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Abstract
We present a novel modelling and planning ap-
proach for multi-robot systems under uncertain
travel times. The approach uses generalised stochas-
tic Petri nets (GSPNs) to model desired team be-
haviour, and allows to specify safety constraints
and rewards. The GSPN is interpreted as a Markov
decision process (MDP) for which we can gener-
ate policies that optimise the requirements. This
representation is more compact than the equivalent
multi-agent MDP, allowing us to scale better. Fur-
thermore, it naturally allows for asynchronous ex-
ecution of the generated policies across the robots,
yielding smoother team behaviour. We also describe
how the integration of the GSPN with a lower-level
team controller allows for accurate expectations on
team performance. We evaluate our approach on
an industrial scenario, showing that it outperforms
hand-crafted policies used in current practice.

1 Introduction
Multi-robot path planning is important in many real-world
robotics applications, such as mining, construction, and ware-
house automation. A desirable feature of any automated multi-
robot method is the ability to specify requirements over team
behaviour. For example, we may want to require that a robot
is always present to collect the packages output by a conveyor
belt; or that a taxi is always present at a taxi rank to collect pas-
sengers. Providing such team-level guarantees is challenging
when dealing with mobile robots due to uncertainty over the
durations of navigation actions. This uncertainty stems from
many sources, e.g., the dynamics of individual robots are typ-
ically only partially known; and interactions between robots
jointly navigating in a shared space introduce further unmod-
elled dynamics. Today’s commercial solutions for multi-robot
path planning remove uncertainty by extensively engineering
the environment, leading to hand-crafted policies for assign-
ing tasks to robots [Pecora et al., 2018]. Whilst these are
reliable, every new environment or application requires signif-
icant bespoke engineering, and the resulting system provides
few formal guarantees on team behaviour.
∗These authors contributed equally to this work.

To address this, we propose a novel method for deriving
policies that regulate the behaviour of individual robots in
accordance with high-level requirements on the overall be-
haviour of the team. The team is modelled as a generalised
stochastic Petri net (GSPN) [Balbo, 2007], in which paths and
locations are represented as places, robots are represented as
tokens, and the uncertain navigation durations are encoded as
probabilistic firing rates of transitions. We refer to this as a
multi-robot GSPN (MR-GSPN). With this we can represent
team requirements, specifically safety specifications, as restric-
tions on the markings of the GSPN; and team performance as
a reward to be maximised over the transitions of the GSPN.
Robots are represented anonymously in the MR-GSPN, reduc-
ing the effect of the exponential blow-up usually associated
with multi-agent models. Following Markov automata (MA)-
based semantics [Eisentraut et al., 2013], an MR-GSPN can
be interpreted as a Markov decision process (MDP) [Puterman,
1994]. This MDP can be solved to generate policies that op-
timise the team behaviour against the team requirements and
performance objective. In order to robustly maintain the safety
specification, we use learnt probabilistic models of navigation
task duration. These models are learnt from simulations of the
team navigating in the target environment. As a consequence,
the generated policies account for the kino-dynamics of the
robots and of the team as a whole, and are therefore appropri-
ate for regulating the behaviour of a team of real robots.

The main contributions of this paper are the presentations
of: (i) MR-GSPN, a novel GSPN based modelling formalism
for multi-robot teams; (ii) an MA-based process for using an
MR-GSPN to find policies that maximise team performance
whilst maintaining a team-level safety specification for as long
as possible; and (iii) integration with a lower-level team con-
troller, used to obtain the stochastic rates associated with the
duration of navigation actions. To the best of our knowledge,
this is the first time the semantics of GSPNs as MAs has been
exploited for robot planning. Similarly, this is the first work
that builds a GSPN model using accurate transition models
from a kino-dynamically feasible, lower-level controller.

2 Related Work
The clear semantics of concurrency in Petri nets (PNs) has led
to their prior use in robotics. For example, [Ziparo et al., 2011]
use PNs to create single-robot behaviour models which support
robust execution strategies. PNs have also been used to model
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the behaviour of multi-robot systems. [Lacerda and Lima,
2011] used a PN model to synthesise a supervisory controller
for a team of soccer playing robots. [Mahulea and Kloetzer,
2018] map a homogenous robot team to tokens in a PN to
provide a compact representation of interchangeable robots in
order to generate multi-robot paths satisfying a boolean team
specification. We also exploit the mapping of robots to tokens,
but extend it to GSPNs in order to cope with uncertain action
durations. [Costelha and Lima, 2012] use a GSPN to model
and analyse robot behaviour, but do not synthesise policies
from the PN, as we do here.

