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Abstract
We study the problem of fairly allocating indi-
visible goods between groups of agents using the
recently introduced relaxations of envy-freeness.
We consider the existence of fair allocations un-
der different assumptions on the valuations of the
agents. In particular, our results cover cases of ar-
bitrary monotonic, responsive, and additive valu-
ations, while for the case of binary valuations we
fully characterize the cardinalities of two groups of
agents for which a fair allocation can be guaranteed
with respect to both envy-freeness up to one good
(EF1) and envy-freeness up to any good (EFX).
Moreover, we introduce a new model where the
agents are not partitioned into groups in advance,
but instead the partition can be chosen in conjunc-
tion with the allocation of the goods. In this model,
we show that for agents with arbitrary monotonic
valuations, there is always a partition of the agents
into two groups of any given sizes along with an
EF1 allocation of the goods. We also provide an
extension of this result to any number of groups.

1 Introduction
Fairness is one of the primary desiderata in decision-making
procedures involving multiple agents. For instance, machine
learning researchers have recently studied how to design clas-
sification systems that do not discriminate based on sensitive
attributes such as race or gender [Dwork et al., 2012]. An-
other problem that is ubiquitous in every society is that of
allocating resources among its members. The study of how
the allocation can be done fairly, commonly known as fair di-
vision, has found applications ranging from settling divorce
disputes [Brams and Taylor, 1996] to sharing apartment rent
[Su, 1999; Gal et al., 2017].

The vast majority of the fair division literature has focused
on allocating resources among individual agents. However,
in many practical situations the resources need to be allocated
among groups of agents. The agents in each group share the
same set of resources, but may have different preferences over
them. For instance, the books allocated to a library can be
enjoyed by all of its members, and it may be the case that
some members prefer detective novels while others would

rather read science fiction. Another example is the division
of household goods between families; different members of a
family may have contrasting opinions on the television or the
sofa in their apartment.

The group aspect of fair division was introduced indepen-
dently by Segal-Halevi and Nitzan [2016] and Manurangsi
and Suksompong [2017]. Segal-Halevi and Nitzan investi-
gated the allocation of divisible goods such as cake or land.
In contrast, Manurangsi and Suksompong studied the group
allocation of indivisible goods like books and cars. Both of
these works used the fairness notion of envy-freeness—an
agent is said to be envy-free if she finds her group’s share
to be as least as good as the share of any other group. While
envy-freeness cannot be guaranteed even when allocating in-
divisible goods among individuals (consider two agents who
quarrel over a single valuable good), Manurangsi and Suk-
sompong showed that if the agents’ utilities for the goods
are drawn at random, an envy-free allocation exists with high
probability in the group setting as the number of agents and
goods grows. Segal-Halevi and Suksompong [2018] then in-
troduced the concept of democratic fairness, which aims to
satisfy a certain fraction of the agents in each group. Among
other fairness notions, they considered envy-freeness up to
one good (EF1), which means that while some agent may
envy another group under the given allocation, the envy can
be eliminated by removing a single good from the other
group’s share. Segal-Halevi and Suksompong showed that
for two groups, there always exists an allocation that is EF1
for at least 1/2 of the agents in each group, and the factor 1/2
cannot be improved.

While the aforementioned works provide different meth-
ods for extending individual fair division to the group setting,
in some situations it may be important that all agents receive
a fairness guarantee with certainty regardless of their valua-
tions. Suksompong [2018] showed the possibilities and limi-
tations of using the maximin share notion to guarantee every
agent a fair share. In this work, we study the extent to which
the recently introduced relaxations of envy-freeness, most no-
tably EF1 and another notion called EFX, can be used for the
same purpose. We show that while EF1 is surprisingly robust
and can be guaranteed in a number of group settings, this is
not the case for EFX. In addition, we introduce a new model
in which the partition of the agents into groups is not fixed
in advance, but instead can be chosen in conjunction with the
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allocation of the goods. This model captures settings where
agents (or a central authority) can choose the group that they
want to be part of, such as membership in a library or gym.

