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Abstract

Resource-bounded alternating-time temporal logic
(RB-ATL) [Alechina et al., 2010], an extension of
Coalition Logic (CL) and Alternating-time Tem-
poral Logic (ATL), allows reasoning about re-
source requirements of coalitions in concurrent sys-
tems. However, many real-world systems are in-
herently probabilistic as well as resource-bounded,
and there is no straightforward way of reasoning
about their unpredictable behaviours. In this paper,
we propose a logic for reasoning about coalitional
power under resource constraints in the probabilis-
tic setting. We extend RB-ATL with probabilis-
tic reasoning and provide a standard algorithm for
the model-checking problem of the resulting logic
Probabilistic Resource-Bounded ATL (pRB-ATL).

1 Introduction

The Alternating-time temporal logic (ATL) [Alur et al.,
2002] and Coalition logic (CL) [Pauly, 2002] were intro-
duced as logical formalisms for analysing the strategic abil-
ities of coalitions with temporal winning conditions. In
the literature, several variants of ATL and CL have been
proposed (see e.g., [Goranko, 2001; Z\gotnes et al., 2009;
Wooldridge and Dunne, 2004]). These logics allow the spec-
ification of system behaviour in terms of logical formulae,
and they can be used to express many interesting properties
of coalitions and strategies. However, there is no straight-
forward way of expressing resource requirements for sys-
tems of reasoning agents in these logics. Recently, there has
been growing interest in formal models of resource-bounded
agents [Bulling and Farwer, 2010; Alechina er al., 2010;
Monica et al., 2011]. In works on reasoning about resource-
bounded agents, the main emphasis is on the behaviour of
agents constrained by fixed resource bounds. For example,
RB-ATL [Alechina et al., 2010] was developed for reason-
ing about coalitional ability under resource bounds, which al-
lows expressing various resource-bounded properties, includ-
ing “coalition A has a strategy to reach a state satisfying ¢
under the resource bound b, but they cannot enforce p under
a tighter resource bound b/ (< b)”.

Many real-world distributed systems, such as the Inter-
net of Things (IoT) and Cyber-Physical Systems (CPS), are
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deeply rooted in activities of our daily living [Calvaresi et
al., 2017]. The Multi-Agent Systems (MAS) paradigm of-
fers an ideal method to model and implement such sys-
tems [Leito er al., 2016]. These systems often operate in un-
predictable and/or uncertain environments [Faza et al., 2009;
Zhang et al., 2016]. Their applications encompass many
safety-critical domains, and many such applications run in
resource-constrained devices and environments [Abbas et al.,
2015; Laszka et al., 2015]. They require not only the reason-
ing about the coalitional behaviour of agents but also that the
agents and/or the environment may have random or unreliable
behaviours. A rigorous analysis and verification approach
can ensure the correctness of their designs [Kwiatkowska,
2016]. There has recently been increasing interest in de-
veloping logics with a probabilistic component in order to
link logical and probabilistic reasoning [Forejt er al., 2011;
Huang er al., 2012; Chen et al., 2013]. These logics are es-
sentially extensions of CTL or ATL which allow for prob-
abilistic quantification of described properties. Research in
this area includes developing a model-based verification tool
PRISM by Kwiatkowska et. al [Kwiatkowska et al., 2002].
Among other PRISM property specification languages, the
logic rPATL [Chen et al., 2013] allows reasoning quantita-
tively about a system’s use of resources and emphasises on
expected reward-related measures. In rPATL, we can express
that a coalition of agents has a strategy which can ensure that
either the probability of an event’s occurrence or an expected
reward measure meets some threshold. However, probabilis-
tic resource-bounded properties such as

e “can coalition A have a strategy so that the probability
of reaching a state satisfying @ under the resource bound
bis atleast v?”,

“a coalition of agents A has a strategy to achieve a prop-
erty  with probability v provided they have resources b,
but they cannot enforce @ under a tighter resource bound
b’ (< b) with probability v”, and

