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Abstract
We study the complexity of equilibrium computa-
tion in discrete preference games. These games
were introduced by Chierichetti, Kleinberg, and
Oren (EC ’13, JCSS ’18) to model decision-making
by agents in a social network that choose a strategy
from a finite, discrete set, balancing between their
intrinsic preferences for the strategies and their de-
sire to choose a strategy that is ‘similar’ to their
neighbours. There are thus two components: a so-
cial network with the agents as vertices, and a met-
ric space of strategies. These games are potential
games, and hence pure Nash equilibria exist. Since
their introduction, a number of papers have studied
various aspects of this model, including the social
cost at equilibria, and arrival at a consensus. We
show that in general, equilibrium computation in
discrete preference games is PLS-complete, even
in the simple case where each agent has a constant
number of neighbours. If the edges in the social
network are weighted, then the problem is PLS-
complete even if each agent has a constant number
of neighbours, the metric space has constant size,
and every pair of strategies is at distance 1 or 2.
Further, if the social network is directed, modelling
asymmetric influence, an equilibrium may not even
exist. On the positive side, we show that if the met-
ric space is a tree metric, or is the product of path
metrics, then the equilibrium can be computed in
polynomial time.

1 Introduction
Networks are a growing presence in our lives, and affect
our behaviour in complex ways. A large amount of lit-
erature attempts to understand various facets of these net-
works. The literature is diverse, due to the large variety of
networks and their myriad effects on our daily lives. Promi-
nent among these is the work on opinion formation in social
networks [Bala and Goyal, 1998; Golub and Jackson, 2010];
algorithms to target agents in a network to promote adop-
tion of a product [Domingos and Richardson, 2001; Kempe
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et al., 2015]; and models that accurately capture the spe-
cial structure of social networks [Barabási and Albert, 1999;
Watts and Strogatz, 1998].

We study a model of opinion formation in social networks.
In a basic but commonly studied model of opinion formation,
each agent in the network holds a real-valued opinion, such
as her political leaning, and is influenced by her neighbours
in the social network. Under the influence of her neighbours,
in each time step she updates her opinion to the weighted av-
erage of her opinion and that of her neighbours. In a game-
theoretic setting, this is a coordination game, where players
try to coordinate their opinion with their neighbours. Prob-
abilistic models of updation, where the opinions are from
the discrete set {0, 1} are also studied [Clifford and Sud-
bury, 1973]. Much of the work in opinion formation fo-
cuses on conditions for consensus, when all agents eventu-
ally hold the same opinion (e.g., [Acemoglu et al., 2011;
Bala and Goyal, 1998]). Clearly, however, consensus is not
always attained in social networks, and the basic model has
been extended in different ways to capture this lack of con-
sensus (e.g., [Yildiz et al., 2013; Apt et al., 2015]).

Further, most work focuses on the case where the opin-
ion of an agent is either binary (in the set {0, 1}), or in the
interval [0, 1]. These are clearly important, since opinions
in many cases (e.g., political leanings) are captured by these
sets. However, often more complex sets are required. A per-
son’s political leaning is often a composite of her inclinations
on various topics, such as economic inequality, foreign pol-
icy, and taxes. A more realistic model would consider a per-
son’s opinion as a composite of these individual opinions. As
a second example, a person’s opinion could be a physical lo-
cation, such as a choice of which neighbourhood to live in.
Another example would be choosing a technology platform
such as Android, iOS, Blackberry, etc. The set of strategies
are now discrete points, with distances corresponding to the
cost of switching from one technology platform to another.

We study a particular model for opinion formation
called a discrete preference game [Chierichetti et al., 2013;
Chierichetti et al., 2018].1 In this model, an agent can hold
one of a finite set of strategies (opinions), and a distance func-

1A similar model was concurrently studied by Ferraioli et al.
[Ferraioli et al., 2016], however with binary strategies. Both these
papers give a natural polynomial time algorithm for equilibrium
computation with binary strategies.
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tion gives the distance between any pair of strategies. A nat-
ural restriction on the distance function is that it be a metric,
and hence the strategies are points in a metric space. In ad-
dition, each agent has an intrinsic preferred strategy which
is fixed. The cost of each agent for a strategy is the sum
of weighted distances to her neighbours and to her preferred
strategy. The presence of preferred strategies leads to the ab-
sence of consensus as an equilibrium in general [Krackhardt,
2009]. Further, the representation of strategies as points in a
metric space allows modelling of many complex situations,
beyond the simple settings studied earlier.