1.1 Our Results
With the exception of Section 5.2, we assume that the goods
are allocated between two groups of agents. While this
may seem restrictive at first glance, we remark here that
fair division between two individual agents, which is much
more restrictive, has received a significant amount of at-
tention in the literature (e.g., [Brams and Fishburn, 2000;
Brams et al., 2014; Kilgour and Vetschera, 2018]). Indeed,
as we will see, the setting of two groups is quite rich and al-
ready allows for many interesting, non-trivial results.

In Section 3, we assume that the agents in the two prede-
termined groups have binary valuations, i.e., each agent either
desires each good or not. We characterize the cardinalities of
the groups for which an EF1 or EFX allocation always exists.
Additionally, we consider a stronger variant of EFX intro-
duced by Plaut and Roughgarden [2018], which we refer to
as EFX0. We prove a very strong negative result for the group
fairness setting, implying that this fairness notion can only be
guaranteed when both groups are singletons.

Next, in Section 4, we consider more general classes of
valuations. If one group is a singleton and the other group
consists of two agents, we show that a balanced EF1 alloca-
tion always exists provided that the agents are endowed with
responsive valuations, a general class that contains the well-
studied class of additive valuations. Balancedness means that
the sizes of the two bundles differ by at most one. Moreover,
we establish a surprising connection between our group fair
division problem and a class of graphs known as generalized
Kneser graphs. We show that if a conjecture by Jafari and
Alipour [2017] on the chromatic number of particular graphs
from this class is true, it would imply that a balanced EF1
allocation exists whenever the two groups contain a total of
at most five agents with arbitrary monotonic valuations. This
bound would be tight due to our results in Section 3.

Finally, in Section 5 we examine the newly introduced set-
ting where we assume that the partition of the agents into
groups is no longer fixed and can be chosen along with the
allocation of the goods. Our results indicate that if a central
authority or the agents themselves have the power to decide
which group to join, then fair allocations are much easier to
achieve. In particular, we show that for two groups of agents
with arbitrary monotonic valuations, it is always possible to
simultaneously obtain a balanced partition of the agents and
a balanced EF1 allocation of the goods. In addition, for any
given sizes of the two groups, there is a partition of the agents
conforming to those sizes together with an EF1 allocation of
the goods. We also present an extension of this result to any
number of groups.

1.2 Further Related Work
The fairness notions EF1 and EFX were introduced by Lipton
et al. [2004] and Caragiannis et al. [2016], and studied in
several papers in the last few years [Plaut and Roughgarden,
2018; Amanatidis et al., 2018; Biswas and Barman, 2018;
Bilò et al., 2019; Oh et al., 2019]. For individual fair division,

it is known that an EF1 allocation is guaranteed to exist for
any number of agents with monotonic valuations, while the
question remains open for EFX.

A recent paper by Ghodsi et al. [2018] addressed the prob-
lem of rent division for groups. In addition to determining
the allocation of the rooms, the rent of the apartment must be
divided among the agents. Like us, Ghodsi et al. also consid-
ered a model where the groups are not predetermined.

Another line of research has also considered group fair-
ness in resource allocation but using a different kind of fair-
ness notions than ours [Berliant et al., 1992; Husseinov, 2011;
Todo et al., 2011; Aleksandrov and Walsh, 2018; Conitzer et
al., 2019]. In these papers, the resources are allocated to indi-
vidual agents, and the aim is to minimize the envy that arises
between groups of these agents. In contrast, in our work the
resources are allocated to groups of agents and shared as pub-
lic goods among the agents within each group.

Recently, Biswas and Barman [2018] examined cardinal-
ity constraints in individual fair division, where the goods are
categorized and there is a limit on the number of goods from
each category that can be allocated to each agent. Our bal-
ancedness notion can be seen as a special case of these con-
straints.

The group resource allocation problem with variable
groups is similar to coalition formation problems [Drèze and
Greenberg, 1980; Bogomolnaia and Jackson, 2002] in the
sense that there is flexibility in how the agents form groups.
However, in coalition formation the utilities of an agent de-
pend on how the agents are grouped and there are no goods
involved, whereas in our setting these utilities depend on how
the goods are distributed and not how the agents are grouped.