“a coalition of agents A can maintain p until 1) becomes
true with probability v provided they have resources b”

can neither be expressed in rPATL nor in any other probabilis-
tic temporal logics mentioned above. The problem discussed
in this paper can be identified as a probabilistic resource-
constrained multi-agent coalition structure formation prob-
lem, where the coalitions perform actions towards specific
goals, provided they have enough resources. We propose a
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logic, Probabilistic Resource-Bounded ATL (pRB-ATL), for
reasoning about coalitional power under resource constraints
in the probabilistic setting. pRB-ATL allows us to express
various interesting properties of probabilistic systems where
abilities of agents are constrained by available resources. The
logic rPATL is one of the approaches most closely related
to the work presented in this paper. However, the reason-
ing problem considered in our work is different in two im-
portant aspects. First, and most importantly, properties in
rPATL related to rewards are of a statistical nature. They
are expressed and computed as constraints on expected val-
ues for rewards. In contrast, resource-bounded properties in
our pRB-ATL logic lie within the realm of crisp values and
constraints; actions and strategies are allowed if and only if
they satisfy the resource-bounded constraints. Second, the se-
mantics of rPATL is based on turn-based systems while ours
is based on concurrent systems.

The rest of this paper is structured as follows. In Section 2,
we discuss the basic notions of probability distributions and
the underlying probabilistic formalisms of our logic. In Sec-
tion 3, we present the syntax and semantics of pRB-ATL. In
Section 4, we provide a model-checking algorithm for pRB-
ATL, and conclude the paper in Section 5.

2 Background and Preliminaries

In this section, we discuss the basic notions that are used in
the technical part of the proposed logic. Let @ be a finite
setand p : @ — [0, 1] be a probability distribution function
over @ such that >, 1(g) = 1. We denote by D(Q) the
set of all such distributions over (). For a given u € D(Q),
supp(p) = {¢ € Q | u(g) > 0} is called the support of
w. A probability space is a measure space with total mea-
sure 1. The standard notation of a probability space is a triple
(Q, F, Pr), where € is a sample space which represents all
possible outcomes, F C P(f2) is a o-algebra over {2 which
includes the empty subset and it is closed under countable
unions and complement, and Pr : F — [0, 1] is a proba-
bility measure over (€2, F). The interested reader is referred
to [Billingsley, 2012] for a complete description relating to
probability distributions and measures. We also denote the
set of all finite, non-empty finite and infinite sequences of el-
ements of Q by Q*, Q" and Q“, respectively.

2.1 DTMC and MDP

Discrete-time Markov chains (DTMCs) are the simplest prob-
abilistic models in which the systems evolve through discrete
time steps.

Definition 1. A DTMC is a tuple M. = (Q,qo,11,7,J),
where Q) is a set of states, qo € @ is the initial state, 11 is
a finite set of propositional variables, m : QQ — p(Il) is a
labelling function, and 6 : Q x Q — [0,1] is a probability
transition matrix such that Zq'ES 0(q,q") =1 forallq € Q.
Here, 0(q,q’) denotes the probability that the chain, when-
ever in state q, moves into next state q'.

Markov decision processes (MDPs), an extension to or-
dinary DTMCs, are a widely used formalism for modelling
systems that exhibit both probabilistic and non-deterministic
behaviour [Forejt ef al., 2011].
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Definition 2. An MDP is a tuple My = (Q, qo, 11,7, A, d),
where A is a set of actions, § : Q X A — D(Q) is a (par-
tial) probabilistic transition function, and all the other com-
ponents are the same as their counterparts in a DTMC.

The set of available actions at a state ¢ is defined by A(q) =
{a € A| 3¢ -6(q,)(¢’) > 0}. Unlike DTMCs, in MDPs,
the transitions between states occur in two steps. Firstly,
an action « is selected from a set of actions .A(q) available
at a given state q. Secondly, a successor state ¢’ is chosen
randomly, according to the probability distribution (g, cv).
Thus, for a given state ¢ and « € A(q), 6(¢q, ) : Q — [0, 1]
is a function such that } ., 3(q, @) (¢') = 1.

Definition 3. A path X\ in an MDP M is an (infinite) alter-

nating sequence of states and actions X = gy —% q —
.. €(Q x A)Y where oy € A(g;) and §(q;, o;)(gig1) > 0

forall i > 0. A finite path A\ = qo =% ¢1 <& ... 2225 ¢,
is defined as usual as a prefix of an infinite path ending at a

state qy,. The set of finite paths is denoted by (Q x A)*Q.

Definition 4. A strategy in an MDP My is a function f :
(Qx.A)*Q — D(A) that assigns each finite path X = qy ~

Qpy— .. . . .
@ % ... =% g, a probability distribution over the en-

abled actions A(qy, ) such that f(\)(«) > 0 if a € A(gy)-

An MDP reduces to a DTMC if the player’s strategy is
fixed. That is, given an MDP M, any strategy induces a
Markov chain M, by resolving non-determinism.