Our approach is an example of multi-robot path planning
under uncertainty. Many existing multi-agent path planning
approaches ignore robot kino-dynamics and uncertainty [Fel-
ner et al., 2017] and instead rely on lower level control to
provide robustness against execution time variations from
planned behaviour [Pecora et al., 2018]. Failing to represent
the inherent uncertainty in the domain means the system be-
haviour can be unpredictable. Recent work addresses this by
formulating specific instances of multi-robot path planning
problems with limited forms of uncertainty, e.g., delay proba-
bilities [Ma et al., 2017]. Multi-agent MDPs [Boutilier, 1996]
have been used to synthesise robot team behaviour, but their
general nature results in poor scalability. This is typically
mitigated by exploiting assumed structure in the MDP, such
as sparse interaction between agents [Scharpff et al., 2015;
Faruq et al., 2018]. We provide scalability through the use of
a GSPN model that yields an MDP with a smaller state space,
rather than assuming a particular structure. In contrast to all
this prior work, we synthesise team behaviour to meet a formal
safety specification. Only limited prior work exists on this
topic. [Faruq et al., 2018] create policies for robots indepen-
dently which are then combined to provide team guarantees on
task completions given robot failures. Their approach assumes
sparse interactions between robots (not valid in our problem)
and requires that all robots wait and synchronise their discrete
actions (leading to inefficient robot behaviour).

Generalised semi-Markov decision processes (GSMDPs)
have also been applied in robotics [Younes and Simmons,
2004] and are closely related to MA, the model we use to
interpret the marking process of a GSPN. The two crucial dif-
ferences are that GSMDPs allow for more general continuous-
time models, whilst MA explicitly separate immediate tran-
sitions (decisions) from exponential transitions (waiting for
some uncontrollable event to occur). We will investigate the
relation between these models in future work. [Messias et al.,
2013] use a GSMDP to coordinate a small team of robots on a
RoboCup task. This approach uses the continuous time mod-
els to remove synchronisation points, demonstrating the power
of continuous time models in robotics. Although similar to
this work, we additionally provide a probabilistic guarantee
over the behaviour of the entire team.

3 GSPNs for Multi-robot Path Planning

3.1 Generalised Stochastic Petri Nets
We start by introducing Petri nets (PNs) and then extend the
definition to include timing uncertainty.

Definition 1 A PN is a tuple N =
〈
P, T,W−,W+,M

〉
where P is a finite set of places; T is a finite set of transi-
tions; W+,W− : P × T → N are arc weight functions; and
M : P → N is the initial marking.

A marking M : P → N represents a state of the system,
with M(p) = q meaning that in M there are q tokens in
place p. The dynamics of a PN are defined by the firing rule,
which determines the flow of tokens between places according
to the arc weight functions. Intuitively, W−(p, t) represents
the tokens that are consumed from p by the firing of t and
W+(p, t) represents the tokens produced by the firing of t and
placed in p. Transitions are enabled when each place p holds
at least as many tokens as the ones to be consumed by t.
Definition 2 Let M be a marking. Transition t is said to be
enabled in M if M(p) ≥W−(p, t) for all p ∈ P .

A transition t that is enabled in a marking M can fire, evolv-
ing to a marking where t consumes and produces tokens ac-
cording to W− and W+.

Definition 3 Let M be a marking and t an enabled transition
in M . The firing of t results in the marking M ′ where, for
each p ∈ P , M ′(p) = M(p) −W−(p, t) +W+(p, t). We
denote this as M t→M ′.

Definition 4 The set of reachable markings is defined as:

R(N) = {M | exists t0 · · · , tn, M0, · · · ,Mn+1 such that

M0 =M, Mn+1 =M and Mi
ti→Mi+1}

For the GSPN models used in this work all arcs have
weight 1. Thus, to simplify notation, we represent the arc
weight functions using pre and postsets.
Definition 5 We define the preset of t as •t = {p ∈
P | W−(p, t) = 1} and the postset of t as t• = {p ∈
P |W+(p, t) = 1}.

GSPNs are an extension of PNs where transitions are parti-
tioned into immediate and exponential transitions.

Definition 6 A GSPN is tuple N = 〈P, T,W−,W+,M, λ〉,
where P , T , W−, W+ and M are the same as for a PN, with
T partitioned into a set T i of immediate transitions and a set
T e of exponential transitions; and λ : T e → R>0 associates
each exponential transition te with a rate λ(te).

