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Abstract
We consider elections where both voters and can-
didates can be associated with points in a metric
space and voters prefer candidates that are closer to
those that are farther away. It is often assumed that
the optimal candidate is the one that minimizes the
total distance to the voters. Yet, the voting rules of-
ten do not have access to the metric space M and
only see preference rankings induced by M . Con-
sequently, they often are incapable of selecting the
optimal candidate. The distortion of a voting rule
measures the worst-case loss of the quality being
the result of having access only to preference rank-
ings. We extend the idea of distortion to approval-
based preferences. First, we compute the distor-
tion of Approval Voting. Second, we introduce
the concept of acceptability-based distortion—the
main idea behind is that the optimal candidate is
the one that is acceptable to most voters. We
determine acceptability-distortion for a number of
rules, including Plurality, Borda, k-Approval, Veto,
Copeland, Ranked Pairs, the Schulze’s method, and
STV.

1 Introduction
We consider the classic election model: we are given a set of
candidates, a set of voters—the voters have preferences over
the candidates—and the goal is to select the winner, i.e., the
candidate that is (in some sense) most preferred by the voters.
The two most common ways in which the voters express their
preferences is (i) by ranking the candidates from the most to
the least preferred one, or (ii) by providing approval sets, i.e.,
subsets of candidates that they find acceptable. The collection
of rankings (resp. approval sets), one for each voter, is called
a ranking-based (resp. approval-based) profile. There exist a
plethora of rules that define how to select the winner based
on a given preference profile, and comparing these election
rules is one of the fundamental questions of the social choice
theory [Arrow et al., 2002].

One such approach to comparing rules, proposed by Pro-
caccia and Rosenschein [2006], is based on the concept of
distortion. Hereinafter, we explore its metric variant [An-
shelevich et al., 2018]: the main idea is to assume that the

voters and the candidates are represented by points in a metric
space M called the issue space. The optimal candidate is the
one that minimizes the sum of the distances to all the voters.
However, the election rules do not have access to the met-
ric space M itself but they only see the ranking-based profile
induced by M : in this profile the voters rank the candidates
by their distance to themselves, preferring the ones that are
closer to those that are farther. Since the rules do not have
full information about the metric space they cannot always
find optimal candidates. The distortion quantifies the worst-
case loss of the utility being effect of having only access to
rankings. Formally, the distortion of a voting rule is the max-
imum, over all metric spaces, of the following ratio: the sum
of the distances between the elected candidate and the vot-
ers divided by the sum of the distances between the optimal
candidate and the voters.

The concept of distortion is interesting, yet—in its original
form—it only allows to compare ranking-based rules. In this
paper we extend the distortion-based approach so that it cap-
tures approval preferences. In the first part of the paper we
analyze the distortion of Approval Voting (AV), i.e., the rule
that for each approval-based profile A returns the candidate
that belongs to the most approval sets from A. To formally
define the distortion of AV one first needs to specify, for each
metric space M , what is the approval-based profile induced
by M . Here, we assume that each voter is the center of a cer-
tain ball and approves all the candidates within it. We can see
that each metric space induces a (possibly large) number of
approval-based profiles—we obtain different profiles for dif-
ferent lengths of radiuses of the balls. This is different from
ranking-based profiles, where (up to tie-breaking) each met-
ric space induced exactly one profile. Thus, the distortion of
AV might depend on how many candidates the voters decide
to approve. Indeed, it is easy to observe that if each voter ap-
proves all the candidates, then the rule can pick any of them,
which results in an arbitrarily bad distortion. On the other
hand, by an easy argument we will show that for each metric
space M there exists an approval-based profile A consistent
with M , such that AV for A selects the optimal candidate.
In other words: AV can do arbitrarily well or arbitrarily bad,
depending on how many candidates the voters approve.

Our first main contribution is that we fully characterize
how the distortion of AV depends on the length of radiuses
of approval balls. Specifically, we show that the distortion of
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Figure 1: The relation between the fraction of voters approving the
optimal candidate and the distortion of AV, for the case when the
approval radiuses of the voters have all equal lengths.

