alone, contradicting IR-robustness. �

Observe that if there is a coalition of size at most k + 1 and
some player has a friend in other coalitions, the player would
have an NS-deviation to the other coalition after removal of k
players. Hence, any NS-robust outcome cannot contain such
coalitions, which leads to the following characterization of
the classes of friend-oriented games whose NS-robust out-
comes are non-empty.

Theorem 2 The following conditions are equivalent for any
symmetric friend-oriented game (N,w) and any natural num-
ber k > 0:

(i) There exists an NS-robust partition.

(ii) Each connected component of Gw is either a clique or
has minimum degree at least k + 1.

Corollary 1 For a symmetric friend-oriented game (N,w),
deciding the existence of NS-robust outcomes can be done in
polynomial time.
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5 CIS-robustness and IS-robustness
We now turn our attention to a weaker stability concept, con-
tractually individual stability. Usually, such stability require-
ment is not difficult to achieve: Gairing and Savani [2010] ob-
served that a CIS partition is guaranteed to exist for any sym-
metric additively separable game and can be efficiently com-
puted. As we have seen before, the presence of a star with two
leaves complicates the existence of CIS-robust outcomes. In
what follows, we will show that by decomposing the friend-
ship graph appropriately, one can determine the existence of
CIS-robust outcomes under deletion of a single player. We
start by showing that a leaf player and its unique neighbor
playing a role of pseudo-center form a pair in a CIS-robust
outcome. For a graph G = (V, E) and a subset X ⊆ V , we
denote by G \ X the subgraph of G induced by V \ X. We say
that a vertex j is a pseudo-center in a graph G if at most one
neighbor of j is a non-leaf vertex.

Lemma 3 For a symmetric friend-oriented game (N,w) and
k = 1, let π be an arbitrary CIS-robust partition. If j is the
unique friend of i, and j is a pseudo-center in Gw, then π(i) =
{i, j}.

Proof: By Lemma 2, i’s coalition is either the singleton {i} or
the pair {i, j}. Assume towards a contradiction that π(i) = {i}.
If |π( j)| = 1, then i has a CIS-deviation to j’s coalition, a
contradiction. If |π( j)| = 2, then removing the player h , j
in π( j) would cause the CIS-deviation of i to j’s coalition, a
contradiction. If |π( j)| ≥ 3, then this means that j has at least
two friends a, b in π( j) by Lemma 2. However, this means that
at least one of the players a, b has only one friend j but has
at least one enemy in π( j), contradicting Lemma 2. In either
case, we obtain a contradiction. �

The above lemma can recursively apply to all such pairs
in the following way: as long as there is an edge {i, j} sat-
isfying the property in Lemma 3, we need to put the play-
ers into a pair and examine whether such an edge still exists
in the remaining instance. This allows us to partially deter-
mine the structure of a CIS-robust outcome. Figure 2 illus-
trates the sequence of pairs of players that need to be formed
in a robust outcome. We now formalize the above idea as fol-
lows. For a friendship graph Gw, a sequence of edges {it, jt}
for t = 1, 2, . . . , t∗ is called an outer elimination sequence if
the following two hold:

(E1) jt is the unique friend of it in Gt, and jt is a pseudo-center
in Gt; or

(E2) jt is the unique friend of it in Gt, and it is a friend of
some player in

⋃t−1
h=1{ih, jh}.

Here Gt = Gw \
⋃t−1

h=1{ih, jh} for each t = 1, 2, . . . , t∗. An outer
elimination sequence ({it, jt})t=1,2,...,t∗ is said to be maximal if
it cannot be made any longer, i.e., there is no outer elimination
sequence ({it, jt})t=1,2,...,t∗+1.

Lemma 4 For a symmetric friend-oriented game (N,w) and
k = 1, let π be an arbitrary CIS-robust partition. If there is an
outer elimination sequence {it, jt} for t = 1, 2, . . . , t∗, then we
have π(it) = {it, jt} for each t = 1, 2, . . . , t∗.

i1 j1 i2 j2

i3

i4

j3

j4

i1 j1 i2 j2

i3

s

j3

Figure 2: Examples of maximal outer elimination sequences. Ob-
serve that the left friendship graph admits a unique CIS-robust par-
tition that consists of elimination pairs, whereas the right friendship
graph admits no CIS-robust partition since deleting i3 would cause
the CIS-deviation of j3 to s.