Enabled immediate transitions ti can be fired in zero time
and, in this work, represent actions available to a control policy.
Our goal will be to find transition firings that optimise some
objective, as defined in Section 3.3. If the control policy does
not execute an enabled immediate transition, then enabled
exponential transition te takes some stochastic time to fire,
according to an exponential distribution with expected value
1/λ(te). When more that one exponential transitions is en-
abled, there is a race condition. Race conditions are resolved
stochastically according to the rates of the racing transitions.
For example, assume that k exponential transitions te1, ..., t

e
k

are enabled in marking M . The probability of transition tei
being the first to fire is given by:

P (tei |M) =
λ(tei )∑k
j=1 λ(t

e
j)
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3.2 Multi-Robot Navigation GSPNs
Consider a team of n robots in an environment discretised into
a navigation graph G = 〈V,E〉, with init(v) representing
the initial number of robots at node v. Assume that in certain
nodes the robots interact with a process that is not under our
control (e.g., a robot collecting the packages output by a con-
veyor belt; or a taxi being filled with passengers). The nodes
of the navigation graph are thus partitioned into V = V i ∪V e.
Nodes in V i represent nodes where the control policy can
decide to trigger a navigation action. Nodes in V e are nodes
where the robots must wait for the external process to finish.

Definition 7 A multi-robot navigation GSPN (MR-GSPN) is
a tuple NG = 〈PG, TG,W−G ,W

+
G ,MG, λ〉 where:

• PG = PV i ∪ PV e ∪ PE , where PV i = {pv | v ∈ V i},
PV e = {pv | v ∈ V e} and PE = {p(v,v′) | (v, v′) ∈ E};

• TG = T iE,s ∪ T eE,s ∪ T eE,f , where:

T iE,s = {ti(v,v′),s | v ∈ V
i and (v, v′) ∈ E}

T eE,s = {te(v,v′),s | v ∈ V
e and (v, v′) ∈ E}

T eE,f = {te(v,v′),f | (v, v
′) ∈ E}

• W−G and W+
G are obtained from the following pre and

postset definitions:

– For t(v,v′),s ∈ T iE,s ∪ T eE,s, •t(v,v′),s = {pv} and
t(v,v′),s

• = {p(v,v′)};
– For t(v,v′),f ∈ T eE,f , •te(v,v′),f = {p(v,v′)} and
te(v,v′),f

• = {pv′};

Furthermore, we impose that for pv ∈ PV e there exists
exactly one transition t such that pv ∈ •t;
• MG(pv) = init(v) for pv ∈ PV i ∪ PV e and
MG(p(v,v′)) = 0 for all p(v,v′) ∈ PE .

The key point of the MR-GSPN is that we represent robots
as tokens. Furthermore, we split navigation between two
locations, v and v′, into two transitions. The first transition
represents the triggering of the navigation action to move from
v to v′. If v ∈ V i, this transition is immediate and is under
our control. If v ∈ V e, the transition is exponential, with a
rate representing the expected duration of the external process
occurring in v. We also impose that, for nodes v ∈ V e, only
one transition can remove tokens from pv (intuitively, from v
there is no choice of where to navigate). This assumption is
without loss of generality and can be dropped by adding extra
places to the model. We refrain from doing so for the sake
of clarity of notation. The second transition is an exponential
transition representing the expected time a robot will spend
traversing the edge (v, v′). If a control policy chooses not
to fire an immediate transition (or there are no immediate
transitions enabled), a race condition is triggered and one of
the exponential transitions fires, with the probabilities of firing
of each transition being defined by their rates. Fig. 1 depicts
the MR-GSPN representation of a single navigation edge.

v0
<latexit sha1_base64="iZzxhdRK6t0zj4zhTLftAFiDSpg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokKepKCF49V7Ae0oWy2k3bpZhN2N4US+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbDu6nfHKHSPJZPZpygH9G+5CFn1FjpcXTWLZXdijsDWSZeTsqQo9YtfXV6MUsjlIYJqnXbcxPjZ1QZzgROip1UY0LZkPaxbamkEWo/m106IadW6ZEwVrakITP190RGI63HUWA7I2oGetGbiv957dSEN37GZZIalGy+KEwFMTGZvk16XCEzYmwJZYrbWwkbUEWZseEUbQje4svLpHFR8S4r7sNVuXqbx1GAYziBc/DgGqpwDzWoA4MQnuEV3pyh8+K8Ox/z1hUnnzmCP3A+fwBDLI0p</latexit>

v
<latexit sha1_base64="iUxuUeNXZAWdmjBW7mGvoB6Sssg=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKepKCF48t2A9oQ9lsJ+3azSbsbgol9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApG9zO/NUaleSwfzSRBP6IDyUPOqLFSfdwrld2KOwdZJV5OypCj1it9dfsxSyOUhgmqdcdzE+NnVBnOBE6L3VRjQtmIDrBjqaQRaj+bHzol51bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1IS3fsZlkhqUbLEoTAUxMZl9TfpcITNiYgllittbCRtSRZmx2RRtCN7yy6ukeVnxripu/bpcvcvjKMApnMEFeHADVXiAGjSAAcIzvMKb8+S8OO/Ox6J1zclnTuAPnM8f4qeM+A==</latexit>