AV is equal to 3, when the lengths of approval radiuses of the
voters are all equal and such that the optimal candidate is ap-
proved by between 1/4 and 1/2 of the population of the voters
(and this is the optimal distortion for the case of radiuses of
equal length). The exact relation between the number of vot-
ers approving the optimal candidate and the distortion of AV
is depicted in Figure 1.

In the second part of the paper we explore the following
related idea: assume that the goal of the election rule is not
to select the candidate minimizing the total distance to the
voters, but rather to pick the one that is acceptable for most
of them. E.g., AV perfectly implements this idea. A nat-
ural question is how good are ranking-based rules with re-
spect to this criterion. To answer this question we introduce
a new concept of acceptability-based distortion (in short, ab-
distortion). We assume that each metric space, apart from the
points corresponding to the voters and candidates, contains
acceptability balls—one for each voter (as before, each voter
is the center of the corresponding ball). The optimal candi-
date is the one that belongs to the most acceptability balls,
and the ab-distortion distortion measures the normalized dif-
ference between the numbers of balls to which the elected
and the optimal candidates belong. The ab-distortion is a real
number between 0 and 1, where 0 corresponds to selecting
the optimal candidate and 1 is the worst possible value 1.

Among the ranking-based rules that we consider in this
paper, the best (and the optimal) ab-distortion is attained by
Ranked Pairs and the Schulze’s method. It is an open ques-
tion, whether Ranked Pairs is the only natural rule with this
property. It is worth mentioning, that its ab-distortion is
closely related to the size of the Smith set, so in case it is
small (in particular, when the Condorcet winner exists) this
rule has even better ab-distortion. We have found an interest-
ing result for Copeland. Although in case of classic (distance-
based) distortion most Condorcet rules are equally good, this

1The reader might wonder why we define the ab-distortion as a
difference rather than as a ratio (as it is done for the classic definition
of the distortion). Indeed, we first used the ratios in our definition,
but then it was very easy to construct instances where any rule had
the distortion of +∞. Further, we found that these results do not
really speak of the nature of the rules but rather are artifacts of the
used definition. Consequently, we found that the considering the
difference gives more meaningful results.

Rule Distance-based Ab-distortion
distortion ([1; +∞]) ([0; 1])

Each rule ≥ 3 ≥ `−1
` for ` > 1

≥ 1
2 otherwise

Plurality 2m− 1 m−1
m

Borda 2m− 1 m−1
m

k-approval ∞ 1

Veto ∞ 1

Copeland 5 1

Ranked Pairs 5 `−1
` for ` > 1

1
2 otherwise

Schulze’s Rule 5 `−1
` for ` > 1

1
2 otherwise

STV O(lnm) 2m−1−1
2m−1

Table 1: The comparison of the distortion for various ranking-based
rules. The results in the left column (for the distance-based distor-
tion) are known in the literature. The results for ab-distortion are
new to this paper; here, m denotes the number of the candidates and
` is the size of the Smith set.

is no longer the case when acceptability is the criterion we
primarily care about. The ab-distortion of Copeland is equal
to 1, which is the worst possible value. This rule is opti-
mal only if the Condorcet winner exists (e.g. when the met-
ric space is one-dimensional). The distortion of scoring rules
(Plurality, Borda, Veto, k-approval) is significantly worse that
that for Ranked Pairs. Another surprising result is the distor-
tion of STV—while this rule is known to achieve a very good
distance-based distortion, its ab-distortion is even worse than
for Plurality (denoting the number of candidates as m, STV
and Plurality achieve the ab-distortion of 2m−1

2m and m−1
m , re-

spectively). In case of all these rules the worst-case instances
were obtained in one-dimensional Euclidean metric spaces.
Our results are summarized in Table 1.