2 Preliminaries
Let G = {g1, . . . , gm} denote the set of goods, and A the
set of n agents. A bundle is a subset of G. The agents are
partitioned into k ≥ 2 groups. We assume in Sections 3 and 4
that this partition is fixed in advance, and in Section 5 that the
partition is variable and can be chosen. Denote by ni the size
of group i (so n =

∑k
i=1 ni), and aij the jth agent of group

i. The agents in each group will be collectively allocated a
subset of G; denote by Bi the bundle allocated to group i so
that Bi ∩Bj = ∅ for any i 6= j and ∪ki=1Bi = G. A partition
of the agents is called balanced if |ni − nj | ≤ 1 for any
i, j. Similarly, an allocation of the goods is called balanced
if ||Bi| − |Bj || ≤ 1 for any i, j.

Each agent aij has some nonnegative valuation uij(G
′)

for each set of goods G′ ⊆ G; for convenience we write
uij(g) instead of uij({g}) for a good g ∈ G. Let uij :=
(uij(g1), . . . , uij(gm)) be the valuation vector of agent aij
for individual goods. When the identity of the agent is
not important, we will drop the indices i, j from the valua-
tion uij . We assume that the valuations are monotonic, i.e.,
u(G1) ≤ u(G2) for any G1 ⊆ G2 ⊆ G, and normalized, i.e.,
u(∅) = 0. A valuation function u is said to be responsive if
u(G′ ∪ {g}) ≥ u(G′ ∪ {g}) for any G′ ⊆ G and any goods
g, g 6∈ G′ such that u(g) ≥ u(g). It is said to be additive
if u(G′) =

∑
g∈G′ u(g) for any G′ ⊆ G, and binary if it is

additive and u(g) ∈ {0, 1} for all g ∈ G. Note that every
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additive valuation is responsive. Additive valuations are of-
ten assumed in recent fair division literature [Caragiannis et
al., 2016; Amanatidis et al., 2018; Biswas and Barman, 2018;
Conitzer et al., 2019]. An instance consists of agents, goods,
and utility functions (and in the model of Sections 3 and 4,
the partition of agents into groups). In Section 5, we sim-
ply denote the agents by a1, . . . , an and their valuations by
u1, . . . , un.

We are now ready to define the fairness notions that we
consider in this paper.

Definition 2.1. An allocation (B1, . . . , Bn) is said to be

• envy-free for agent aij if uij(Bi) ≥ uij(Bi′) for any i′;

• envy-free up to any good (EFX0) for agent aij if for
any i′ and any good g ∈ Bi′ , we have uij(Bi) ≥
uij(Bi′\{g});
• envy-free up to any positively valued good (EFX) for

agent aij if for any i′ and any good g ∈ Bi′ such that
uij(g) > 0, we have uij(Bi) ≥ uij(Bi′\{g});
• envy-free up to c goods (EFc) for agent aij , for a given

positive integer c, if for any i′ there is a set B ⊆ Bi′

with |B| ≤ c such that uij(Bi) ≥ uij(Bi′\B).

An allocation is said to be envy-free if it is envy-free for every
agent. When there are two groups, we say that an agent finds a
bundle to be envy-free if the allocation that assigns the bundle
to her group and the complement bundle to the other group is
envy-free for her. Analogous definitions hold for EFX0, EFX,
and EFc.

EFX0 is a variant of EFX introduced by Plaut and Rough-
garden [2018].1 For additive valuations, it is clear that each
property in the list is stronger than the next, with EFX imply-
ing EF1. We will only consider EFX and EFX0 in the context
of additive valuations. In Sections 4 and 5 we only state re-
sults for EFX, but all of these results also hold for EFX0.