3 Syntax and Semantics of pRB-ATL

In this section, we provide the syntax and semantics of pRB-
ATL. Let us consider a multi-agent system consisting of a set
N = {1,2,...n} of n(> 1) concurrently executing agents.
In order to reason about resources, we assume that the actions
performed by the agents have costs. Let R be a finite set of
resources (such as money, energy, or anything else which may
be required by an agent for performing an action). Without
loss of generality, we assume that the cost of an action, for
each of the resources, is a natural number. The set of resource
bounds B over R is defined as B = (N U {oc})", where rr =
|R|. We denote by 0 the smallest resource bound (0, ..., 0)
and by oo the greatest resource bound (oo, . .., 00).

3.1 Syntax of pRB-ATL

Let II be a finite set of atomic propositions, N be the set
of agents, A be a subset of N, and b € B. The syntax of
pRB-ATL is defined as follows:

=T |p|¢|eVe|{(A)Puu]
Yi=0¢ | oUr o | )

where p € II, e {<, <, >, >}, v € QN[0, 1], k € NU{oo}.

The two temporal operators have a standard meaning, ()
for “next” and U=* for “bounded until” if & < oo or “until”
otherwise. When k = oo, we shall simply write U instead
of U°. Here, {{A®))Pr, [O¢] means that a coalition A has a
strategy to make sure that the next state satisfies  under re-
source bound b with a probability in relation > with constant
v, regardless of the strategies of other players. The formula
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((APY)Pogy[01 U o] means that A has a strategy to enforce @2
while maintaining the truth of ¢, and the cost of this strat-
egy is at most b with a probability in relation > with constant
v, regardless of the strategies of other players. Other tempo-
ral operators are defined as abbreviations in a standard way.
Particularly, “eventually” is defined as G = T U ¢, and
“always” as O = —O—p. Notice that these operators when
b = & mean the same as their counterparts in AT'L, i.e., the
ATL operator ((A)) corresponds to ((A%)). Other classical
abbreviations for L, V, — and < are defined as usual.

3.2 Semantics of pRB-ATL

To interpret this language, we extend the definition
of resource-bounded concurrent game structures (RB-
CGS)) [Alechina er al., 2010] with probabilistic behaviours
of agents. For consistency with [Alur et al., 2002], in what
follows the terms ’agents’ and ’players’ and the terms ’ac-
tions’ and 'moves’ have been used interchangeably.

Definition 5. A Probabilistic Resource Concurrent Game
Structure (pRCGS) is a tuple S (n,r,Q,1,m, d,c,d)
where:

e n > 1is the number of players (agents);

o 1 > 0 is the number of resources;
Q is a non-empty finite set of states;
11 is a finite set of propositional variables;
m: I — p(Q) is a function which assigns a subset of Q
to each variable in 11;
d: QQ x N — Ny is a function which indicates the
number of moves (actions) available at a state for each
agent, where N, = N\ {0},
c: Q x N x Ny — Bis a partial function which in-
dicates a resource cost for each move by an agent at a
state; and ¢(q,a,1) = 0 forany q € Q and a € N;
d:Q x (N = Ny) — D(Q) is a partial probabilistic
transition function.

Given a pRCGS S (n,7,Q,1I,m,d,c,0), we identify
available moves at a state ¢ € ) of an agent ¢ € N by
1,...,d(q,4); then D;(q) = {1,...,d(q,)} denotes the set
of available moves; move 1 specifies idling which is always
available with cost 0 by definition. Similar to ATL and RB-
ATL, the zero-cost move 1 is required to avoid deadlock and,
therefore, maintain totality.

A pRCGS is closely related to MDPs (Definition 2, Sec-
tion 2.1), where abilities of individual agents and coalitions
of agents are constrained by available resources in a non-
trivial way. Given A C N, a joint move m of A is a function
m : A — Ny. Let D denote the set of all joint actions for IV,
iie., D = N — N,. Given g € @, the set of available joint
moves of A at g is denoted by Da(q) = {m : A — Ny
Va € A :m(a) € Dy(q)}. Given q,q¢’ € Q and m € D(q),
d(g,m)(q") is the conditional probability of a transition from
q to ¢’ if every agent i € N performs m(¢). Then, ¢’ is called
a successor of ¢ if 3m € D(q) such that ¢’ € supp(d(q,m)).
To this end, pRCGS is different from RB-CGS in defining the
transition function §. While the § of a RB-CGS is determin-
istic, that of a pRCGS is a mapping to a distribution function
over states and, hence, specifies non-determinism.
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Figure 1: pRCGS Sy of the two firefighters.