pv
<latexit sha1_base64="s2DGURbMUtdev7N0j3aCfFRsHG4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0JMUvHisaD+gDWWz3bRLN5uwOymU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDfzW2OujYjVE04S7kd0oEQoGEUrPSa9ca9ccavuHGSVeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5a6qeEJZSM64B1LFY248bP5qVNyZpU+CWNtSyGZq78nMhoZM4kC2xlRHJplbyb+53VSDG/8TKgkRa7YYlGYSoIxmf1N+kJzhnJiCWVa2FsJG1JNGdp0SjYEb/nlVdK8qHqXVffhqlK7zeMowgmcwjl4cA01uIc6NIDBAJ7hFd4c6bw4787HorXg5DPH8AfO5w9nio3b</latexit>

pv,v0
<latexit sha1_base64="rX0WQYPPaTbkrwXUDIE+lZUql4s=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPoQcKuCnqSgBePEcwDkiXMTibJkNnZdaY3EJb8hBcPinj1d7z5N06SPWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/qJso0YzXWCQj3Qyo4VIoXkOBkjdjzWkYSN4IhndTvzHi2ohIPeI45n5I+0r0BKNopWbcSUfno9NJp1hyy+4MZJl4GSlBhmqn+NXuRiwJuUImqTEtz43RT6lGwSSfFNqJ4TFlQ9rnLUsVDbnx09m9E3JilS7pRdqWQjJTf0+kNDRmHAa2M6Q4MIveVPzPayXYu/FToeIEuWLzRb1EEozI9HnSFZozlGNLKNPC3krYgGrK0EZUsCF4iy8vk/pF2bssuw9XpcptFkcejuAYzsCDa6jAPVShBgwkPMMrvDlPzovz7nzMW3NONnMIf+B8/gDSuI/O</latexit>

pv0
<latexit sha1_base64="DY34mJNaoilBdyZVL2R+dFHQ0hs=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ6Krsq6EkKXjxWsB/QLiWbZtvYbBKSbKEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYMDLVhNaJ5FK3ImwoZ4LWLbOctpSmOIk4bUbDu6nfHFFtmBSPdqxomOC+YDEj2DqpobrZ6GzSLZX9ij8DWiZBTsqQo9YtfXV6kqQJFZZwbEw78JUNM6wtI5xOip3UUIXJEPdp21GBE2rCbHbtBJ06pYdiqV0Ji2bq74kMJ8aMk8h1JtgOzKI3Ff/z2qmNb8KMCZVaKsh8UZxyZCWavo56TFNi+dgRTDRztyIywBoT6wIquhCCxZeXSeOiElxW/IercvU2j6MAx3AC5xDANVThHmpQBwJP8Ayv8OZJ78V79z7mrStePnMEf+B9/gCOU48Y</latexit>

ti(v,v0),s
<latexit sha1_base64="NEqdc7vHIjiAKer+GmxpnTu24Q0=">AAAB+HicbVBNS8NAEN34WetHox69LBaxQimJCnqSghePFewHtDFsttt26WYTdieFGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCAWXIPjfFsrq2vrG5u5rfz2zu5ewd4/aOgoUZTVaSQi1QqIZoJLVgcOgrVixUgYCNYMhrdTvzliSvNIPsA4Zl5I+pL3OCVgJN8uwCP309KoPDo9K2M98e2iU3FmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2eHT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A79pLuYwTYJLOF/USgSHC0xRwlytGQYwNIVRxcyumA6IIBZNV3oTgLr68TBrnFfei4txfFqs3WRw5dISOUQm56ApV0R2qoTqiKEHP6BW9WU/Wi/VufcxbV6xs5hD9gfX5AzbnkiA=</latexit>

te(v,v0),f
<latexit sha1_base64="5UHO77OsOsT7M62kzGOBY8wG4xg=">AAAB+HicbVBNS8NAEN34WetHox69LBaxQimJCnqSghePFewHtLFstpt26WYTdieFGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFsrq2vrG5u5rfz2zu5ewd4/aOgoUZTVaSQi1fKJZoJLVgcOgrVixUjoC9b0h7dTvzliSvNIPsA4Zl5I+pIHnBIwUtcuwCPrpqVReXR6VsbBpGsXnYozA14mbkaKKEOta391ehFNQiaBCqJ123Vi8FKigFPBJvlOollM6JD0WdtQSUKmvXR2+ASfGKWHg0iZkoBn6u+JlIRaj0PfdIYEBnrRm4r/ee0Egmsv5TJOgEk6XxQkAkOEpyngHleMghgbQqji5lZMB0QRCiarvAnBXXx5mTTOK+5Fxbm/LFZvsjhy6AgdoxJy0RWqojtUQ3VEUYKe0St6s56sF+vd+pi3rljZzCH6A+vzBxzmkg8=</latexit>