The motivation for studying the two types of distortion (the
distance-based and the approval-based distortion) is the fol-
lowing. Very often it is not clear what should be the goal of
an election. It has been argued that there is a tension between
the desire to select a candidate judged “as highly as possible”
and supported “by as many people as possible”. Ideally, one
would like to have a rule that works well with respect to the
both criteria. Our goal is to examine whether such an ideal
rule exists, and if not, to assess the tension between the two
criteria, focusing on the well-known rules.

Due to space constraints we redelegate all the proofs to the
full version of the paper [Pierczynski and Skowron, 2019].

2 Preliminaries
For each set S by 2S and Π(S) we denote, respectively, the
powerset of S and the set of all linear orders over S. By S{

we denote the complement set of S, and by S∗—the set of all
vectors with the elements from S. For each two sets S1, S2
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and a function f : S1 → 2S2 by Rf : S2 → 2S1 we denote
the function defined as follows:

∀y ∈ S2 Rf (y) = {x ∈ S1 : y ∈ f(x)}

For convenience we assume that [−∞; +∞] denotes the
affinely extended real number system (the set of real num-
bers R with additional symbols +∞, and −∞). We take the
following convention for arithmetical operations:

∀a ∈ R
a

±∞
= 0 ∀a ∈ (0; +∞]

±a
0

= ±∞.

Expressions 0
0 , ±∞±∞ , 0 · ±∞ and ±∞−±∞ are undefined.

2.1 Our Metric Model
An election instance is a tuple (N,C, d, λ), where N =
{1, 2, . . . , n} is the set of voters, C = {c1, c2, . . . , cm}, is the
set of candidates, d : (N ∪ C)2 → R is a distance function
(d allows us to view the candidates and the voters as points in
a pseudo-metric space), and λ : N → 2C is an acceptability
function, mapping each voter i ∈ N to a subset of candidates
that i finds acceptable. We assume that λ is nonempty2, i.e.,
for each i ∈ N , λ(i) 6= ∅, and that is local consistent—for
each i ∈ N , ca, cb ∈ C, if ca ∈ λ(i) and d(i, cb) ≤ d(i, ca),
then cb ∈ λ(i). Often we will also require that λ satis-
fies a stronger condition, called global consistency—for each
i, j ∈ N , ca, cb ∈ C, if ca ∈ λ(i) and d(j, cb) ≤ d(i, ca),
then cb ∈ λ(j). Intuitively, local-consistency means that for
each voter i ∈ N we can associate λ(i) with a ball with the
center at the point of this voter. A voter i ∈ N considers a
candidate cj to be acceptable for him, cj ∈ λ(i), if and only
if cj lies within the ball. Such a ball will be further called
the acceptability ball and its radius—the acceptability radius.
Then, global consistency can be interpreted as an assumption
that all the acceptability radiuses have equal lengths.

We will sometimes slightly abuse the notation: by saying
that an instance satisfies local (global) consistency we will
mean that the acceptability function in the instance satisfies
the respective property.

By I, we denote the set of all election instances. Since is-
sue spaces are often argued to be Euclidean spaces with small
numbers of dimensions, we additionally introduce the follow-
ing notation: for each k ∈ N let Ek denote the set of all the
instances where the elements of N and C are associated with
points from Rk, and d is the Euclidean distance.

2.2 Preference Representation
In most cases, it is difficult for the voters to explicitly posi-
tion themselves in the issue space, and often even the space
itself is unknown. Therefore, we will consider voting rules
that take as inputs preference profiles induced by election in-
stances, instead of instances themselves. We consider two
classic approaches to represent preferences.

2We add this assumption to avoid pathological situations where
some voters like no candidates. This way we avoid having somehow
degenerated hard cases for the distortion.

Ranking-based profiles. A ranking-based profile induced
by an election instance I = (N,C, d, λ) is the function
�I : N → Π(C), mapping each voter to a linear order overC
such that for all i ∈ N and all ca, cb ∈ C if d(i, ca) < d(i, cb)
then ca �i cb.3 For each voter i ∈ N , the relation �I(i)
(for convenience also denoted as �i, whenever the instance
is clear from the context) is called the preference order of i.
If for some cx, cy ∈ C it holds that cx �i cy , we say that i
prefers cx over cy .