Example 1. Let us consider the design of a system consisting
of two firefighter agents N = {1, 2} in a building. Each agent
is equipped with two resources: electricity and water. Agents
can perform three possible actions, namely, sense, pump wa-
ter, and idle. They can sense to detect if there is a fire in the
building and pump the water to stop the fire. Sensing the fire
requires one unit of electricity, pumping water requires one
unit of electricity and one unit of water, and idle costs noth-
ing. This scenario is formalised by a pRCGS Sy as depicted
in Figure 1. Here,n = 2,1 = 2, Q = {do,d1,42, 43, qa},
and 1 = {safe, destroyed}. For convenience, the transition
function ¢ is written in terms of labels on transitions. Each
transition from a state q; to a state q; is annotated with one
or more labels of the form (x,y)/z where (x,y) denotes the
Jjoint move, x by agent 1’s move and y by agent 2’s move per-
formed at state q;, and z denotes the probability of arriving
at the next state q;.

At the initial state qy, each agent can either stay idle 1 or
perform sense action 2. Therefore, the possible joint moves at
qo are (1,1), (1,2), (2,1), and (2,2). At the states q; (only
one agent detected the fire) and q2 (both detected the fire),
each agent can either stay idle 1 or pump water 2. Thus, pos-
sible joint moves at q1 and qs are (1,1), (2,1), (1,2), and (2,2).
At the “blue” state qs, the building is saved from the fire and
is labelled with a proposition “safe”, while at the “red” state
q4, the building is destroyed and is labelled with a proposition
“destroyed”. If a fire does occur in the building, each agent
autonomously decides to detect it or stay idle. When only one
of the agents detects the fire, the chance of stopping it is 80%
if only one of them acts. However, the chance of stopping
it increases to 90% if both of them act. The effectiveness of
stopping the fire could be improved if both the agents detect
the fire jointly. The chance of stopping it then would be 90%
if only one of them acts, while it would be 99% if both of them
act. If both the agents stay idle (i.e., neither of them detects
the fire nor pumps the water to extinguish the fire), the build-
ing will be destroyed.

To compare costs and resource bounds, we use the
usual point wise vector comparison, that is, (by,...,b,) <
(di,...,d,)iff b; < d; fori € {1,...,r} where n < oo
for all n € N. We also use pointwise vector addition:
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(bl,...,br) + (dl,...,dr) = (bl +d1,...,br —‘rd»,‘) where
n+oo =ooforalln € NU {oo}. Given b € B, B,
denotes the set of bounds less or equal to b without taking
into account oo components, i.e., B<, = {0/ € B | Vi €
{1,...,r} : b, = b = oo Vb, < b < oo} Note that
B<o| =ILicqa,....rp bisoo (bi + 1)

Given a joint move m € D 4(q), the cost of m is defined as
cost(q,m) = >, c 4 c(q,a,m(a)), i.e., the total cost of the
actions performed by the agents in the coalition A.

Given a pRCGS S, we adopt the Definition 3 to define runs
(computations). A infinite run is an infinite sequence A =
qo m_0> q1 i) (Q X D)w where m; € D(qi) and qi+1
is as successor of g; by my, ie., (gi+1) € supp(d(gi, m;))
for all ¢ > 0. We denote the set of all infinite computations
by Qs C (Q x D)“. A finite computation is a finite prefix
A=qo 2% ¢ ™ go. .. 22 g, € (Q x D)*Q of some
infinite sequence in {2g. We denote the set of all finite com-
putations by 2. For convenience, we denote (Q x D)* and
(@xD)*Qby (QD)“ and (QD)*Q, respectively. The length
of a computation A, denoted by ||, is defined as the number
of transitions in \. For a finite computation A\ = gy —%

mi Mp—1

g —> Qq2... — Qn € QS’ |A‘
computation A € gy —% q1 —% ...
a computation A € Q%, A(i) = g¢; forall i € {0,...,[\|};
Ai,7)=¢i...q;foralli,j €{0,...,|A\}and i < j;my =
momy ... as the projection of moves in A and m (i) = m;
fori € {0,.. \)\| — 1}. Note that A(])|) is the last state in
A. Finally, Q% = {) € Q& | A(0) = ¢} denotes the set of
(finite) computatlons startlng from g € (). Given a finite com-
putation A € 2 and a coalition A, the cost of joint actions by
A is defined as cost4(\) = Zl)“ L cost(A(i), ma(i)). We
adopt Definition 4 (Section 2.1) to deﬁne strategies:

= n; for an infinite
Qg, |A| = oo. Given

Definition 6. Given a pRCGS S, a strategy of a player
a € N is a mapping f, : (QD)*Q — D(N,) which
associates each sequence N € (QD)*Q to a distribution

ta € D({L,....dA(N]), 0)}):

Definition 7. A strategy is called memoryless (or Markovian)
if its choice of moves depends only on the current state, i.e.,
faA) = fa(A(|A])) for all X € (QD)*Q. It is called de-
terministic if it always selects a move with probability 1, i.e.,
fa(X) is a Dirac distribution.

Definition 8. Given a pRCGS S, a coalition strategy Fy :
— ((QD)*Q — D(N,)) is a function which associates
each player a in A with a strategy.

Given a coalition strategy F4, we show that each finite

sequence A € (QD)*Q gives rise to a distribution qu €
D(Da(A(|A]))) over joint actions m € D4 (A (|)\\)) where

WA m) = Tlaea fa(N(m(a) and f, = Fa(a) for all
ac A
Lemma 1. Given a sequence A € (QD)*Q and a coalition
strategy Fa, pi* is a distribution over D 4(A(|A])).

Given two coalition strategies F'4 and Fp of two disjoint

coalitions A and B, i.e., AN B = (), their union is also a
coalition strategy, denoted by F)4 U F'ig, for AU B.
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Definition 9. Given a bound b € B, and a strategy Fa, F4 is
b-bounded iff for all A € Q; such that cost o(\) < b, it holds
that supp(ii£*) C {m € Da(A(AD) | cost(A(A]),m) <
b — cost(\)}.

In other words, all executions of a b-bounded strategy cost at
most b resources. In order to reason about probabilistic be-
haviour of S, we need to determine the probability that cer-
tain computations are taken. To do this, we construct for each
state ¢ € @, a probability space over the set of infinite com-
putations {2 , starting from g. The basis of the construction
is the probability of individual finite computations induced
by the transition probability function §. Given a state gy € @,
we can determine the probability of every finite computation

A= qo e q1 e q2 -
F'4 as follows:

Mn—1

L= g € 3,4 consistent with

F
Pre (

Suo ( 6(si,m;)(Sit1)-

H 'u)\ 0 z)
If [\ =1, Prli”(/\) = 1 as the above product is empty.
For each finite computation A € QJSr, we can then define

a cylinder set C'y that consists of all infinite computations

prefixed by A. Given an initial state ¢ € (), it is then stan-

dard [Kwiatkowska et al., 2007; Billingsley, 2012] to define

a measurable space over {)g 4, infinite runs of S from ¢, as

(Qs,4, Fs,q) where Fg , C p(s,4) is the least o-algebra on

Qg 4 generated by the family of all cylinder sets C'y where

A E Q; that starts from ¢, i.e., A(0) = ¢. Given a strat-

egy Fy, a strategy for all players in the game, the behaviour

of S is fully probabilistic. It then gives rise to a proba-
bility measure (g4, Fs,q; Prgf\(;) where Prgf\(; : Fsq —

[0,1] uniquely extends Prgf; : Qg 4 — 10,1] such that

Pre¥ (Cy) = Pri¥ () for all finite computations A € QF

starting from q.

3.3 Truth Definition for pRB-ATL
Given a pRCGS S = (n,r,Q,II,7,d, c,d), the truth defini-
tion for pRB-ATL is given inductively as follows:
e SqET;
S,q E piff g € w(p):
S,q | ~piff S, q = ¢
=1V 2 iff S, g [= 1 or §,q = o
= ((A®)Pyy, [0] iff 3 b-bounded F4 such that VF'g,
A€ Qs | S A}
FwafS A1) = ¢
= @1 U* @o iff 3i € Nsuchthati < k, Vj < i :
(7) E @1, and S, A(4) |= o
o S\ A —wiff S)\ £ .
This definition is a combination of pATL and RB-ATL. In
particular, the case of ((A))P...% requires the existence of
a strategy F'4 which must be b-bounded while there is no re-
striction on the strategies of the remaining players A = N\ A.
From the truth definition, the following result directly in-
herits the complement rule for probability where >"1=<,
>Tl=< <~ 1=>and < 1=>:
Lemma 2. VS, ¢ S,q E
(A°YPog-11-p 0.