Figure 1: Example of construction of a MR-GSPN. Left: two nodes
v and v′ connected by an edge in a navigation graph; Right: The
fragment of the MR-GSPN representing navigation between v and v′,
where v ∈ V i. Note that if v ∈ V e, then both depicted transitions
would be exponential. The depicted marking represents a state where
one robot is at v and two robots are navigating from v to v′.

3.3 Goal Specification
We specify the goal as gathering as much reward as possible
until a set of failure markings is reached.

Definition 8 We define the subset of markings satisfying a
linear constraint over the markings of NG as C = {M ∈
R(NG) |

∑
p∈PG

kpM(p) ./ b}, where, for p ∈ PG, kp ∈ N,
./ ∈ {<,≤,=,≥, >}, and b ∈ N. The set of of markings that
satisfies the conjunction of a set of linear constraints is defined
as C = C1 ∩ · · · ∩ Cm. Finally, the set of failure markings is
defined as bad = R(NG) \ C.

We assume a special constraint C1 = {M ∈
R(NG) |

∑
p∈PV e

M(p) ≥ b}, i.e., a constraint that requires
that the number of tokens in places representing nodes for
which the robots undergo an external process must be main-
tained above a bound b. Note that the transitions removing
tokens from such places are exponential transitions, subject
to an uncontrollable external process with an exponentially
distributed duration. Since we can only fire a finite number
of immediate transitions consecutively (at most equal to the
number of robots) before getting into a marking where no
immediate transition is enabled, race conditions will occur
infinite times in any infinite run of NG. In these race condi-
tions there is some probability of tokens from places in PV e

being removed. Thus, it is not possible to indefinitely keep
the MR-GSPN in markings that satisfy C1. This is needed to
guarantee convergence of our objective.

Definition 9 A transition firing reward is a function rT i :
T i → R≥0.

Transition firing rewards represent the utility of firing im-
mediate transitions in the MR-GSPN (e.g., ti can represent an
AGV starting to move after unloading goods at a processing
station, or a bus leaving after dropping off its passengers).

Problem 1 Given C = C1 ∩ · · · ∩ Cm and rT i : T i → R≥0,
find a mapping fromR(NG) to T i that maximises the expected
cumulative value of rT i until a marking in bad is reached.

In Section 4.3, we will pose Problem 1 as a cumulative reward
maximisation problem in an MDP representing NG.

4 MDPs as Planning Models for MR-GSPNs
4.1 Markov Decision Processes
We start by introducing the concepts and notation required to
formalise the translation of the MR-GSPN to an MDP.

Definition 10 An MDP is a tupleM = 〈S, s,A, δ〉, where:
S is a finite set of states; s ∈ S is the initial state; A is a finite
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set of actions; and δ : S × A× S → [0, 1] is a probabilistic
transition function, where

∑
s′∈S δ(s, a, s

′) ∈ {0, 1} for all
s ∈ S and a ∈ A. We define the set of enabled actions in
s ∈ S as As = {a ∈ A | δ(s, a, s′) > 0 for some s′ ∈ S}.

An MDP model represents the possible evolutions of the
state of a system: in each state s, any of the enabled actions
a ∈ As can be selected and the system evolves to a successor
state s′ according to the values of δ(s, a, s′). We assume that
the MDP has no deadlocks, i.e., As 6= ∅ for all s ∈ S. This
can be ensured by adding self-loops labelled with a dummy
action to deadlocked states.
Definition 11 An infinite path through M starting in s
is a sequence ρ = s0

a0→ s1
a1→ ... where s0 = s and

δ(si, ai, si+1) > 0 for i ∈ N. We denote the set of all in-
finite paths ofM starting in s by IPathM,s.
Definition 12 A deterministic and stationary policy is a func-
tion π : S → A.
Policies map the current state s to an action a ∈ As. Under a
particular policy π forM, all nondeterminism is resolved and
the behaviour ofM is fully probabilistic. This leads to the
construction of a probability measure PrπM,s over paths ofM
starting in s and following π, which in turn allows us to reason
about the expected cumulative value of a reward function.

