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Abstract

Smart grids are contributing to the demand-side
management by integrating electronic equipment,
distributed energy generation and storage, and ad-
vanced meters and controllers. With the increas-
ing adoption of electric vehicles and distributed en-
ergy generation and storage systems, residential en-
ergy management is drawing more and more atten-
tion, which is regarded as being critical to demand-
supply balancing and peak load reduction. In this
paper, we focus on a microgrid scenario in which
modern homes interact together under a large-scale
setting to better optimize their electricity cost. We
first incentivize households to form a group using
an economic stimulus. Then we formulate the en-
ergy expense optimization problem of the house-
hold community as a multi-agent coordination
problem and present an Entropy-Based Collective
Multiagent Deep Reinforcement Learning (EB-C-
MADRL) framework to address it. Experiments
with various real-world data demonstrate that EB-
C-MADRL can reduce both the long-term group
power consumption cost and daily peak demand ef-
fectively compared with existing approaches.

1 Introduction
Meeting the growing energy demand due to the presence of
more volatile types of loads raises a major challenge for the
power grid [Robu et al., 2013]. In order to satisfy demand
that varies sharply, companies usually have to install addi-
tional generation capacity to meet the peak demand with a
heavy price. The requirement of massive investment into
peaking power generation, in turn, results in higher costs for
end-users. At the same time, distributed renewable genera-
tion such as wind and solar energy is gaining prominence and
is perceived as vital to achieving cost and carbon reduction
[Shweta Jain et al., 2014]. However, renewable generation
has the unreliable nature that it is quite intermittent and sen-
sitive to weather changes. As a result, the increase in electric-
ity supply from renewable sources leads to larger fluctuations
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which makes the power grid hard to maintain the demand-
supply balance. With the increasing number of active elec-
tricity customers and the advent of decentralized power gen-
eration technologies, the peak load and supply-demand im-
balance have received more and more attention by energy
generation and distribution companies [Zhang et al., 2015].

To handle the above problems, the demand-side manage-
ment (DSM) [Strbac, 2008] has been proposed, which aims
to adjust the consumer’s energy activities such as shifting
customers’ consumption from peak hours to off-peak hours.
From the perspective of energy providers, lots of DSM tech-
nologies have been developed to reschedule consumption
such as Time-of-Use (TOU) tariffs [Shweta Jain et al., 2014].
On the other hand, there are also many DSM techniques fo-
cusing on the home energy management, such as dynamic
programming [Yuan-Yih Hsu and Chung-Ching Su, 1991],
game theory [Mohsenian-Rad et al., 2010] and reinforce-
ment learning (RL) [O’Neill et al., 2010]. However, these
works only consider different subsets of the home power
systems instead of the complete home energy system. An-
other disadvantage of these solutions is the rigid schedule for
end users’ appliances usage. Recently, smart homes com-
bined with the distributed energy generation (DG) and dis-
tributed energy storage (DS) show the great possibility for the
revolution of the power grid [Palensky and Dietrich, 2011;
Logenthiran et al., 2016]. It provides us with opportunities
of unfreezing the rigid schedule for users with the emerging
DG and DS. RL based DSM techniques for the smart home
was first investigated in [Berlink and Costa, 2015] and then
extended in [Wu et al., 2018] with electric vehicles (EV).
Compared with traditional methods, RL could learn flexible
energy management strategies and well suits the promising
smart home scenario without manual adjustments.

However, these smart home DSM works focus on optimiz-
ing the energy activities for a single household. They do not
consider the aggregate effect of all customers shifting the de-
mand to low price/low demand periods, which would result
in a sudden increase in demand and overloads on the trans-
former [Dusparic et al., 2013]. On the contrary, one excep-
tion is that Dusparic et al. [Dusparic et al., 2013] proposed a
multiagent approach to manage the energy demand of a small
house group. Their strategy, called W-learning, consists of in-
tegrating independent Q-learning agents that one agent sched-
ules on the appliance usage for one home. However, the role
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of households considered in their approach is the traditional
power consumer and the rigid appliance usage schedules vi-
olate user habits and bring inconvenience. To the best of our
knowledge, no work has investigated DSM for the concernful
large-scale smart-home energy management problem.