Sq
S, q
Pres
S, A
S, A
S, A

)
)
)

(A")Pounty & Siq |
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Example 2. Let us continue with the running Example 1.
Consider a question (property): “Can agent 1 from qy,
equipped with 2 units of electricity and 1 unit of water,
make sure that the building is at least 90% safe?”. This
means to check if o1y = ({1} >V )Psg.oOsafe is true at
qo. Unfortunately, there is no such strategy for agent 1, i.e.,
St qo ©{1y. Consider another question (property): “Can
agents 1 and 2 jointly from qg, equipped with 4 units of elec-
tricity and 2 unit of water, make sure that the building is at
least 90% safe?”. Similar to the previous question, we need
to check if pg10y = ({1,2}2)Pg.gOsafe is true at go.
This is true, for example, when employing a strategy where
both the agents perform sensing at qo and pumping the water
at qs. In fact, this strategy can guarantee the safety of the
building by up to 99%. Hence, Sty,qo = ¢1,2}-

4 Model Checking

In this section, we present an algorithm for the model check-
ing problem of pRB-ATL. In particular, given a pRCGS § =
(n,r,Q,1,7,d,c,0) and a pRB-ATL formula ¢, the algo-
rithm produces the set of states Sat(p) of S that satisfy ¢,
ie., Sat(p) = {g € Q| S,q = ¢}. Similar to ATL and its
descendants, the algorithm generally processes ¢ recursively
by computing the set of states satisfying sub-formulae of ¢
before combining them to produce Sat(y). For the proposi-
tional cases, the algorithm can be summarised as follows:

Sat(T) =S, Sat(e1 V @2) = Sat(p1) U Sat(e2),
Sat(—¢) = S\ Sat(y), Sat(p) ={q € Q| g€ n(p)}.

Let us focus on the last cases Sat({{A))Ps,[1)]) where
Y = Qg1 and ¥ = @1 UF oy with k € N U {cc}. No-
tice that the case Sat({{(A)Puq,[—1]) can be reduced to
Sat({(A*)Pyq-11_,[¢]) due to Lemma 2. Instead of follow-
ing the semantics definition, i.e., determining the existence of
a b-strategy for A to achieve a certain probability v from a
state s, we compute the min and max values over all possible
b-strategies for A. In particular:

Prg‘f}x(Ab7 ¥)= sup inf PrFAUFA (¥)
’ b-bounded F'4 Fz
mm(Ab7 P) = inf  sup PrFAUFA (),

b-bounded F 4

where PrFAUFA (1)) is a shorthand for
Pret?PA({h e Qsq | S A E ).

Then, computing states satisfying ((A”)) Py, [¢)] is reduced to
comparing these min/max values with v as follows:

Sat((A")Pou[v)]) = {g € Q | Prsg(A”, )b o} (D)
Sat((A")Pw[¥]) = {g € Q | Pry (A", v) <v}, ()

where < € {<,<} and > € {>,>}. In the following, we

show how to compute Prg®<(A®, 1) and Pra’ (A", ) recur-
sively on the structure of 7,/)

Case (4a): v = Q1. Assume that Sat(p;) has been com-
puted. Then the maximal probability to arrive at a state in
Sat(py) is obtained by players in A selecting an allowed
move (costing at most b) to maximise the probability while
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players outside A, i.e., in A, select an arbitrary move to min-
imise it. Conversely, the minimal probability is obtained by
players in A selecting an allowed move to minimise it while
those outside select one to maximise it. Therefore, we have:

Pra®x(A® ¢) = > d(gmum’)(t)

te€Sat(py)