All omitted proofs can be found in the full version of this
paper.2

3 Fixed Groups with Binary Valuations
In this section, we assume that the agents have binary valua-
tions and are partitioned in advance into two groups of size n1
and n2. Note that any nonexistence result for (n1, n2) yields
an analogous result for (n′1, n

′
2) with n′1 ≥ n1 and n′2 ≥ n2,

since in the latter case a subset of n1 agents from the first
group and a subset of n2 agents from the second group still
need to consider the allocation fair. Similarly, an existence
result for (n1, n2) yields a corresponding result for (n′1, n

′
2)

with n′1 ≤ n1 and n′2 ≤ n2.
We begin by considering the notions EFX and EF1. In fact,

for binary valuations one can easily verify that EFX and EF1
are equivalent, so it suffices to consider only EF1.

We first present two results that establish the existence of
an EF1 allocation for the cases (n1, n2) = (5, 1) and (3, 2).

1In their paper this property is simply called EFX; we rename
it to avoid confusion with the original definition of Caragiannis et
al. [2016], which we refer to as EFX.

2https://arxiv.org/abs/1901.08463

While the proofs are quite lengthy and left to the full ver-
sion, we give here a high-level overview. First, observe that
since the valuations are binary, each good can be described
by the set of agents who desire it. If two goods are desired
by the same set of agents, we can allocate one to each group
and then search for an EF1 allocation of the reduced instance
with the remaining goods. Hence we may assume that every
good is desired by a distinct subset of agents. This reduces
the problem to a finite (but still large) number of possible in-
stances. We then perform other preprocessing steps to reduce
the number of cases even further. For example, if an agent
desires an odd number of goods, the requirement that EF1
imposes on the agent remains the same when we perturb the
valuation of the agent so that she no longer desires an arbi-
trary good. Consequently, we may assume that every agent
desires an even number of goods.
Theorem 3.1. For (n1, n2) = (5, 1) and binary valuations,
an EF1 allocation always exists.
Theorem 3.2. For (n1, n2) = (3, 2) and binary valuations,
an EF1 allocation always exists.

The following result completes the characterization for
EF1 (and EFX) by proving that existence is not guaranteed
for larger sets.
Proposition 3.3. For (n1, n2) = (6, 1), (4, 2), or (3, 3) and
binary valuations, an EF1 allocation does not always exist.

Before addressing EFX0, we show that for two groups of
arbitrary sizes, determining whether an EF1 (and EFX) allo-
cation exists is computationally hard. Our reduction is similar
to the one used by Segal-Halevi and Suksompong [2018] to
show the hardness of deciding the existence of an allocation
that gives every agent a positive utility.
Proposition 3.4. For two groups of agents with binary val-
uations, it is NP-complete to decide whether there exists an
EF1 allocation.

We now turn to the stronger notion of EFX0, and show a
negative result.
Proposition 3.5. For (n1, n2) = (2, 1) and binary valua-
tions, an EFX0 allocation does not always exist.

In contrast, Plaut and Roughgarden [2018] showed that
an EFX0 allocation always exists if (n1, n2) = (1, 1), even
for arbitrary monotonic valuations. Combined with Proposi-
tion 3.5, this yields a complete characterization of EFX0 for
every class of valuations between binary and monotonic.

4 Fixed Groups with General Valuations
In this section, we again assume that the partition of the
agents into two groups is predetermined, but allow them to
have more general valuations.

We first show that the existence of EF1 allocations is guar-
anteed for (n1, n2) = (2, 1). The proof relies on the follow-
ing lemma which may be of independent interest. A partition
of the goods in G into two bundles is said to be exact up to
one good (Exact1) for an agent if the agent views each bun-
dle to be EF1. As with allocations, we call a partition of the
goods balanced if the sizes of the two bundles differ by at
most one.
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Lemma 4.1. For two agents with responsive valuations, there
always exists a balanced partition of G into two bundles that
is Exact1 for both agents.

Proof. Suppose first that the number of goods m is even,
say m = 2t. Assume without loss of generality that
the valuation u1 of the first agent is such that u1(g1) ≥
u1(g2) ≥ · · · ≥ u1(g2t). Construct an undirected graph
H with 2t vertices corresponding to the goods, and add t
red edges (g1, g2), (g3, g4), . . . , (g2t−1, g2t). Similarly, add t
blue edges according to the valuation u2 of the second agent.
Since no two edges of the same color are adjacent, the graph
cannot contain an odd cycle, which means that H is bipar-
tite. Therefore, its vertices can be partitioned into disjoint
independent sets V1 and V2. If |V1| ≥ t + 1, there is an
edge among the vertices in V1, a contradiction. An analogous
statement holds for V2. It follows that |V1| = |V2| = t.