Approval-based profiles. An approval-based profile of an
election instance I = (N,C, d, λ) is a locally consistent ac-
ceptability function A : N → 2C . We say that a candidate cx
is approved by a voter i ∈ N if cx ∈ A(i). We will say that
the approval-based profile is truthful if for all i ∈ N it holds
that A(i) = λ(i).

Additional notation. Let us introduce some additional use-
ful notation. Let P : C∗ → N be a function mapping vectors
of distinct candidates to sets of voters as follows:

P ((ci1 , ci2 , ..., cik)) = {v ∈ N : ci1 �v ci2 �v . . . �v cik}

For convenience, we will write P (ci1 , ci2 , ..., cik) instead
of P ((ci1 , ci2 , ..., cik))4. Note that for all ca, cb ∈ C we have
P (ca, cb) ∩ P (cb, ca) = ∅ and P (ca, cb) ∪ P (cb, ca) = N .

We say that ca dominates cb if |P (ca, cb)| > n
2 and that

ca weakly dominates cb if |P (ca, cb)| ≥ n
2 . We say that a

candidate cx Pareto-dominates a candidate cy if there holds
that |P (cx, cy)| = n. A candidate cy is Pareto-dominated if
there exists a candidate cx who Pareto-dominates cy .

2.3 Definitions of Voting Rules
An election rule (also referred to as a voting rule) is a function
mapping each preference profile to a set of tied winners. We
distinguish ranking-based rules—taking ranking-based pro-
files as arguments, and approval-based rules—defined analo-
gously. Among approval-based rules, we focus on Approval
Voting (AV)—the rule that selects those candidates that are
approved by most voters. In the remaining part of this sub-
section we recall definitions of the ranking-based rules that
we study in this paper.

Positional scoring rules. For a given vector ~s =
(α1, α2, . . . , αm), the scoring rule implemented by ~s works
as follows. A candidate ca gets αi points from each voter j
who puts ca in the ith position in �j . The rule elects the can-
didates whose total number of points, collected from all the
voters, is maximal. Some well-known scoring rules which we
will study in the further part of this work are the following:

Plurality: ~s = (1, 0, . . . , 0),

Veto: ~s = (1, . . . , 1, 0),

Borda: ~s = (m− 1,m− 2, . . . , 1, 0),

3We allow for ties in the metric space—the voter ranks the
equidistant candidates using a fixed tie-breaking rule. Allowing for
ties gives somehow simpler hard-instances, yet they can be tweaked
so that they do not depend on tie-breaking at all. Also, the positive
results (the upper-bounds) work even for adversarial tie-breaking.

4It will always be clear from the context whether in the inscrip-
tion P (x), x should be interpreted as a vector or as a candidate.
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k-approval: ~s = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) (for 1 ≤ k ≤ m).

Copeland. The Copeland rule elects candidates cw who
dominate at least as many candidates as any other candidate.
More formally, a candidate cw is a winner if and only if:

∀cx ∈ C |{c : |P (cw, c)| >
n

2
}| ≥ |{c : |P (cx, c)| >

n

2
}|

Ranked Pairs. Ranked Pairs works as follows: first we sort
the pairs of candidates (ci, cj) in the descending order of the
values |P (ci, cj)|. Then, we construct a graph G where the
vertices correspond to the candidates. We start with the graph
with no edges; then we iterate over the sorted list of pairs—
for each pair (ci, cj) we add an edge from ci to cj unless there
is already a path from cj to ci in G. If such a path exists, we
simply skip this pair. Clearly, the so-constructed graph G is
acyclic. The source nodes of G are the winners.