Proof: We prove the statement by induction on t. When t = 1,
the claim holds due to Lemma 3. Suppose that the claim holds
for t ≤ d − 1 and we prove it for t = d. Now by the induc-
tion hypothesis, π(ih) = {ih, jh} for each h = 1, 2, . . . , t − 1,
and thus players it and jt form a coalition within Gt. Now, we
have either π(it) = {it} or π(it) = {it, jt} by Lemma 2. Assume
towards a contradiction that π(it) = {it}. First suppose that jt
is a pseudo-center in Gt. Again, if |π( jt)| ≥ 3, then π( jt) con-
tains at least two friends a, b of jt by Lemma 2 where at least
one of the players has only one friend jt in π( jt), contradicting
Lemma 2. Thus, jt either stays alone at π or forms a coalition
with his another friend in Gt; however, in the former case, it
would have a CIS-deviation to jt; and in the latter case, delet-
ing the other friend of jt would cause the CIS-deviation of it
to π( jt), a contradiction. Second, suppose that it is a friend
of some player i ∈

⋃t−1
h=1{ih, jh}. Then, by removing j ∈ π(i)

with j , i, player i would have a CIS-deviation to π(it), a
contradiction. We thus conclude that π(it) = {it, jt}. �

Given a symmetric friend oriented game (N,w), we say that
a pair of players is an elimination pair if it appears in some
outer elimination sequence. We denote by Pw the set of play-
ers who belong to some elimination pair, by S w the set of
players who belong to N \ Pw and have exactly one friend in
N \ Pw, by Bw the set of players who belong to N \ Pw and
have at least two friends in N \ (Pw ∪ S w), and by Rw the set
of remaining players, i.e., Rw = N \ (Pw ∪ S w ∪ Bw). Before
we proceed, we observe the following.

Lemma 5 For a symmetric friend oriented game (N,w), each
player in S w has no friend in Pw.

Proof: Suppose that there is a player i ∈ S w who is a friend
of some player in Pw. Let j be the unique friend of i in N \
Pw. Then, the pair of players i and j is an elimination pair
satisfying the condition (E2), a contradiction. �

Lemma 6 For a symmetric friend oriented game (N,w), let
j ∈ Rw. Then, j has no friend in N \ Pw. Further if there is a
CIS-robust outcome, j has no friend in Pw.

Proof: Consider j ∈ Rw. Assume towards a contradiction that
j has some friend in N \ Pw. If j has a friend i ∈ S w, then i
together with j is an elimination pair satisfying (E1) and must
be included in Pw, a contradiction. If j has exactly one friend
in N \ (Pw∪S w), then this means that j ∈ S w, a contradiction.
If j has at least two friends in N \ (Pw ∪ S w), then this means
that j ∈ Bw, a contradiction. Hence j has no friend in N \ Pw.
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Further assume otherwise that there is a CIS-robust out-
come π but there is a player i ∈ Pw who is a friend of j. By
Lemma 4, i forms a pair, say with player h at π. By Lemma 4
and Lemma 2, j stays alone at π. Thus deleting h would cause
the CIS-deviation of i to j, a contradiction. �

Figure 3 illustrates the partition of the player set into
Pw, S w, Bw, and Rw. Now, a CIS-robust outcome must include
all the elimination pairs, and hence if such outcome exists,
there is at most one maximal outer elimination sequence.
We can thus completely characterise the class of symmetric
friend-oriented games that admit a CIS-robust outcome under
deletion of a single player.

Theorem 3 For a symmetric friend-oriented game and k = 1,
a CIS-robust outcome exists if and only if the following holds:

(i) the set of elimination pairs that appear in each maximal
elimination sequence is the same; and

(ii) there are no elimination pairs {i, j} and {u, v} where i is
a friend of both u and v; and

(iii) for each player i ∈ Pw and each player j ∈ Rw, i and j
are enemies to each other; and

(iv) if there is a player i ∈ Pw who is a friend of every player
in Bw, then every player j ∈ Bw is a friend of exactly one
player in S w and j is an enemy of at least one player in
each elimination pair.