Since their introduction, numerous papers have studied
various properties of these games, including bounding the ra-
tio of the total cost of equilibria to the minimum total cost
(called the Price of Anarchy or Stability), as well as gener-
alisations [Auletta et al., 2016; Chierichetti et al., 2018]. In
a natural updation process, each player in her turn chooses a
strategy that minimizes her cost, given the strategies of the
other players. While it is known that this updation process
leads to an equilibrium, the number of turns required may be
exponential in the size of the game.

In this work, we study computational aspects of equilibria
in discrete preference games. Equilibrium computation is a
fundamental problem in computational game theory, and the
lack of efficient algorithms for this is often viewed as a stum-
bling block to the notion of equilibria as a prediction of player
behaviour (e.g., [Daskalakis et al., 2009]). Algorithms for
computing equilibria are also useful, e.g., in simulations to
study properties of equilibria, or to obtain approximations to
the global optimum for the underlying distance-minimization
problem (e.g., [Boykov et al., 2001]).

Coordination games on graphs are another model closely
related to discrete preference games [Apt et al., 2017; Apt
et al., 2015]. In these games, agents attempt to coordinate
with their neighbours, however the set of strategies available
to each player is restricted. The distance between any pair of
strategies is 1, and hence these are similar to discrete prefer-
ence games with the discrete metric.

1.1 Our Contribution
We present our results informally here. Formal definitions
and results are given in later sections.

We first show that equilibrium computation in discrete
preference games is hard, even if we restrict the number of
neighbours that each agent has in the social network.

Result 1. It is PLS-hard to find an equilibrium in discrete
preference games, even when each player has constant degree
in the social network.

If we allow the edges in the social network to be weighted,
modelling varying degrees of influence by the neighbours,
then equilibrium computation is hard even with multiple re-
strictions on the metric space.

Result 2. In weighted discrete preference games, it is PLS-
hard to compute an equilibrium, even when each player has
constant degree in the social network, the number of strate-
gies is constant, and the distance between any pair of strate-
gies is one or two.

Our results are interesting because these are examples
where equilibrium computation is hard in a purely coor-
dination game. In previous games where hardness was
shown for equilibrium computation, there were incentives
for anti-coordination, i.e., players had an incentive to choose
strategies different from their neighbours (e.g., local max-
cut games [Schäffer and Yannakakis, 1991], congestion
games [Fabrikant et al., 2004], and even coordination-only
polymatrix games [Cai and Daskalakis, 2011]).

Lastly, we show that if we allow the edges in the social net-
work to be directed, then an equilibrium may not even exist
(and hence, the update process described may cycle).

Result 3. In a discrete preference game with directed edges,
an equilibrium may not exist.

We note that directed edges in social networks are clearly
more general, and allow the model to capture asymmetric
influences. E.g., Facebook offers one the ability to ‘fol-
low’ another person, which is an asymmetric method of in-
fluence. Both undirected and directed social networks are
commonly studied (e.g., [Apt et al., 2017; Apt et al., 2015;
Bindel et al., 2015; Yildiz et al., 2013]).

In our example to show nonexistence of equilibria, the so-
cial network consists of a single strongly connected compo-
nent. In coordination games on graphs, it is known that if
the social network has a single strongly connected compo-
nent then an equilibrium always exists [Apt et al., 2015]. Our
work thus shows this does not hold if we allow more compli-
cated metric spaces.

We show, however, that in two particular cases, an equilib-
rium can be computed in polynomial time.

Result 4. If the metric space is a tree metric, or is the Carte-
sian product of path metrics, an equilibrium can be computed
in polynomial time.

The case of tree metrics was earlier studied, and bounds
shown on the Price of Stability [Chierichetti et al., 2018]. The
authors also motivate tree metrics by an example of students
choosing a major in college, when different subjects follow
a hierarchy for proximity. The product metric space roughly
corresponds to the case when the metric space is a regular
grid. A natural scenario that is modelled by the product met-
ric is the case presented in the introduction, where an agent’s
strategy is a composite of a number of individual opinions,
and the distance between two strategies is the sum of dis-
tances for each individual opinion.

Our algorithms for these cases are simple, however, they
obtain equilibria in substantial generalizations of discrete
preference games as well, when the social network is a
weighted directed graph, and instead of having a single pre-
ferred strategy, agents have multiple preferred strategies with
different weights for each. Thus, this result also shows the
existence of equilibria in directed discrete preference games,
with these metric spaces. All missing proofs are given in the
full version [Lolakapuri et al., 2019].