Later on we will also use the well-known fact that Ranked
Pairs always elects a subset of the Smith set. Recall that the
Smith set of an instance I is the subset S of the candidates
such that (i) every candidate from S dominates each candi-
date outside of S, and (ii) no non-empty proper subset of S
satisfies the previous condition.
The Schulze’s Rule. The Schulze’s rule works as fol-
lows: let the beatpath of length k from candidate ca to cb
be a sequence of candidates cx1 , cx2 , . . . , cxk−1

such that
ca dominates cx1

, cxk−1
dominates cb and for each i ∈

{1, . . . , k − 2}, cxi
dominates cxi+1

. Let the strength
of the beatpath be the minimum of values P (ca, cx1

),
P (cx1

, cx2
), . . . , P (cxk−1

, cb). By p[ca, cb] we denote the
maximum of strengths of all beatpaths from ca to cb. Can-
didate cw is the winner if and only if for each candidate c it
holds that p[cw, c] ≥ p[c, cw].
STV. Single Transferable Vote (STV) works iteratively as
follows: if there is only one candidate, elect this candidate.
Otherwise, eliminate the candidate who has the least points
according to the Plurality rule and repeat the algorithm.

Note that the aforementioned rules are irresolute by defi-
nition. Further, we did not specify the tie-breaking rule used
when sorting edges in Ranked Pairs and when eliminating
candidates in STV. We will make all these rules resolute by
using the lexicographical tie-breaking rule, denoted by �lex.

2.4 Measuring the Quality of Social Choice
In this section we formalize the concept of distortion that, on
the intuitive level, we already introduced in Section 1.
Distance-based approach. A natural idea to relate the
quality of a candidate c with the sum of the distances from
this candidate to all the voters. The lower this sum is, the
higher the quality. Following this intuition, the distortion of a
voting rule ϕ in instance I ∈ I, is defined as follows (below,
co denotes the optimal candidate for I):

DI(ϕ) = max
P∈PI

∑
i∈N d(i, ϕ(P ))∑
i∈N d(i, co)

,

where PI is the set of profiles induced by I (either ranking or
approval, depending on the domain of ϕ). D(ϕ) ∈ [1; +∞].

This approach can be applied to any rule discussed so far.
For ranking-based rules it has already been widely studied in
the literature, hence in the further part we will focus on AV.
Acceptability-based approach. Now we present an alter-
native way to measure the quality of candidates, based on the
acceptability function. Intuitively, the more voters a candi-
date c is acceptable for, the higher his quality. Besides, we
would like the maximal possible quality not to depend on
the number of voters. Therefore, we define the acceptability-
based distortion (ab-distortion, in short) of a voting rule ϕ in
instance I ∈ I as the following expression:

DI(ϕ) = max
P∈PI

Rλ(co)−Rλ(ϕ(P ))

n
,

where PI is the set of profiles induced by I (either ranking-
based or approval-based, depending on the domain of ϕ).
Clearly, the ab-distortion is always a value from [0; 1]. By
definition, in truthful profiles Approval Voting always elects
an optimal candidate in terms of ab-distortion. Thus, we will
consider our acceptability-based measure only for ranking-
based rules.

Let E be a mathematical expression that can depend on
some characteristics of an instance (e.g., on the number of
candidates, or the size of the Smith set). We say that the
(acceptability-based) distortion of a voting rule ϕ is E, if for
each instance I , DI(ϕ) ≤ E and for each E and each ε > 0
there is a instance I with DI(ϕ) > E − ε.

3 Distortion of Approval Voting
In this section we analyze the distance-based distortion of Ap-
proval Voting (AV)—hereinafter we denote AV by ϕAV .

We start by showing that in the most general case, if we do
not make any additional assumptions about the acceptability
function, the distortion of AV can be arbitrarily bad.
Proposition 3.1. There exists an instance I ∈ E1 such that
DI(ϕAV ) = +∞.

This result is rather pessimistic. However, one could ask
a somehow related question—does there for each instance I
always exist an approval profile consistent with I that would
result in a good distortion? In contrast to Proposition 3.1,
here the answer is much more positive.
Proposition 3.2. For each instance I ∈ I, there is an ap-
proval based profile A of I such that ϕAV is the optimal can-
didate (minimizing the total distance to voters).