Proof Sketch: Suppose that there is a CIS-robust outcome
π. To show (i), take any maximal elimination sequences
({it, jt})t=1,2,...,t∗ and ({ah, bh})h=1,2,...,s∗ . If there are two elim-
ination pairs {it, jt} and {ah, bh} with it = ah and jt , bh,
this would imply that π(it) = {it, jt} = {it, bh} by Lemma 4, a
contradiction. If the two sequences are disjoint, then one can
create a longer elimination sequence by adding edge {a1, b1}

to the last position of the other sequence, contradicting maxi-
mality. To see (ii), if there are two pairs {i, j} and {u, v} where
i is a friend of both u and v, then π has to include both pairs,
which however implies that i would have a CIS-deviation to
the coalition {u, v} after the removal of player j, a contradic-
tion. The statement (iii) holds due to Lemma 6. To see (iv), as-
sume that some player i ∈ Pw is a friend of every player in Bw.
Consider any player j ∈ Bw. If π( j) ⊆ Bw, then by deleting the
other friend h , i with h ∈ π(i), i would have a CIS-deviation
to π( j), a contradiction. Thus we have π( j) * Bw. Further, by
Lemma 6, each player in Rw has no friend and hence stays
alone at π by Lemma 2. This means π( j) ∩ Rw = ∅, and thus
π( j) ∩ S w , ∅. However, if j has no friend in S w or multi-
ple friends in S w, player in S w who belongs to j’s coalition
has no friend in π( j) or has at most one friend and at least
one enemy in π( j), contradicting Lemma 2. Hence j has ex-
actly one friend s in S w; by Lemma 2 and by the fact that
π( j)∩ S w , ∅, we have π( j) = { j, s}. If there is an elimination
pair {u, v} where both of them are adjacent to j, then j would
have a CIS-deviation to the coalition {u, v} after removal of s.
Hence, j is an enemy of at least one player in each elimination
pair.

Conversely, suppose that all the properties (i) − −(iv) hold.
Let Pw =

⋃t∗
t=1{it, jt} where {it, jt}t=1,2,...,t∗ is a maximal outer

Pw Bw

S w

Rw

Figure 3: A partition of the player set into Pw, S w, Bw,Rw.

elimination sequence. We note that Pw is empty if there is no
elimination pair. We define the partition π as follows: First,
for each t = 1, 2, . . . , t∗, we set π(it) = {it, jt}. Second, for
each player i ∈ Rw, we set π(i) = {i}. Finally, we partition the
players in Bw and S w as follows.

• If there is a player i ∈ Pw who is a friend of every player
in Bw, we put each j ∈ Bw and the unique friend of j in
S w into a pair.

• Otherwise, all players in Bw form a coalition and put
each player in S w into a singleton.

It can be verified that π is CIS-robust when k = 1. �

Building on the above characterization, it is easy to see
that we can decide in polynomial time whether a symmetric
friend-oriented game admits a CIS-robut outcome under dele-
tion of a single player. The proof employs a simple procedure,
which iteratively expands an outer elimination sequence and
eventually decompose the player set into Pw, S w, Bw, and Rw.

Theorem 4 For a symmetric friend-oriented game and k = 1,
deciding the existence of a CIS-robust outcome can be done
in polynomial time.

The above result turns out to be tight in several aspects. We
first show that for k = 2, finding a CIS-robust outcome of a
symmetric friend-oriented game is NP-hard.

Theorem 5 For a symmetric friend-oriented game (N,w), it
is NP-complete to decide the existence of a CIS-robust out-
come even for k = 2.

Proof Sketch: CIS-robustness can be verified in polynomial
time: for each set X ⊆ N of size at most two, one can check
in polynomial time whether π−X is contractually individually
stable. So our problem is in NP. To show hardness, we give a
reduction from Exact-3-Cover (X3C). Recall that an instance
of X3C is given by a set of elements V = {v1, v2, . . . , v3r} and
a family S of three-element subsets of V; it is a ‘yes’-instance
if and only if there is an exact cover S′ ⊆ S with |S′| = r and⋃

S∈S′ S = V .
Construction: Given an instance (V,S) of X3C, we con-

struct an instance of a friend-oriented game as follows. For
each v ∈ V , we create a vertex player v. For each vertex
v ∈ V , we create a vertex gadget Gv, which enforces the cor-
responding vertex player v to have at least two friends in his
robust coalition. Specifically, Gv consists of vertex player v,
two friends f 1

v and f 2
v of v, and one enemy ev of v. All the

three players f 1
v , f 2

v , and ev are friends to each other, f 1
v and

f 2
v are enemies of all the vertex players except for v, and the

player ev is an enemy of all the vertex players. Figure 4(a)
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(b) Set gadget GS for S = {u, v,w}

Figure 4: Gadgets constructed in the proofs of Theorem 5. The grey
nodes correspond to vertex players.

illustrates Gv. For each S = {u, v,w} ∈ S, we create a set gad-
get GS which consists of its vertex players u, v,w, and cliques
{S 1

v , S
2
v , S

3
v} for v ∈ S . Specifically, S 1

v and S 2
v are a friend of

v for each v ∈ S ; S 3
u, S

3
v , S

3
w form a clique; and the pairs of S 1

u
and S 1

v , S 2
u and S 2

w, and S 1
w and S 2

v are friends to each other.
See Figure 4(b) for an illustration. Unless specified otherwise,
players are enemies to each other. Finally, we set k = 2.