We will pose Problem 1 as that of finding policies maximis-
ing an expected reward until an unavoidable state is reached.
Definition 13 Let F ⊂ S. We write PrπM,s(♦F ) to denote
the probability of reaching a state in F when following policy
π, starting from s; and Prmin

M,s(♦F ) to denote the minimum
probability (across all policies) of reaching F . We say F
is unavoidable if any infinite path ρ ∈ IPathM,s eventually
reaches F , i.e., Prmin

M,s(♦F ) = 1.
Definition 14 Let F ⊂ S be unavoidable and
ρ = s0

a0→ s1
a1→ ... ∈ IPathM,s. We write nF to de-

note the minimum value such that snF
∈ F .

Definition 15 Let r : S × A → R≥0 be a reward function,
ρ = s0

a0→ s1
a1→ ... ∈ IPathM,s, and F ⊂ S be a set of

unavoidable states. We define the reward accumulated by ρ
until F is reached as:

cumulFr (ρ) =

nF∑
i=0

r(si, ai)

Problem 2 Let EπM,s(cumulFr ) denote the expected value of
cumulFr when following policy π. Calculate the maximum
value of EπM,s(cumulFr ) across all policies, along with the
corresponding optimal policy π∗ : S → A , i.e., find:

π∗ = argmaxπ E
π
M,s(cumulFr )

By first preprocessing the MDP, replacing transitions from
states in F with zero-reward self-loop transitions, we can
reduce Problem 2 to an infinite horizon cumulative reward
maximisation problem, which can be solved with standard
techniques such as value iteration – note that convergence is
guaranteed because F is unavoidable and is made absorbing
with zero reward absorbing states by the described preprocess-
ing step. Hence, any path throughM will eventually reach F
and stop accumulating reward from then on. For this problem,
deterministic and stationary policies suffice [Puterman, 1994].

4.2 From GSPNs to MDPs
Our GSPN definition differs from the traditional definition in
two ways that reflect the way we interpret immediate transi-
tions. First, we do not include random switches, which are
typically used to determine the firing probabilities for immedi-
ate transitions enabled in the same marking. This is because
we do not want to fix the behaviour of the GSPN at design
time. Instead, we want to generate control policies that choose
which immediate transition to fire. Second, we do not disallow
the firing of exponential transitions in markings where there
are also immediate transitions are enabled. This is because
in certain cases we might want some robots to wait for more
information about the actions being executed by other robots
before committing to a decision. This definition of GSPN
does not allow us take the usual interpretation of the marking
process of a GSPN as a continuous-time Markov chain [Balbo,
2007]. Instead, we take the more general interpretation as a
Markov automaton (MA) [Eisentraut et al., 2013]. In this pa-
per, we are interested in maximising rewards until reaching a
set of unavoidable states. This type of property is time-abstract
and thus can be optimised in an MDP representation of the
MA [Hatefi and Hermanns, 2012]. Thus, we introduce the
translation from a GSPN to an MDP directly, rather than via
an MA. We call this the embedded MDP.

Definition 16 Let N = 〈P, T,W,M, λ〉 be a GSPN. The em-
bedded MDP is defined asMN = 〈SN ,M,AN , δN 〉 where:

• SN = R(N), i.e., the state space is the set of reachable
markings of N ;
• AN = T i ∪ {wait}, i.e., the set of actions is the set

of immediate transitions plus a special wait action that
represents waiting for a race condition to be resolved;
• δN : R(N)× (T i ∪ {wait})×R(N) is such that:

δN (M,a,M ′) =


1 if a ∈ T i and

M
a→M ′

P (te |M) if a = wait and

M
te→M ′

0 otherwise

In the embedded MDP, we can choose an enabled immediate
action to fire and evolve the state accordingly; or wait and in
that case the state evolution is according to the probabilities
of resolution of the race condition currently active.

4.3 Goal Specification as Reward Maximisation
We now formalise Problem 1 over the embedded MDP as the
maximisation of a reward until a set of unavoidable states is
reached inMNG

, i.e., an instance of Problem 2.

Problem 3 Let NG = 〈PG, TG,W−G ,W
+
G ,MG, λ〉 be a MR-

GSPN (Def. 7),MNG
= 〈SNG

,MNG
, ANG

, δNG
〉 its embed-

ded MDP (Def. 16), bad a set of failure markings (Def. 8) and
rT i : T i → R≥0 a transition firing reward (Def. 9). We define
rNG

: SNG
×ANG

such that rNG
(s, a) = rT i(a). Find:

π∗ = argmaxπ E
π
MNG

,MNG

(cumul badrNG
)

as defined in Problem 2.
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Reward function rNG
(s, a) translates the transition reward

rT i to the MDP encoding of the MR-GSPN. Also, recall that
bad is unavoidable inMNG

due to special constraint C1.