2 Preliminaries
In the basic model, a discrete preference game consists of an
undirected, unweighted neighbourhood graph G = (V,E)
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representing the social network of n players, and a metric
space L = (L, d) [Chierichetti et al., 2018]. Here, L is the set
of strategies, and d is a distance metric — d is a function on
pairs of strategies that satisfies: (i) d(x, y) ≥ 0, with equality
iff x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, y) ≤ d(x, z) +
d(y, z). Each player i ∈ V has a preferred strategy si ∈ L.
Since the strategies exist in a metric space, we will also refer
to the strategies as points in the metric space. We use zi for
the strategy of the ith player, z = (z1, . . . , zn) for a strategy
profile, and z−i for the strategies of all players except i.

Given a parameter α ∈ [0, 1) and a strategy profile z, the
cost for player i is:

ci(z) = αd(si, zi) + (1− α)
∑
j∈Ni

d(zi, zj) ,

where Ni is the set of neighbours of i, not including i her-
self. Thus the cost of a strategy zi for player i is α times the
distance from her preferred strategy, plus (1 − α) times the
total distance from her neighbours. Each player tries to min-
imise her cost, and hence tries to choose a strategy that is the
weighted median of her preferred strategy and the strategies
of her neighbours.

We also study two natural generalisations of the basic
model of discrete preference games. The first generalisation
allows weights on the edges of the neighbourhood graphs,
modelling the scenario when different neighbours of a player
have different levels of influence on her. In this case, for
player i, the strategy profile z has cost:

ci(z) = wid(si, zi) +
∑
j∈Ni

wijd(zi, zj) ,

where wi is the weight player i places on her preferred strat-
egy, and wij is the weight on the undirected edge {i, j} ∈ E.

In the second generalisation, edges are directed as well as
weighted, modelling the case when influences are asymmet-
ric. 2 In this case, the expression for the cost of player i for
strategy profile z remains unchanged, though the neighbours
of player i are those players that have edges from i in the
neighbourhood graph.

An equilibrium is a strategy profile where no player can de-
viate to a different strategy and reduce her cost. We are inter-
ested in algorithms for computing equilibria in discrete pref-
erence games. In the undirected weighed setting, these games
are exact potential games. That is, for every such game, there
is a potential function Φ of the strategy profile which has the
property that if player i deviates from a strategy profile, then
the change in player i’s cost is exactly the change in the po-
tential function as well. It can be verified that the potential
function for the undirected weighted setting is:

Φ(z) =
∑
i∈V

wid(si, zi) +
∑
{i,j}∈E

wijd(zi, zj) . (1)

A finite potential game always has an equilibrium, since
at the minimum of the potential function, no player has a

2E.g., Facebook, in addition to the option of adding a person as a
friend, offers one the ability to ‘follow’ another person, which is an
asymmetric method of influence.

deviating strategy that reduces her cost. Thus, undirected
weighted discrete preference games always possess an equi-
librium. Further, best response dynamics — where in each
step, a player chooses her minimum cost strategy in response
to other players, and deviates to it — converges to an equilib-
rium. However, best-response dynamics may, in general, take
exponential time to converge to an equilibrium. In Section 4,
we are interested in efficient algorithms for equilibrium com-
putation, that for some polynomial p(·) run in time O(p(|I|))
where |I| is the size of input, and return an equilibrium.

In Section 3 we show that in general, the problem of equi-
librium computation is hard, by showing that even in many
simple cases, equilibrium computation is PLS-complete. The
class PLS, for Polynomial Local Search, was introduced to
study the complexity of finding a local minimum for prob-
lems where local search can be carried out in polynomial
time [Johnson et al., 1988]. Discrete preference games fall
in this class, since finding the equilibrium is equivalent to
finding a local minimum for the potential function Φ. The
locality of a strategy profile z is the set of all profiles where a
single player deviates. By finding the cost of each deviation,
for each player, we can obtain a solution with lower value for
the potential in polynomial time, if it exists.

A problem is PLS-complete if it is in PLS and is PLS-
hard. PLS-hardness of a problem means that all problems
in the class PLS can be polynomially reduced to this prob-
lem. Many problems are by now known to be PLS-complete,
including local max-cut, max-2SAT, and equilibrium compu-
tation in congestion games [Fabrikant et al., 2004; Schäffer
and Yannakakis, 1991].