Correctness: Suppose that there is an exact cover S′ ⊆ S.
Then, we define π as follows. For each set S ∈ S′ and each
v ∈ S , we set π(v) = {v, S 1

v , S
2
v}; the remaining players of the

set gadget forms a coalition, i.e., π(S 3
u) = {S 3

u, S
3
v , S

3
w}. For

each S < S′, the non-vertex players in the set gadget Gs form
a coalition, i.e., π(S 1

u) = { S i
v | i = 1, 2, 3 ∧ v ∈ S }. For each

v ∈ V , we set π( f 1
v ) = { f 1

v , f 2
v , ev}. The resulting partition π

can be easily verified to be IR-robust. Also, as each player has
at least two friends in his coalition and one enemy in the other
coalitions, no player has a CIS-deviation to other coalitions
even after an arbitrary player disappears.

Conversely, let π be a CIS-robust partition. To maintain ro-
bustness within each vertex gadget Gv, for v ∈ V , it can be
verified that the three players f 1

v , f 2
v , ev must form a coali-

tion, which means that each vertex player v must have at least
two friends in his coalition. Thus for each v ∈ V , we have
{v, S 1

v , S
2
v} for some S ∈ S with v ∈ S . Further, to main-

tain robustness within each set gadget, if π(v) = {v, S 1
v , S

2
v},

then each vertex player u ∈ S also selects S , i.e., π(u) =
{u, S 1

u, S
2
u}. Now let S′ =

⋃
v∈V { S ∈ S | π(v) = {v, S 1

v , S
2
v} }.

Then it can be easily verified that S′ is an exact cover. �

A similar proof of Theorem 5 shows that finding an IS-
robust outcome is NP-hard even if only a single player is al-
lowed to disappear.

Theorem 6 For a symmetric friend-oriented game (N,w),
deciding the existence of an IS-robust outcome is NP-
complete even for k = 1.

We have not been able to identify whether the problem of
computing a CR-robust outcome is polynomial-time solvable;
we leave this question for future work.

6 IR-robustness
In Example 1, we have seen that an outcome of a hedo-
nic game can fail to preserve some stability properties, even
when players’ preferences are symmetric friend-oriented. Our
next question is the following: is it still possible to guarantee
a minimum stability requirement, i.e., individual rationality,

under deletion of players, while ensuring desirable property
of the original partition? The answer is positive for individual
stability when players have symmetric additively separable
preferences. In these games, one can guarantee the existence
of an individually stable partition that is IR-robust.

Theorem 7 For any symmetric additively separable game
(N,w) and any natural number k > 0, there exists an indi-
vidually stable and IR-robust partition.

In general, finding an individually stable outcome of a sym-
metric additively separable game is known to be computation-
ally intractable [Gairing and Savani, 2011]. In contrast, we
can efficiently construct an individually stable partition that is
IR-robust in symmetric friend-oriented games, in which each
weight only takes two values.

Theorem 8 For any symmetric friend-oriented (N,w) and
any natural number k > 0, one can compute an individually
stable and IR-robust partition in polynomial time.

We note that without symmetry, the set of outcomes that
are both individually stable and IR-robust can be empty.

7 Conclusion
We believe that this paper has made a first important step to-
wards a future stream of research, sparked by the chemistry of
two concepts, robustness and stability. Below, we list several
interesting questions for future work.

Most obviously, while our main focus was on robustness
against agents’ non-participation, studying other types of ro-
bustness would be an important topic of research. For in-
stance, one might want to consider sudden failure of agents’
friendship relations, due to individual conflicts (see, e.g.,
Varma and Yoshida [2019]). We expect to see a different im-
pact on stable outcomes as communication failure has usually
less affect on the the structure of the underlying network.

Also, our work presents the worst-case analysis for agent
failure. That is, our definition requires an outcome to be im-
mune to any possibility of agent failure. However, one might
want to consider specific coalitional failure, rather than all of
them. For example, our model can be extended to the prob-
abilistic setting where each agent/friendship link may have
different probability of failure.

Finally, it would be interesting to extend this line of work
to other settings where stability plays an important role. Ex-
amples include fractional hedonic games [Aziz et al., 2014;
2017], stable marriage problem [Gale and Shapley, 1962],
and group activity selection problem [Darmann et al., 2017;
Igarashi et al., 2017].
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