Propositions 3.1 and 3.2 show that for each metric space
M there always exists two approval profiles A1, A2 locally
consistent with M such that for A1 AV selects the worst pos-
sible candidate, and for A2 it selects the optimal one—since
A1 and A2 are both consistent with M , they only differ in the
sizes of approval balls. This formally shows that the perfor-
mance of AV strongly depends on how many candidates the
voters decide to approve. Below, we provide our main result
of this section—assuming that all the acceptability balls have
radiuses of the same length, we show the exact relation be-
tween this length of approval radiuses and the distance-based
distortion of AV. In particular, we show that the best approval

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

546



radius is such that the optimal candidate is approved by be-
tween 1/4 and 1/2 fraction of all the voters.

Definition 3.3. An approval-based profile A induced by an
instance I is p-efficient for p ∈ [0; 1] if RA(co) = pn.

In words, a profile is p-efficient if the number of voters who
approve the optimal candidate is the p fraction of n.

Theorem 3.4. For each globally consistent p-efficient in-
stance I , we have the following results:

DI(ϕAV ) ≤


+∞ for p ∈ {0, 1}
1−p
p for p ∈ (0; 1

4 ]

3 for p ∈ [ 14 ; 1
2 ]

2−p
1−p for p ∈ [ 12 ; 1).

The above function is depicted in Figure 1.

All these bounds are attained for instances in E1. The de-
tailed construction is provided in the full version of the pa-
per [Pierczynski and Skowron, 2019].

Finally, for completeness, we give an analogue of Proposi-
tion 3.2, but for globally-consistent instances.

Proposition 3.5. For each instance I ∈ I, there exists an
approval profile A globally consistent with I , such that∑

i∈N d(i, ϕ(A))∑
i∈N d(i, co)

≤ 11

3
.

4 AB-Distortion of Ranking Rules
Recall that the ab-distortion of a voting rule is a value from
[0; 1], proportional to the difference between the number of
voters accepting the optimal candidate and the number of vot-
ers accepting the winner. By definition, this value equals 0 for
AV (provided the approval profile is truthful). In this section
we analyze the ab-distortion of ranking-based rules.

We start by proving the lower bound on the ab-distortion
of any ranking-based voting rule.

Theorem 4.1. For each ` ∈ N and each ranking-based rule
ϕ, there exists a globally consistent instance I such that:

1. the size of the Smith set in the ranking-based profile in-
duced by I equals `,

2. DI(ϕ) =

{
`−1
` for ` ≥ 2

1
2 for ` = 1.

In the subsequent part of this section we will assess the
distortion of specific voting rules, specifically looking for one
that meets the lower-bound from Theorem 4.1.

4.1 Condorcet Rules
We start by looking at Condorcet consistent rules. Note that
the lower bound found in Theorem 4.1 is promising, as it de-
pends on the size of the Smith set. In particular, if ` = 1,
this bound equals 1

2 . Our first goal is to determine, whether
Condorcet rules meet this bound.

Theorem 4.2. Let I be an instance with a Condorcet winner
and ϕ be a Condorcet consistent rule. Then, DI(ϕ) ≤ 1

2 .
This bound is achievable for a globally consistent I ∈ E2.

Proof. Let cw be the winner and co be the optimal candidate.
Since we assumed that the Condorcet candidate exists in I ,
we have that cw weakly dominates co. Then, we have:

n

2
≤ |P (cw, co)| = n− |P (co, cw)|

Thus, |P (co, cw)| ≤ n
2 . Further, we have that:

|Rλ(co)| − |Rλ(cw)|
= |Rλ(co) \Rλ(cw)|+ |Rλ(co) ∩Rλ(cw)|
− |Rλ(cw) \Rλ(co)| − |Rλ(co) ∩Rλ(cw)|

= |Rλ(co) \Rλ(cw)| − |Rλ(cw) \Rλ(co)|

≤ |Rλ(co) \Rλ(cw)| ≤ P (co, cw) ≤ n

2
.