3 Hardness of Computing Equilibria
We start with two simple cases when an equilibrium can
be computed in polynomial time. Firstly, if the parameter
α ≤ 1/2, then in any instance where the neighbourhood
graph is connected, the following is an equilibrium: all play-
ers choose the same strategy A ∈ L. If the neighbourhood
graph is disconnected, then each isolated player chooses its
preferred strategy, while all players in a connected compo-
nent choose the same strategy. Secondly, in weighted undi-
rected preference games if the weights on the edges as well as
the distance between any two strategies are bounded (above
and below) by polynomials in the size of the input I, then
the equilibrium can be computed in polynomial time by best-
response dynamics. In this case, the potential is bounded
from above by a polynomial in |I|, and in each best-response
step, the potential also reduces by a polynomial in |I|. De-
spite these results, we show that equilibrium computation is
in general hard in discrete preference games, even in sim-
ple settings. Specifically, we show that in the unweighted
setting, for any α > 1/2, computing an equilibrium is PLS-
complete even when each player has constant degree. In the
weighted setting, computing an equilibrium is PLS-complete
even when each player has constant degree, the number of
strategies is constant, and the distance between every pair of
strategies is either 1 or 2. For directed neighbourhood graphs,
we show that an equilibrium may not even exist.

For the hardness results, we show a reduction from the lo-
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Figure 1: An example of the reduction from Theorem 1 (in the the-
orem, each player has five neighbours in the max-cut instance). Fig-
ure (a) shows the max-cut instance, (b) shows the metric space in
the reduction, and (c) shows the neighbourhood graph. In (b), all
pairs of nodes that do not have an edge displayed between them are
at distance W , where W = 5(w1 + w2 + w3).

cal max-cut game. In a local max-cut game, we are given
an undirected weighted graph with n vertices corresponding
to players, and each player has two strategies A and B. The
utility of a player i is the sum of weights of edges to play-
ers that choose the strategy different from i, i.e., ui(z) =∑

j∈Ni:zj 6=zi
wij . Equilibrium computation in the max-cut

game is known to be PLS-complete, even if each player has
degree five [Elsässer and Tscheuschner, 2011].

Theorem 1. For any α > 1/2 in the unweighted setting, it is
PLS-hard to find an equilibrium in discrete preference games,
even when each player has constant degree.

Proof. Given an instance G′ = (V ′, E′) of local max-cut
with weights w′ on the edges, we construct an instance of
a discrete preference game where the strategies are in corre-
spondence with the local max-cut game, and in fact the cost in
the discrete preference game is exactly a constant minus the
utility in the max-cut game. Let n′ be the number of players
in either game, and W = 5

∑
e∈E′ w

′
e. We make two as-

sumptions which we remove later: that each player can be re-
stricted to a subset of strategies, and that some players do not
have a preferred strategy. With these assumptions, we choose
our neighbourhood graph G(V,E) = G′(V ′, E′). The strat-
egy set L contains two strategies Ai and Bi for each player i.
We assume that i is restricted to these two strategies. Thus,
|L| = 2n′. Finally, if {i, j} ∈ E, then d(Ai, Bj) = d(Aj , Bi)
= W −wij . The distance between any other pair of strategies
is W . Thus if players i and j both play Ai and Aj , or Bi and
Bj , their distance is W . Figure 1 shows the reduction for an
instance of max-cut with three vertices x, y and z.

Note first that the set of players is identical in both games.
For every strategy profile z′ in the max-cut game, there is
a strategy profile z in the discrete preference game where
player i plays Ai if she plays A in the max-cut game, and
plays Bi otherwise. Then it is easy to see that the cost of
player i is ci(z) = 5W − ui(z′). There is thus a correspon-
dence between strategy profiles in the two games, and the cost
in one is a constant minus the utility in the other. It follows
that z′ is an equilibrium in the max-cut game iff z (as con-
structed above) is an equilibrium in the discrete preference
game.