The partition (V1, V2) is balanced; it remains to show that
it is Exact1 for both agents. By symmetry, it suffices to
prove this for the first agent. By construction, each of V1
and V2 contains exactly one good from each of the pairs
(g1, g2), (g3, g4), . . . , (g2t−1, g2t). For i = 1, 2, . . . , t − 1,
the ith best good in V1 according to the first agent’s valuation
is no worse than the (i+1)st best good in V2. Responsiveness
then implies that the agent values V1 at least as much as V2
when the best good in V2 is removed. This means that she
regards V1 to be EF1. Similarly, she regards V2 to be EF1;
hence the partition is Exact1 for her.

The case where m is odd can be handled similarly; we
leave the details to the full version.

Lemma 4.1 yields the following EF1 existence result.

Theorem 4.2. For (n1, n2) = (2, 1) and responsive valua-
tions, a balanced EF1 allocation always exists.

Proof. Choose two arbitrary agents and consider a balanced
partition of G into two bundles that is Exact1 for both agents;
such a partition exists by Lemma 4.1. Let the remaining agent
choose for her group the bundle that she prefers, and allocate
the other bundle to the other group. It is clear that the result-
ing allocation is balanced and EF1.

In light of Theorem 4.2 and our characterization for binary
valuations in Section 3, it is natural to ask whether EF1 can
also be guaranteed for larger groups with additive valuations
and beyond. While we were unable to settle this question, we
show that the existence of EF1 allocations would be guar-
anteed for almost all of the remaining cases provided that
a graph-theoretic conjecture of Jafari and Alipour [2017] is
true. To describe the conjecture and its implications in our
setting, we need to introduce a class of graphs called gener-
alized Kneser graphs.3

Definition 4.3. Let b ≥ r ≥ s be positive integers and con-
sider an underlying set of elements U such that |U| = b. The
generalized Kneser graph K(b, r, s) is an undirected graph
with all r-element subsets of U as its vertices. Two vertices

3Kneser graphs have previously been used in the context of fair
division and resource allocation by Suksompong [2016] and Plaut
and Roughgarden [2018].

are connected by an edge if and only if the corresponding
subsets intersect in at most s− 1 elements.

Recall that the chromatic number of a graphH , denoted by
χ(H), is the minimum number of colors needed to color the
vertices of H so that any two adjacent vertices have different
colors. For example, K(4, 2, 2) is a clique of size 6, so its
chromatic number is 6.

We are now ready to establish the connection between the
generalized Kneser graph and our fair division problem.

Theorem 4.4. Let z := minr≥2 χ(K(2r, r, 2)). For two
groups with at most z−1 agents in total and arbitrary mono-
tonic valuations, a balanced EF1 allocation always exists.

Proof. Suppose first that the number of goods m is even, say
m = 2t. If t = 1, any allocation that gives one good to each
group is balanced and EF1, so we may assume that t ≥ 2.
Consider the graph K(2t, t, 2) with the vertices correspond-
ing to all balanced allocations, where we identify each vertex
by the set of goods allocated to the first group.

Give each agent a distinct color, and let her color all alloca-
tions that she does not regard as EF1. We claim that no agent
can color two adjacent vertices. Consider an agent in the first
group with valuation u, and suppose for contradiction that she
colors two adjacent vertices corresponding to the sets G1 and
G2. Since the two vertices are adjacent, |G1 ∩ G2| ≤ 1.
If G1 ∩ G2 = ∅, since |G1| = |G2| = t it holds that
G2 = G\G1. So the agent should consider one of the two al-
locations as EF, which is a contradiction to her coloring both
vertices. Therefore |G1 ∩ G2| = 1. Let g be the common
good of G1 and G2. Since the agent does not view G1 to
be EF1, we have u(G1) < u(G2\{g}) = u((G\G1)\{g′}),
where g′ is the unique good that does not belong to G1 ∪G2.
Similarly, since the agent does not view G2 to be EF1, we
have u(G2) < u(G1\{g}). Monotonicity then implies that

u(G1) < u(G2\{g}) ≤ u(G2) < u(G1\{g}) ≤ u(G1),

a contradiction. The claim can be proven similarly for agents
in the second group by observing that for any two balanced
allocations, the bundles allocated to the first group intersect
in at most one good if and only if the same condition holds
for the bundles allocated to the second group.