To this end, in this paper, we research on the user-friendly
DSM techniques for a smart home community. We first entice
the community with an incentive mechanism to form a trad-
ing group and consider this scenario as partially observable
Markov Games. Then we propose an entropy-based collec-
tive multiagent reinforcement learning (MARL) framework
to address the large-scale energy cost optimization problem.
Our framework optimizes the energy consumption by ab-
stracting the market dynamics to mitigate the non-stationary
problem and avoid the action space explosion. Besides, it uti-
lizes the concept of entropy to reduce peak load. Experiments
simulated from real-world data exhibit excellent performance
of our framework compared with previous approaches.

The remainder of this paper is organized as follows. We
introduce the Markov Games, the smart home and deep rein-
forcement learning algorithms in Section 2. Then we describe
the microgrid electricity market in Section 3. And in Sec-
tion 4 we explain our EB-C-MADRL framework in details.
Finally, we demonstrate the effectiveness of our framework
in the microgrid simulated from real-world data in Section 5.
Conclusions and the future work are provided in Section 6.

2 Background
2.1 Markov Games
In this work, we consider a multiagent extension of the
Markov decision process (MDP) called partially observable
Markov games [Littman, 1994]. A Markov game for n agents
identified by i ∈ I ≡ {1,2, ...,n} is defined by a set of states
S describing the global state, a set of actions A1, ...,An and
a set of observations O1, ...,On for each agent. Each agent
i chooses actions according to its policy πi : Oi×Ai→ [0,1],
which produces the next state according to the transition func-
tion T : S×A1× ...×An→ S. After the transition, each agent
i obtains its reward ri(s,a1, ...,an) : S×A1× ...×An× I→ R,
and receives a private observation correlated with the state
oi : S→ Oi. The initial states are determined by distribution
ρ : S→ [0,1]. Each agent i aims to maximize its own total ex-
pected return Ji = Eai∼π1,...,aN∼πN ,s∼T ∑

T
t=0 γ tri,t(s,a1, ...,an)

where γ is a discount factor and T is the time horizon.

2.2 Smart Home
We follow the smart home concept in [Wu et al., 2018] as
shown in Figure 1. The main components can be divided into:
• base load electricity consumption, consumed from con-

ventional household appliances;
• EV charging power consumption;
• micro-generation, such as Photovoltaics (PV);
• energy storage, the home battery for storing power;
• and home energy management system (EMS) for DSM.

Advanced meters are installed at home, enabling bi-
directional communication. A bi-directional flow guarantees
smart homes acquire or insert energy into the power grid.

Figure 1: An illustration of a smart home.

2.3 Deep Reinforcement Learning
Here we introduce Deep Q-Networks (DQN) and Advan-
tage Actor-Critic (A2C). For maximizing the accumulated ex-
pected return J, Q-learning uses an action-value function for
policy π as Qπ(s,a) = E[J|st = s,at = a] and updates its Q-
values based on each experience given by (s,a,s

′
,r):

Q(s,a)←− Q(s,a)+α ∗ [r+ γ ∗Q(s
′
,a
′
)−Q(s,a)], (1)

where α is the learning rate and γ is the discount factor. The
ε-greedy is used to trade off exploration-exploitation.

Deep Q-Networks (DQN)
DQN represents the action-value function with a deep
neural network parameterized by θ . The Q-function
can be recursively rewritten as Qπ(st ,at) = Est+1 [rt+1 +
γEat+1∼π [Qπ(st+1,at+1)]] for updating. DQNs use a replay
buffer to store the transition (s,a,s

′
,r). DQN is trained with

experience replay by minimizing the squared TD-error:

L (θ) = ∑
k
[(yDQN

k −Q(st ,at ;θ))2], (2)

where yDQN
k = rt + γ max

at+1
Q(st+1,at+1;θ−). θ− are the target

network parameters.

Advantage Actor-Critic (A2C)
Policy gradient techniques aim to estimate the gradient of ex-
pected returns with respect to the parameters of its policy:

∇θ J(πθ ) = Ea∼πθ
[∇θ log(πθ (at |st))

∞

∑
t ′=t

γ
t
′−trt ′ ], (3)

where J(πθ ) is the accumulated expected return. ∑
∞

t ′=t
γ t
′−trt ′

term leads to high variance, as the return can vary drasti-
cally between episodes. Actor-Critic methods aim to ame-
liorate this issue by using a function approximation of the ex-
pected return V π(s) = Ea∼π(s)[J|st = s,at = a] and replacing
the original return in the policy gradient estimator with this
function. A2C employs two deep networks, a policy network
to learn policy, π(a|s;θ) parameterized by θ and a value net-
work to learn value function, V π(s;ϕ) parameterized by ϕ .