We now show how to remove the two assumptions. Our
first assumption is that a player can be restricted to two strate-

gies. To remove this, for each player i, we introduce 20 play-
ers: iA,1, . . . , iA,10, and iB,1, . . . , iB,10. We call these aux-
iliary players. Each of these has an edge to player i in the
neighbourhood graph, and thus has degree 1. Auxiliary play-
ers iA,1, . . . , iA,10 have Ai as their preferred strategy, while
auxiliary players iB,1, . . . , iB,10 have Bi as their preferred
strategy. Since they have degree 1, and α > 1/2, the best
response for these players is always to play their preferred
strategy. Now note that since each non-auxiliary player i has
degree 25 in the neighbourhood graph, if player i plays ei-
ther Ai or Bi, her cost is at most 15W . However if player
i plays a strategy other than Ai or Bi, her cost is at least
20(W − maxe we) ≥ 16W . Hence her best response is al-
ways to play either Ai or Bi. Further, since the auxiliary
players for player i are equally distributed with Ai or Bi as
the preferred strategy, their addition does not affect player is
choice of strategy between the two, which depends on the
strategies chosen by the non-auxiliary players.

Our last assumption is that the non-auxiliary players do not
have a preferred strategy. This is removed by introducing an-
other point C into the metric space, which has distance W
from all other strategies, and which is the preferred strategy
for all non-auxiliary players. However, if α is very large,
then it would be an equilibrium for all players to choose C.
To fix this, increase the number of auxiliary players for each
player i from 20 to d20α/(1 − α)e. It can be checked that
in this case, player is best response is always to play either
Ai or Bi. We note that each player now has degree at most
d5 + 20α/(1− α)e, which is a constant for fixed α.

The following theorem shows that if the edges in the neigh-
bourhood graph are weighted, equilibrium computation is
hard even in simpler settings (even if metric space has only
13 points).

Theorem 2. In the weighted setting, it is PLS-hard to com-
pute an equilibrium, even when each player has constant de-
gree in the neighbourhood graph, the strategy set has con-
stant size, and the distance between any pair of strategies is
either one or two.

Proof. As before, given an instance G′ = (V ′, E′) of local
max-cut with weights w′ on the edges and degree five for
each vertex, we construct an instance of a discrete preference
game where the strategy profiles are in correspondence with
the local max-cut instance. Let n′ = |V ′| be the number of
players and W = 5

∑
e∈E′ w

′
e. We describe the reduction

under the assumption that each player can choose between
two strategies, the assumption can be removed as in Theo-
rem 1. With this assumption, we choose our weighted neigh-
bourhood graph G(V,E,w) = G′(V ′, E′, w′).

To construct the metric space, we use the fact that a graph
of maximum degree five can be properly coloured by a greedy
algorithm with six colours. That is, every vertex in the graph
can be assigned one of six colours, so that if vertices u, v
are adjacent in the graph, then they are assigned different
colours. Thus, the neighbourhood graph can be coloured with
six colours. Let κ(v) denote the colour assigned to vertex
v ∈ V . Let a, b, c, d, e, and f be the six colours used.
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Our metric space L consists of 12 strategies, {A,B} ×
{a, b, c, d, e, f}. We call the first component the parity of the
strategy, and the second component the colour of the strat-
egy. The distance between two points is 1 if either the parity
or colours of the points is different, and is 2 otherwise. We
assume that each player i is restricted to the two strategies
in the metric space coloured κ(i). Note that this means that
for a player i, since all of her neighbours have a different
colour, they cannot be at the same point in the metric space
as i. Hence the cost of i is at least

∑
j∈Ni

wj . Further, it is
easily seen that in any strategy profile, the cost of a player i
is 2

∑
j∈Ni

wj minus the weight of the neighbours of i that
play the parity different from i’s strategy.

For every strategy profile z′ in the max-cut game, there
is a strategy profile z in the discrete preference game where
player i plays (A, κ(i)) if she plays A in the max-cut game,
and plays (B, κ(i)) otherwise. Then the cost of player i in the
discrete preference game is ci(z) = 2

∑
j∈Ni

wj − ui(z
′).

There is thus a correspondence between strategy profiles in
the two games, and the cost in one is (a constant plus) the
negative of the utility in the other. It follows that z′ is an equi-
librium in the max-cut game if and only if z (as constructed
above) is an equilibrium in the discrete preference game.

We now give an example of a directed neighbourhood
graph where an equilibrium does not exist. As before, we
assume that we can restrict players to a subset of strategies.
The assumption can be removed as done in the proof of The-
orem 1, details are given in the full version.