This completes the first part of the proof.
For the hard instance, we have four candidates cx, cy, cz ,

and cc, placed in points (3, 3), (0, 0), (6, 0), and (3, 2), re-
spectively. There are n

2 − 1 voters in (3, 4) with preferences
cx � cc � cy, cz , approving only cx, n4 + 1 voters in (1, 0)
with rankings cy � cc � cx, cz , approving only cy , and n

4
voters in (5, 0) with preferences cz � cc � cx, cy , approving
only cz . Candidate cc is the Condorcet winner and the opti-
mal candidate is cx. The distortion of each rule electing cc is
1
2 −

1
n , which is arbitrarily close to 1

2 .

From the above theorem, we get that for ` = 1 each Con-
dorcet election method matches the lower bound from Theo-
rem 4.1. Now we will prove that there exists election rules,
namely Ranked Pairs and the Schulze’s rule, which match this
bound for each `.
Theorem 4.3. The ab-distortion of Ranked Pairs and of the
Schulze’s rule is equal to:
• `−1

` for ` ≥ 2,

• 1
2 for ` = 1

where ` is the size of the Smith set of considered instance.
As we can see, there is no rule with a better ab-distortion

than Ranked Pairs. Yet, it is not a feature of all the Condorcet
methods. As we will see, even for the well-known Copeland
rule, the possible pessimistic distortion is much worse.
Theorem 4.4. The ab-distortion of Copeland is 1. This
bound is achieved for globally consistent instances in E2.

4.2 Scoring Rules
Let us now move to positional scoring rules. Here, we ob-
tain significantly worse results than for Ranked Pairs and
the Schulze’s rule. A general tight upper bound for the ab-
distortion of any scoring rule remains an open problem. Be-
low we provide bounds that are tight for certain specific scor-
ing rules.
Theorem 4.5. For a scoring rule ϕ defined by vector ~s =
(s1, . . . , sm) the ab-distortion of ϕ satisfies:

1. DI(ϕ) = 1, if s1 = · · · = sm,

2. DI(ϕ) ≤ maxi,j |si−sj |
maxi,j |si−sj |+mini,j |si−sj | , otherwise.

The bound obtained in Theorem 4.5 is not tight in general.
For example, for Plurality we have a tighter estimation.
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Theorem 4.6. The ab-distortion of Plurality is m−1
m . This

bound is achieved for globally consistent instances in E1.

Yet, for a number of scoring rules the bound from Theo-
rem 4.5 is tight. Below, we give some sufficient conditions.
Proposition 4.7. The bound from Theorem 4.5 is tight for
each scoring rule satisfying the following conditions:

1. s1 ≥ · · · ≥ sm,

2. ∀1≤i≤m−1 s1 − s2 ≤ si − si+1

even for globally consistent instances in E1.

Theorem 4.5 combined with Theorem 4.7 imply the ab-
distortion for a number of scoring rules.
Corollary 4.8. There exists a globally consistent instance
I ∈ E1, for which:

1. the ab-distortion of k-approval is 1
1+0 = 1,

2. the ab-distortion of Veto is 1
1+0 = 1,

3. the ab-distortion of Borda is m−1
m−1+1 = m−1

m .

4.3 Iterative Rules
All scoring rules that we considered have poor ab-distortion,
and in particular are considerably worse than Condorcet rules
(especially for instances with Condorcet winners).

Interestingly, STV in terms of acceptability, behaves worse
even than Plurality. This is somehow surprising since for
distance-based distortion, STV is better than any positional
scoring rules, and only slightly worse than Condorcet rules.

Theorem 4.9. The ab-distortion of STV is 2m−1−1
2m−1 .