>

teSat(py)

max min
meD 4 (q) m'E€D z(q)
cost(g,m)<b

min max
meD 4 (q) m/EDA(Q)
cost(g,m)<b

Case (4b): v = 1 USF @y, Assume that Sat(pq)
and Sat(pz) are computed. For convenience, we denote
maX(Ab, ©1 U ©3) and Pri® (Ab, 01 U* ) by Xé’}k and
Y o> respectively. Then, there are three trivial sub-cases:
eges at(<p2) any computation from g satisfies ¢, hence
X = Y =1
° g §Z Sat(cpl) U Sat(gp2): any computation from g does
not satisfy ¢, hence X!, =Y>, =0.
o g ¢ Sat(p2) & k = 0: any computation from g does not
satisfy 1) before 0 transition, hence X ok = quf x = 0.
Otherwise, players in A try to choose an allowed move m
from g with cost at most b that maximises the probability to
arrive at a state that can satisfy ¢ with the remaining resource
b = b — cost(q,m) and within ¥’ = k — 1 transitions. For-
mally, this can be defined as follows:

Pr (A%, v) = 5(gmuUm/)(t).

ka =  max min 5(g,mUm’)(t ~Xb_io'9t(q’m)
@ meD 4 (q) m’eDg(q)Z (4 ) bRt
cost(qg,m)<b teQ
Y:]b,k _ min max Z 5(q7m U m/)( ) ka czist(q m)
meD 4 (q) mM'ED 7(q) tco

cost(qg,m)<b

Overall, one can form two linear equation systems with vari-
ables X fl” i and Yqb’ «» respectively. They can be solved by di-
rect methods such as Gaussian elimination or iterative meth-
ods such as Jacobi and Gauss-Seidel [Kwiatkowska et al.,
2007]. In general, iterative methods suit the two linear equa-
tion systems best It should not iterate more than k + 1 times
as X, b oand Y, 0 saturate to either O or 1 regardless of b and ¢
by deﬁmtlon
Case (4c): v = @1 U @y. Assume that Sat(y1) and
Sat(gog) are computed. Again for convenience, we denote

Praa(A®, o1 U p3) and Prmm(Ab, ©1U ) by Xp and Y,
respectlvely We now have two trivial cases:
o If ¢ € Sat(<p2) any computation from ¢ satisfies 1,
hence X, cl; Y =1
o Ifg ¢ Sat(<p1) USat(p2), any computation from ¢ does
not satisfy v, hence X(ZI7 = Yqb =0
Otherwise, players in A try to choose an allowed move m

from g with cost at most b that maximises the probability to
arrive at a state that can satisfy v with the remaining resource

b = b— cost(q, m). Formally, this can be defined as follows:
XP = max min 5(g,muUm’) X~ cost(¢,m)
a meD 4 (q) m'ED z(q) Z q )
cost(q,m)<b teQ
Y, = min Z S(g,mum’)(t)- Y™ cost(g,m)

meD4(q) m eDA(q)

cost(q,m)<b teQ

Then, one can form two linear equation systems with vari-
ables X} and Y, respectively. Once again, they can be
solved via existing methods.
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Lemma 3. Given a pRCGS S and a pRB-ATL formula o, (i)
Sat(p) terminates and (ii) g € Sat(p) iff S, q | .

Sketch of proof. Since recursive calls within Sat(y) are al-
ways applied to strictly sub-formulas of ¢, termination of
(4) is straightforward. Correctness of (i) can be proved by
induction on the structure of . Consider ¢ = -1, ¢ €
Sat(p) < q € S\ Sat(p1) < q ¢ Sat(p1) < S,q [~ ¢
(by LH.) & S, q = —p1. Other propositional cases (p = T;
p; 1V (o) are similar. Finally, from (1) and (2), the correct-
ness of Sat({{A®)Py,[1]) follows from the correctness of
computing Prg*(A®, ) and Prg (AP, ). This is immedi-
ate from the arguments of the cases (4a), (4b) and (4¢). O

Assuming that the natural numbers occurring in a pRB-
ATL formula ¢ are encoded in unary, we have the following
result.

Lemma 4. The upper bound of the time complexity for
Sat(p) is Ol +* - |S]?).