Example 1. With the assumption that we can restrict players
to a subset of the strategies, the neighbourhood graph and the
metric space for our example are shown in Figure 2. There
are three players x0, x1, and x2. In the neighbourhood graph,
player xi has an edge to xi+1 mod 3 (in this example, we al-
ways assume i + 1 is taken mod 3 to avoid repetition). The
metric space consists of 6 strategies, {0, 1, 2} × {a, b}. We
think of the second coordinate as the ‘parity’, and strategies
as nodes in a complete bipartite graph with 6 vertices, with
any two strategies of the same parity at distance 2, while any
two strategies of different parities at distance 1. By our as-
sumption, we restrict player xi to strategies (i, a) and (i, b).

From the neighbourhood graph, player xi wants to be near
player xi+1 for i ∈ {0, 1, 2}. However, in the metric space,
for any (restricted) choice of strategy for xi+1, the strategy of
xi that is nearest has the opposite parity. Hence each player
xi tries to choose a strategy of the opposite parity from player
xi+1, and hence there is no equilibrium.

x0

x1x2

(0, a)

(1, a)

(2, a)

(0, b)

(1, b)

(2, b)
(a) (b)

Figure 2: The example for non-existence of equilibria in directed
discrete preference games. Figure (a) shows the neighbourhood
graph and (b) shows the metric space. Each edge has unit length.

4 Algorithms for Computing Equilibria
We now give efficient algorithms for computing equilibria
in discrete preference games with restrictions on the metric
space. However, we allow a significant generalization of the
neighbourhood graph. We allow directed, weighted neigh-
bourhood graphs, where instead of a preferred strategy, play-
ers have a penalty associated with each point in the metric
space. Formally, for each node v in the metric space and each
player i, there is a real-valued penalty pi(v). The cost for
player i for the strategy profile z = (zi, z−i) is

ci(z) =
∑
v∈L

pi(v)d(v, zi) +
∑
j∈Ni

wijd(zi, zj) .

Our results thus show that in the metric spaces discussed
below, equilibria exist, even in the case of directed neigh-
bourhood graphs. E.g., this shows that equilibria exist in the
case of path metrics.

We discuss metric spaces in more detail now. Any undi-
rected weighted graph on r vertices corresponds to a metric
space with r points, where every vertex is a point, and the
distance between any pair of points is the weight of the min-
imum weight path in the graph between the corresponding
vertices. Such a metric space is a graph metric. Further, any
finite metric space on r points can be represented as a graph
metric, by considering the complete graph on r vertices where
the weight of the edge between any pair of vertices is the dis-
tance between them.

We first give an algorithm for when the graph metric is
a tree, with positive lengths le on the edges. Note that this
contains the special case when the graph metric is a path. We
then generalise path metrics in another direction, by consider-
ing the Cartesian product of path metrics. This product metric
intuitively is obtained when the graph for the metric space is
a regular grid.

4.1 An Algorithm for Tree Metrics
Our algorithm for tree metrics initially places all players at
the root. If any player can improve her cost by moving to a
child of her current strategy, the algorithm changes her strat-
egy accordingly. In a metric space with n points, the algo-
rithm terminates in pn iterations of the while loop where p
is the number of points, and hence terminates in polynomial
time. We now show that when it terminates, the strategy pro-
file is an equilibrium.

To prove convergence, we first characterise the best re-
sponse. Fix a player i and strategies z−i for the other players.
For any node v in the tree, let w(v) be the weight of i’s neigh-
bours j ∈ Ni that have zj = v, plus i’s penalty pi(v) for point
v. This gives us a tree T with weights on the nodes. We say

Algorithm 1 Tree Metric Algo

Require: Discrete preference game (G = (V,E,w), T =
(L, d)) where T is a tree metric with root r.

1: Initially, let zi ← r for each player i.
2: while ∃ player i that can reduce her cost by moving to a

child v of zi do zi ← v.
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that cost of node u in the tree is the total weighted distance to
the other nodes, i.e., c(u) =

∑
v∈T w(v) d(u, v). The set of

minimum cost nodes in the weighted tree are called the me-
dians of the tree, and are the best responses for player i, since
c(u) = ci(z) if zi = u.

We will use the following result which further characterises
the medians. Given weights w(v) at the nodes, let w(T ) be
the total weight at the nodes of the tree, and T − v be the
graph obtained by removing node v.
Claim 1 ([Chierichetti et al., 2018]). A node u is the median
of a tree iff the weight of each connected component of T − v
is at most w(T )/2.
We also use the following claim.
Claim 2. Given a tree T with weights at the nodes, let v be
an arbitrary vertex and v∗ be a median nearest to v. Then the
cost of the nodes strictly decreases on the path from v to v∗.
Theorem 3. The Tree Metric Algo terminates at an equilib-
rium.