4.4 Discussion
We finish with a brief discussion on the assumptions made
and advantages of using MR-GSPNs. Note that the linear
constraints must be satisfied by the team in all states, however
they cannot be held true by only one team member. To ground
the discussion, consider the special constraint C1 = {M ∈
R(GN ) |M(pve) ≥ 1} for some pve ∈ PV e . This constraint
is especially interesting as it quantifies universally over the
state space, but existentially over the team members, i.e., it
is of the form “for all states there must exist at least one
robot at ve”. Also, one robot cannot keep C1 true for all
states and must be replaced by a team member, which must
be ready to replace it. One approach to address this constraint
optimally is to take into account the joint state of the team,
using models such as multi-agent MDPs (MMDP) [Boutilier,
1996], in order to plan for replacement of the robot maintaining
the constraint. MMDPs have two main issues in the context
of multi-robot systems. First, scalability: even disregarding
uncertain durations, a navigation graph with k nodes and n
robots entails at least kn states in the MMDP. Second, MMDPs
assume fully synchronised action execution: this can lead to
very inefficient team behaviour, as robots need to wait for
the team to synchronise at every decision point [Messias et
al., 2013]. We are able to mitigate some of the scalability
issues by exploiting: the assumption of a homogeneous robot
team; the fact that our objective is not robot specific; and our
modelling of robots as tokens in the GSPN (making robots
anonymous). In our approach, a navigation graph with k
nodes and l transitions entails a GSPN with k+ l places. Each
marking represents the distribution of exactly n tokens over
the k + l places, hence the number of reachable markings is
given by “k + l multichoose n”.

While the state still grows exponentially with the number of
robots, it allows for significant savings in number of states, as
we show in Section 6.1. As the GSPN is an event-based model,
synchronisation is not required: triggered immediate transi-
tions correspond to sending navigation commands to robots;
as they navigate and change state, the control policy updates
its state immediately by firing the corresponding exponential
transition, yielding smooth, asynchronous policy execution.

5 Simulation-Based Duration Estimates
In order to robustly maintain the safety specification, we re-
quire accurate models of the durations of navigation edges
in G. Obtaining such models is challenging as the precise
dynamics of a robot are usually unknown. Interactions among
robots also affect durations (e.g., robots yielding to, or avoid-
ing each other), as well as other sources of uncertainty in the
environment. For these reasons, we learn the durations by
observing realistic simulations of the robot team performing
navigation tasks in the target environment.

To explore the range of multi-robot navigation experiences
relevant for the target environment, the robot team must op-
erate in a way that is as similar to the desired behaviour as

Primary 
Crusher

Secondary 
Crusher

Unloading Station

SC pc

Figure 2: Evaluation environment. Robots are red, planned paths yel-
low. The navigation graph is overlayed with key locations indicated.

possible. To achieve this, we control the team in simulation us-
ing an existing team controller which integrates coordination,
motion planning and robot control [Pecora et al., 2018], and
supports the injection of external navigation choices for robots.
Given these choices, the fleet controller generates multi-robot
paths that take into account the kino-dynamic constraints of
individual robots. These paths are jointly executed and super-
vised by the controller. When generating data for learning we
use a randomised policy to provide navigation choices. One
simulation run of approximately one hour per team size pro-
vides us sufficient data for fitting exponential distributions for
each transition of the MR-GSPN. In the experiments described
below we use the same multi-robot controller to execute the
policies produced from our MR-GSPN approach. This ensures
both that the policies are realisable on the robots, and that the
transition models match well to runtime performance.

6 Evaluation
Our industrially-motivated evaluation scenario features a team
of autonomous electric haulers operating in a quarry, moving
between stations. At the unloading station, a hauler can unload
gravel obtained from two crushers. The primary crusher (PC)
constantly produces gravel, which is continuously output via
a conveyor belt. The production of gravel at the PC cannot
be stopped under normal circumstances, hence, there should
always be a robot under the PC so that gravel does not accu-
mulate on the ground, obstructing access to the PC and halting
the entire process. The secondary crusher (SC) does not have
this constraint, as the gravel produced there is loaded onto
haulers manually. Finally, robots are required to leave the PC
when full. Thus, for this scenario, the safety constraint is that
there should always be a hauler under the PC, and reward is
obtained when a hauler drives to the unloading station. In our
evaluations we use an instance of this problem shown in Fig. 2,
which matches a real-world quarry.