The above bound is tight even in one-dimensional Eu-
clidean spaces. It is also tight if we restrict ourselves to global
consistent instances. There, the hard instances that we found
use (m− 2)-dimensional Euclidean space.
Proposition 4.10. The bound from Theorem 4.9 is tight for
locally consistent instances from E1 and globally consistent
instances from Em−2.

5 Related Work
The spatial model of preferences is quite popular in the social
choice and political science literature. For example seminal
works studying spacial models we refer the reader to [Davis
and Hinich, 1966; Plott, 1967; Enelow and Hinich, 1984;
Enelow and Hinich, 1990; McKelvey and Ordeshook, 1990;
Merrill and Grofman, 1999; Schofield, 2007].

The concept of distortion was first introduced by Procaccia
and Rosenschein [2006]. In their work they did not assume
the existence of a metric space, but rather used a generic car-
dinal utility model (where the voters can have arbitrarily util-
ities for candidates). This model was later studied by Cara-
giannis and Procaccia [2011] and Boutilier et al. [2015]. Re-
cently, Benadé et al. [2019] introduced the concept of dis-
tortion for social welfare functions, i.e., functions mapping
voters preferences to rankings over candidates, and Benadé
et al. [2017] adapted and used the concept of distortion in the
context of participatory budgeting to evaluate different meth-
ods of preference elicitation.

The studies of the distortion in the metric model were initi-
ated by Anshelevich et al. [2018], and then continued by An-
shelevich and Postl [2017], Feldman et al. [2016], Goel et
al. [2017], and Gross et al. [2017].

The analysis of the distortion forms a part of a broader
trend in social choice stemming from the utilitarian perspec-
tive. For classic works in welfare economics that discuss
the utilitarian approach we refer the reader to the article of
Ng [1997] and the book of Roemer [1998]. This approach
has also recently received a lot of attention from the computer
science community. Apart from the papers that directly study
the concept of distortion that we discussed before, examples
include the works of Filos-Ratsikas and Miltersen [2013],
Branzei et al. [2013], and Chakrabarty and Swamy [2014].

6 Conclusion

In this paper we have extended the concept of distortion of
voting rules to approval-based preferences. This extension
allows to compare rules that take different types of input:
approval sets and rankings over the candidates. To the best
of our knowledge, only very few formal methods are known
that allow for such a comparison. We are aware of only
one work that formally relates these two models: Laslier
and Sanver [2010] proved that in the strong Nash equilib-
rium Approval Voting selects the Condorcet winner, if such
exists. There are also some works that model elections in
which voters cast both rankings and (consistent) approval bal-
lots [Camps et al., 2014].

Our contribution is twofold. First, we have determined the
distortion of Approval Voting, and explained how this distor-
tion depends on voters’ approval sets. Specifically, we have
shown that the socially best outcome is obtained when the
voters approve not too many and not too few candidates. If
the lengths of voters’ acceptability radiuses are all equal, the
best distortion is obtained when the approval sets are such that
between 1

4 and 1
2 of the voters approve the optimal candidate.

Second, we have defined a new concept of acceptability-
based distortion (ab-distortion). Here, we assume that the
voters have certain acceptability thresholds; the ab-distortion
of a given rule ϕ measures how many voters (in the worst-
case) would be satisfied from the outcomes of ϕ. We have
determined the ab-distortion for a number of election rules
(our results are summarized in Table 1), and reached the
following conclusions. The analysis of the classic and the
acceptability-based distortions both suggest that Condorcet
rules perform better than scoring and iterative ones. Further,
our acceptability-based approach suggests that Ranked Pairs
and the Schulze’s rule are particularly good rules, in partic-
ular significantly outperforming the Copeland’s rule. Thus,
our study recommends Ranked Pairs or the Schulze’s method
as a rule that robustly performs well for both criteria (total
distance, and acceptability). The question whether Ranked
Pairs is the only natural ranking-based rule performing well
for both criteria is open. Approval Voting is also a very good
rule that can be considered an appealing alternative to Ranked
Pairs, provided the sizes of the approval sets of the voters are
appropriate.
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