Proof. Let z be the strategy profile when the algorithm ter-
minates. Suppose for a contradiction that for player i, zi = v,
while z′i = v∗ is a nearest best response (and so a median)
with lower cost. In the following, we consider the weighted
tree T with edge lengths as in the metric space, and weights
on the nodes, where for any node v in the tree the weight
w(v) =

∑
j∈Ni:zj=v wij +pi(v). As earlier, the cost of a

node v in the tree is the total weighted distance to the other
nodes.

Let (v∗ = v0, v1, . . . , vt = v) be the path from v∗ to v,
then by Claim 2, the cost strictly increases along this path,
and c(vt−1) < c(v). Since the algorithm terminates, vt−1
must be v’s parent, hence v 6= r. Let T (v) be the subtree
rooted at v. Consider the timestep when player i moved from
vt−1 to v. Note that this decreases i’s distance from every
node in T (v) by lvt−1,v , and increases the distance from every
other node by the same length. Since this move decreased i’s
cost, at that time, the total weight of i’s neighbours in T (v)
must have been at least w(T )/2. Since that time step, players
have only moved away from the root, and hence in particular
any player that was in T (v) at that timestep must still be in
T (v), and hence when the algorithm terminates, the weight
of i’s neighbours in T (v) must be at least w(T )/2. However,
since v∗ is a median, the weight of i’s neighbours in T (v) is
also at most w(T )/2. Thus v must also be a median, giving
us a contradiction.

4.2 An Algorithm for the Cartesian Product of
Path Metrics

We now give an algorithm for equilibrium computation if the
metric space is the Cartesian product of path metrics. As
discussed, a path metric P = (L, d) can be represented as
a path. Alternatively, a path metric can be embedded in the
real number line so that the distance between two points is
the absolute difference in their values of their embedding.

A metric space P = (L, d) is the Cartesian product of
path metrics P1 = (L1, d1), . . ., Pr = (Lr, dr) (or a prod-
uct metric, for brevity) if L = L1 × . . . × Lr, and for any
two points x = (x1, . . . , xr) and y = (y1, . . . , yr) in L,

Algorithm 2 Product Metric Algo

Require: Discrete preference game (G = (V,E,w),P =
(K, d)) where P is the Cartesian product of path metrics
P1, . . ., Pr.

1: Initially, let zi ← si for each player i.
2: for k ∈ [r] do
3: Use algorithm Tree Metric Algo to obtain an equilib-

rium for the players in the path metric Pk.
4: For each player, set zi,k to her position in Pk in the

equilibrium computed.

the distance d(x, y) =
∑r

i=1 di(xi, yi). Alternatively, P is
the Cartesian product of r path metrics if it can be embed-
ded in Rr, so that the distance between any two points is the
L1 distance of their embeddings, and whenever (x1, . . . , xr)
and (y1, . . . , yr) are points in the embedding, so are the 2r

{x1, y1} × . . .× {xr, yr}.
For a discrete preference game on a product metric, for

each player i, her strategy zi is a vector, with the tth coordi-
nate zi,t denoting her position in the path metric Pt.

For the algorithm, we first characterize equilibria. Given a
discrete preference game with product metric P and a strat-
egy profile z, we say player i is playing her partial best re-
sponse in the tth metric if she is at a median in the path metric
Pt (we defined the set of medians earlier, for tree metrics).
Note that a player may have multiple best responses.
Claim 3. Player i is playing her best response iff she is play-
ing her partial best response in each metric t ∈ [r].

Since the Tree Metric Algo terminates in polynomial time,
so does the Product Metric Algo.
Theorem 4. The Product Metric Algo terminates at an equi-
librium.

5 Conclusion
Our work is the first to study the basic question of efficient
equilibrium computation in discrete preference games. We
show that despite incentivizing coordination, in general equi-
librium computation is PLS-hard. However with restrictions
on the metric space, equilibrium may be computed in polyno-
mial time, even in very general settings for the neighbourhood
graph. Our work is a first step, and leaves open many interest-
ing problems. E.g., for what other metric spaces can we find
an equilibrium efficiently? Are there practical restrictions on
the neighbourhood graph that make equilibrium computation
easier? With the growing popularity of this and other models
of opinion formation, we feel these are important, fundamen-
tal questions.
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