Sketch of proof. ¢ has at most O(|p|) sub-formulae. The
cases (4b) and (4c) are the most computationally complex.
In case (4b), the numbers of b and k are bounded by O(|¢|")
and O(]¢p|), respectively. Therefore, the number of variables,
also that of equations, in each corresponding linear equation
system is bounded by O(|¢|” - |S| - [¢]) = O(J¢|" Tt - |9]).
Similarly, in case (4c), the number of variables and also
equations in each corresponding linear equation system is
bounded by O(|¢|" -|S]). It is well-known that the time com-
plexity of solving such a linear equation system is at most
O(n®) [Golub and Van Loan, 19961, where n is the number
of equations. Therefore, the complexity of computing Sat(y)
is O(1¢| - (|1 - |S)%) = O(jpFr+1 - |SP). O

Furthermore, the lower bound is given by that of the ATL,
i.e., linear to the size of the input model and the input formula.

Example 3. Let us illustrate the use of the pRB-ATL and
quantitatively verify the system presented in Example 1 via
model checking. We generalise the properties described in
Example 2 as follows “Can a coalition from gg, equipped with
e units of electricity and w units of water, make sure that the
building is at least v safe?”. This is formalised in pRB-ATL
by pa = (AEWWP, Osafe. To this end, we need to check
whether Sg ¢, qo |= @a. As mentioned in the previous section,
this can be reduced to determine the maximal probability:

max

St£40 (A Osafe) = Xé;’“’).

Intuitively, the best strategy for one agent to help the build-
ing to be safe is to sense and then to pump the water. In
total, this costs two units of electricity and one unit of wa-
ter. Similarly, while cooperating, the best strategy for both
the agents would be to choose their best strategies concur-
rently, which will cost together four units of electricity and
two units of water. Therefore, for A = {1}, we consider the
resources bounded by (e,w) < (2,1) and for A = {1,2}
those are bounded by (e,w) < (4,2). For each case of A
and (e, w), the corresponding equation system from case (4c)
can be solved by, for example, the iterative method as applied
in [Kwiatkowska et al., 2007]. The solutions of these linear
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[we [ O] 1T 2]

0 0.0 | 0.0 | 0.0

1 0.0 | 0.0 | 0.8
Table 1: Prgfs o ({1} Osafe)

[we [ O T T TJT27]3 7] 4]

0 001|001 007]00] 00
1 00 (00108109 09
2 0.0 ] 00| 08| 09 | 0.99

Table 2: Prg2*

S‘ff,qo ({1? 2}(67w)7 Osafe)

equation systems are summarised in Table 1 for A = {1} and
in Table 2 for A = {1,2}. In particular, Table 1 shows that
any resource bound less than (2, 1) is not helpful for agent 1
as it has no strategy to make sure that the building is safe. In
the best case, with resource bound (2,1), the only vital strat-
egy is to sense the fire and then pump the water. In this case,
since agent 2 is not required to cooperate, the worst case is
to end up in q1 from qo where the chance to arrive at qs, the
safe state, is at least 80%. That is, choosing the following
actions: (2,1) in qo, (2,1) in q1 and (1,1) in qs. Similarly,
Table 2 shows that any resource bound less than (2, 1) will
not be enough for both the agents while cooperating. How-
ever, the chance of making the building safe increases to 90%
as more and more resources are given. This is because from
qo both the agents can force the arrival at qs instead of q,
where there are at least three units of electricity are available
at qo. Eventually, the maximal chance of making the building
safe reaches 99% as both the agents have enough resources
to follow the same best strategy. That is, choosing the follow-
ing actions: (2,2) in qo, (2,2) in g2 and (1,1) in q3. Due
to the small size of the illustrative example system, the time
taken for the verification was less than 1 second.

5 Conclusions and Future Work

In this paper, we proposed a logic pRB-ATL for reasoning
about coalitional abilities of systems under resource con-
straints that exhibit both probabilistic and non-deterministic
behaviour, and provided a standard model-checking algo-
rithm for it. pRB-ATL allows us to express various inter-
esting properties of coalitions of agents involving resource
limitations and probabilistic behaviour. For example, it can
express that “a coalition of agents A has a strategy to achieve
a property @ with probability <1 v (<€ {<, <, >, >}) pro-
vided they have resources b, but they cannot enforce p under
a tighter resource bound b’ with probability < v”.

In future work, we would like to explore the real world
applicability of the proposed logic as an underlying solution
framework for more complex analyses of resource-bounded
systems. The example scenario presented in this paper is
a very simple case. If we model a more realistic sce-
nario and increase the problem size, the analysis and ver-
ification task would be hard to do by hand. Therefore, it
would be more convenient to use an automatic method to en-
code and verify them, for example using a model checking
tool [Kwiatkowska et al., 2002].
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