Since there are at most z − 1 agents, the number of colors
is at most z− 1 ≤ χ(K(2t, t, 2))− 1. Hence there is a vertex
that does not receive any color. By definition, this vertex cor-
responds to a balanced allocation that is EF1 for all agents.
This completes the proof for the case where m is even.

The case where m is odd can be handled similarly; we
leave the details to the full version.

Jafari and Alipour [2017] proved that K(2r, r, 2) ≤ 6 for
all r ≥ 2, and conjectured that this bound is always tight.

Conjecture 4.5 ([Jafari and Alipour, 2017]). For any r ≥ 2,
we have χ(K(2r, r, 2)) = 6.

If Conjecture 4.5 is true, then together with Theorem 4.4,
it would imply that a balanced EF1 allocation is guaranteed
to exist for two groups with at most 5 agents in total and
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arbitrary monotonic valuations.4 The bound of 5 cannot be
improved to 6 due to Proposition 3.3. Moreover, this result
would answer the EF1 existence question in the affirmative
for all of the remaining group sizes except for the case (5, 1).
We remark that for this case, a balanced EF1 allocation might
not exist, even when valuations are binary.

Proposition 4.6. For (n1, n2) = (5, 1) and binary valua-
tions, a balanced EF1 allocation does not always exist.

We note that our techniques in Theorem 4.4 can be ex-
tended to weaker relaxations of envy-freeness. Indeed we can
similarly derive a corresponding result for EFc, for any posi-
tive integer c, if we consider graphs K(2r, r, c + 1). See the
full version for the relevant discussion.

We conclude this section by showing that existence can no
longer be guaranteed if we strengthen the fairness require-
ment from EF1 to EFX. Recall that for binary valuations,
an EFX allocation always exists when one group contains at
most five agents and the other group is a singleton. We show
that this is not the case for additive valuations, even when the
first group contains only two agents.

Proposition 4.7. For (n1, n2) = (2, 1) and additive valua-
tions, an EFX allocation does not always exist.

Since an EFX allocation always exists when (n1, n2) =
(1, 1) for arbitrary monotonic valuations [Plaut and Rough-
garden, 2018], we have a complete characterization of EFX
for every class of valuations between additive and monotonic.

5 Variable Groups
Thus far, we have worked under the assumption that the par-
tition of agents into groups is determined in advance. This
assumption is appropriate when we consider, for example,
membership in a family or citizenship of a country. In other
settings, however, the choice of the group to which the agents
belong can be made by a central authority or by the agents
themselves. This applies to membership in a library, gym, or
other facilities.

With this motivation in mind, we depart from the frame-
work of fixed groups in this section, and instead assume that
the partition of the agents into groups can be chosen along
with the allocation of the goods. Under this assumption,
finding an EF1, EFX, or even envy-free allocation is triv-
ial: simply put all agents in one group and allocate all goods
to that group. However, this may lead to undesirable situa-
tions where a gym is overcrowded or a library does not have
enough space to hold all of its books. As we will show, it is
nevertheless possible to obtain a fair outcome that is more-
over balanced with respect to both the agents and the goods,
for any number of agents with general valuations.

4Jafari and Alipour [2017] also claimed that χ(K(2r, r, 2)) ≥ 4
for all r ≥ 2. In combination with our Theorem 4.4, this would
imply that our Theorem 4.2 can be generalized to arbitrary mono-
tonic valuations. However, the proof of their Theorem 5.1 contains
an error when they claim that the intersection of the two k-subsets
of color j has at most i−1 elements. It is only true that the intersec-
tion has at most i− 1 elements in each of the two hemispheres, and
therefore at most 2i− 2 elements in total. It is not clear whether the
proof can be recovered in light of this error.