6.1 Scalability
The scenario in Fig. 2 was modelled with a MR-GSPN with
15 places: 6 places for locations, 7 places for edges, plus
2 extra places to model the (deterministic) time spent under
the PC using an Erlang distribution with 3 states [Younes
and Simmons, 2004], i.e., the time spent under the PC is
modelled using the place corresponding to the PC location
plus 2 extra places that allow us to approximate the amount
of time a robot already spent under the PC. Table 1 shows the
number of states and the time to build the embedded MDP (our
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n 6n |SNG | Construction time (s)
5 7776 11628 1.34
6 46656 38760 6
7 279936 116280 18
8 1679616 319770 57
9 10077696 817190 167

10 60466176 1961256 661

Table 1: Model sizes and time to construct MGN .

approach was run on a standard desktop pc). For comparison,
we compare to 6n, an underestimate of the size of a MMDP
for this problem, as one would need more states to model
the number of robots navigating an edge. It can be seen that
the proposed MR-GSPN representation is more compact than
an MMDP. Solution times are on the order of minutes for
the larger models, e.g., for 8 robots it took approximately
7 minutes to compute a policy. We note that, after being
computed, the policy can be efficiently executed online and
can cope with the uncertain travel times without replanning.
Furthermore, most solutions to MMDPs, even approximate
ones, do not typically scale to this number of robots.

6.2 Robustness to Disturbances in Travel Times
The purpose of the following evaluation is to measure how
robust the team behaviour is to disturbances affecting navi-
gation duration. We compare team behaviour as regulated
by two policies: a synthesised policy (SP) obtained from our
automated planning approach and a hand-coded policy (HP)
currently used in an industrial setting. The HP prescribes that
a robot should be assigned to the SC if there is at least one
robot queuing behind the robot under the PC.

Note that the HP ignores the durations of navigation tasks,
and is hence not capable of predicting the likelihood of a robot
being able to reach the PC before the robot currently loading
from it leaves. Conversely, the SP is computed with knowledge
of the transition rate models, which are in turn directly related
to the durations of navigation. We therefore expect the HP to
perform well in terms of reward (representing tons of dumped
material), but to fail to maintain the team requirement (always
one robot under the PC) when disturbances are applied to the
duration of the navigation actions. Conversely, we expect the
SP to be more conservative in dispatching robots to the SC,
as it can consider the probability of robots taking longer to
reach their destinations, according to the corresponding learnt
exponential transitions. While this should entail less reward
than the HP in nominal situations, we expect the SP to be more
robust to higher disturbances in navigation duration.
Experimental setup. We use the simulation depicted in
Fig. 2. 32 problems of the form 〈n, PC,D〉 are generated,
where n is the number of robots, D is the disturbance profile,
and PC is the number of seconds it takes the PC to fill a robot.
The disturbance profile is a delay in seconds, applied to a
robot as it navigates between any two locations, with a fixed
probability of 0.5. Each policy is run for 15 times on each
problem for 10 minutes each time. We halt the simulation
before 10 minutes if there is no robot under the PC.
Results. Fig. 3 shows the success rate for problem cate-
gories, with n ∈ {4, 5}, D ∈ {6, 8, 10, 12}, and PC ∈

Figure 3: Success rate for HP and SP for different disturbance profiles,
in 8 problems. Legend is of the form < n,PC >.

     <5,30,6>             <5,45,6>           <5,30,8>              <5, 45,8>            <5,30,10>         <5,45,10>           <5,30,12>            <5,45,12>
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Figure 4: Boxplot of the accumulated reward in terms of dumped
material for 5 robots in 8 problems.

{30, 45}. The rate measures the percentage of the 15 instances
of each problem type in which team constraint was not violated.
SPs are in average 64% more successful than the correspond-
ing HPs. The accumulated reward for problems with 5 robots
is shown in Fig. 4. Despite the low success rate of the HPs,
the accumulated rewards are similar between the HPs and the
SPs. However, note that if we leave the system running for
more time, the higher robustness of the SPs allows them to
continue accumulating reward, whilst the runs with HPs will
likely halt earlier. The HPs have a higher success rate when
the time spent at the PC is 45 seconds, as robots spend more
time queueing, and thus they are able to send more robots to
the SC, also increasing the reward. In contrast, the SPs tend to
be more conservative and keep more robots queueing.

7 Conclusions
We presented MR-GSPN, an approach for planning for multi-
robot teams. In the future, we intend to investigate the use
of the MA representation of the GSPN to plan for more gen-
eral specifications of team behaviour. Furthermore, given the
more compact state space of our approach when compared to
MMDPs, we intend to exploit heuristic search and planning
under uncertainty techniques over the MR-GSPN model in
order to scale up to larger teams.
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