5.1 Two Groups
We start with two groups and show that EF1 can be guar-
anteed for any desired sizes of these groups. Our algorithm
generalizes the discrete “cut-and-choose” algorithm for allo-
cating indivisible goods between two individual agents [Bilò
et al., 2019; Oh et al., 2019].

Theorem 5.1. Let n be any positive integer. Suppose that
there are n agents with arbitrary monotonic valuations, and
let n1 and n2 be nonnegative integers with n1 + n2 = n.
There always exists a partition of the agents into two groups
such that group i ∈ {1, 2} contains ni agents, along with an
EF1 allocation of the goods to the two groups.

Proof. Arrange the goods in a line. Starting with an empty
bundle, we add one good at a time from the left until at least
n1 agents find the bundle to be EF1. If this condition is met
before we add any good, we give n1 of these agents an empty
bundle and the remaining n2 agents the entire set G. Oth-
erwise, denote by g the last good added to the bundle. We
assign to the first group all agents who view the bundle as
EF1 before the addition of g, along with an arbitrary subset
of those who find it EF1 after g is added so that the first group
has size n1. We allocate this bundle to the first group, and the
remaining goods to the second group, which consists of the
remaining agents.

Since the entire set G is EF1 for all agents, the process
terminates. By construction, the agents in the first group re-
gard the allocation as EF1, so we only need to show that the
same holds for the second group. This is trivial if the sec-
ond group receives the entire set G. Otherwise, let GL and
GR be the bundles to the left and right of g, respectively (not
containing g). Every agent in the second group does not find
GL to be EF1, which means that she has more value for GR

than GL. This implies that the agent finds GR to be EF1, as
desired.

For the case where a balanced allocation of the goods is
required, we prove that this can also be achieved and, in fact,
it can always be combined with a balanced partition of the
agents. This means that in our gym and library applications,
it is possible to reach a balance in terms of the users as well
as the resources.

Theorem 5.2. Let n be any positive integer, and suppose
that there are n agents with arbitrary monotonic valuations.
There always exists a balanced partition of the agents into
two groups along with a balanced EF1 allocation of the
goods to the two groups.

Proof. Suppose first that both the number of agents n and the
number of goods m are even, say n = 2s and m = 2t; we
leave the case where either or both are odd to the full version.
Assume for contradiction that there is no balanced partition
along with a balanced allocation.

Arrange the goods around a circle with equal spacing be-
tween adjacent goods. Imagine a knife that cuts through the
center of the circle, dividing the goods into two bundles G1

and G2, each of size t. By our assumption, any balanced as-
signment of the agents toG1 andG2 does not result in an EF1
allocation. On the other hand, there does exist an assignment
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such that the resulting allocation is EF1 (e.g., an assignment
that gives every agent her favorite bundle). Consider such an
assignment that moreover minimizes the difference between
the numbers of agents in the two groups. Assume without loss
of generality that more than half of the agents are assigned to
G1. If one of these agents finds G2 to be EF1, we can reas-
sign her to G2 and reduce the discrepancy between the two
groups. Hence all of these agents do not find G2 to be EF1.

Next, we rotate the knife clockwise by one position,
thereby moving a good g from G1 to G2 and another good
g from G2 to G1. Call the resulting bundles H1 = (G1 ∪
{g})\{g} andH2 = (G2∪{g})\{g}, respectively. We claim
that the agents who do not find G2 to be EF1 regard H1 as
EF1. Denoting the valuation of an arbitrary such agent by u,
we have

u(H1) ≥ u(G1\{g})
> u(G2) ≥ u(G2\{g}) = u(H2\{g}),

where the first and third inequalities follow from monotonic-
ity. So the agent indeed finds H1 to be EF1. Since more
than half of the agents do not find G2 to be EF1, more than
half of the agents regard H1 as EF1. By our assumption, any
balanced assignment of the agents to H1 and H2 does not re-
sult in an EF1 allocation. It follows that in any assignment
such that the resulting allocation is EF1, more than half of
the agents are assigned to H1. Additionally, more than half
of the agents do not find H2 to be EF1.

If we rotate the knife clockwise repeatedly, the same ar-
gument tells us that more than half of the agents do not find
the second bundle (i.e., G2, H2, and so on) to be EF1. Af-
ter t rotation steps, the knife has rotated halfway around the
circle, and the second bundle coincides with the original first
bundle G1. However, we know from earlier that more than
half of the agents find G1 to be EF1. This yields the desired
contradiction.

Theorem 5.2 yields the following result on individual fair
division, which is new to the best of our knowledge.
Corollary 5.3. For two individual agents with arbitrary
monotonic valuations, there always exists a balanced EF1 al-
location.

When valuations are responsive, a balanced EF1 alloca-
tion (for arbitrarily many agents) can also be obtained by
the round-robin algorithm, which lets the agents take turns
choosing their favorite good from the remaining goods un-
til all goods are taken (see, e.g., [Caragiannis et al., 2016]).
However, the round-robin algorithm does not work for arbi-
trary monotonic valuations.

Turning our attention to EFX, we show that if we require
the partition of the agents to be balanced, an EFX alloca-
tion might not exist; this complements Theorems 5.1 and 5.2
above. In addition, a balanced EFX allocation does not nec-
essarily exist for two individual agents even when the agents
have identical additive valuations, which complements Corol-
lary 5.3.
Proposition 5.4. There does not always exist a balanced par-
tition of the agents into two groups along with an EFX allo-
cation of the goods to the two groups, even when valuations
are additive.

Proposition 5.5. Let m be a positive integer. There exists an
instance with two individual agents who have identical addi-
tive valuations andm goods, such that in any EFX allocation,
one of the agents receives exactly one good.

5.2 Any Number of Groups
We now consider any number of groups and show how Theo-
rem 5.1 can be partially extended to this setting. While we do
not know whether EF1 or other relaxations of envy-freeness
can be achieved in this general setting, we show that we can
obtain a positive result for a weaker fairness notion called
proportionality. An allocation of the goods in G to k groups
is said to be proportional if every agent receives value at least
1/k of her value for the whole setG. As with envy-freeness, a
proportional allocation does not always exist (e.g., when there
are two individual agents and one valuable good), so it is nec-
essary to consider a relaxation. Let uj,max := maxmt=1 uj(gt)
denote the maximum value of agent aj for a single good.
Theorem 5.6. Let n and k be any positive integers. Sup-
pose that there are n agents with additive valuations, and let
n1, . . . , nk be nonnegative integers with

∑k
i=1 ni = n. There

always exists a partition of the agents into k groups such that
group i contains ni agents, along with an allocation of the
goods to the k groups such that each agent aj receives utility
at least 1

k · uj(G)−
k−1
k · uj,max.

Theorem 5.6 generalizes a result of Suksompong [2019],
which holds for individual fair division (i.e., ni = 1 for all
i = 1, . . . , k). The factor k−1

k in the approximation cannot
be improved even in this special case.

6 Discussion
In this paper, we examine the fairness guarantees that can be
obtained in the allocation of indivisible goods among groups
of agents. For two fixed groups of agents, we provide a com-
plete picture for EF1 and EFX when agents have binary val-
uations, and we present further positive and negative results
for more general valuations. We also introduce a new model
where the partition of the agents into groups can be deter-
mined along with the allocation of the goods, and show that it
is possible to attain a balance in both the agents and the goods
simultaneously.

Our work leaves many open questions for future study. For
two groups, one could try to establish the existence of EF1
allocations for larger group sizes, either by settling the graph-
theoretic conjecture of Jafari and Alipour [2017] or via other
means. In addition, the questions that we study in this pa-
per can also be asked for multiple groups; our techniques do
not seem to extend easily to more than two groups in most
cases. For individual fair division, we also leave the question
of whether a balanced EF1 allocation can always be found for
any number of agents; Corollary 5.3 gives a positive answer
for the case of two agents. While the round-robin algorithm
works when valuations are responsive, the question intrigu-
ingly remains open for arbitrary monotonic valuations.
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