The policy network is updated according to the policy loss:

∇θ J(πθ ) = Ea∼πθ
[∇θ log(πθ (at |st))A(st ,at)],

where A(st ,at) = Q(st ,at)−∑
a

πθ (a|st)Q(st ,a)

= rt + γ ∗V πθ (st+1;ϕ)−V πθ (st ;ϕ).

(4)
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3 Microgrid Electricity Market
3.1 Microgrid Dynamics
We model the smart home in Section 2.2 as the basic unit,
which mainly follows settings in [Wu et al., 2018]. The tariff
scheme in the microgrid is TOU, which gives different prices
according to the time slot. At the beginning of each time slot,
given the price signal, all households need to schedule the
power trading and EV charging. To avoid the rigid schedule
for the appliances usage, the base load from traditional ap-
pliances activities remains unchanged. The microgrid market
can be modeled as partially observable Markov Games (G)
and below we present each component of G.

States The state for each home is composed of the follow-
ing local observations: electricity price pt at current time slot
t, home based battery state of charge Hb,t , home based PV
energy generation amount Hp,t , base load power consumption
Hl,t , EV charging availability Ea,t , time to EV departure Ed,t
and current EV battery state of charge Eb,t . Hb,t and Eb,t are
100% when the battery is fully charged and 0% when fully
discharged. Ea,t is the charging availability of EV (set as 1
when available and 0 otherwise). Ed,t shows how many hours
remains before EV departure. Formally, household i’s status
oi

t ∈ O is defined as oi
t = (pt ,H i

b,t ,H
i
p,t ,H

i
l,t ,E

i
a,t ,E

i
d,t ,E

i
b,t).

Actions At the beginning of each time slot t, the home EMS
needs to decide two actions: Pc,t for power trading amount
and Ce,t for the EV charging rate. Homes can sell energy
to the power grid and purchase energy for consumption and
storage. Both the EV and home battery can be charged or
discharged with continuous values (from zero to the maximal
allowed charging rate). The home battery is responsible for
redundancy caused by Pc,t and Ce,t with satisfying Equation 5.

Hp,t +Pc,t =Ce,t +Cb,t +Hl,t , (5)

where Cb,t is the charging rate for the home battery. Follow-
ing [Wu et al., 2018], the EV charging action Ce,t is designed
as five discrete rates: 100% charging rate, 50% charging rate,
0, 50% discharging rate and 100% discharging rate. Each
household’s original action space for power trading contains
a continuous value domain, which ranges from the sum of
its current stored and generation energy to the maximum en-
ergy the household can consume during the current time slot.
To reduce the power trading action space, we set two sub-
action sets for trading power. For individuality, each house-
hold’s action values refer to its yesterday’s power consump-
tion and generation statistics. The home EMS purchases
power at different rates based on the average hourly gross
power consumption σ of previous day. Home EMS can also
sell power at different rates based on the average hourly gross
power generation β of previous day. Thus, the action set for
Pc,t is {σ ,75%σ ,50%σ ,25%σ ,0,−25%β ,−50%β ,−75%β ,−β}.
Action 0 means no trading or no charging. Let Be denotes
the EV battery capacity and Bh the home battery capacity.
When charging or discharging, the efficiency η is set at 0.9.
At each time slot, we check the availability of EV to decide
whether applying a constraint to set Ce,t as 0. After determin-
ing Ce,t and Pc,t , the power surplus or shortage is calculated as
Ct = Hp,t +Hb,t ·Bh−Hl,t−Ce,t . The home battery is updated

passively for redundant operation if Ct 6= 0 after performing
Ce,t and Pc,t . The battery charging rate and discharging rate
are no more than the maximal charging power rate while de-
ciding the allowed actions.

Rewards The electricity cost is calculated as follows:

rt =

{
Pc,t ∗ pb, i f Pc,t ≥ 0,
Pc,t ∗ ps, i f Pc,t < 0

, (6)

where pb and ps are the current electricity buying price and
selling price separately. ps is smaller than pb because of spe-
cific utility programs such as long-distance transmission fees.

Transitions At each time slot, after all households decid-
ing actions, the microgrid processes these energy decisions
to deterministically step into the next state. All the decisions
determine electricity prices as shown in the next Section 3.2.
After energy actions done, each household updates its state
based on its own energy actions and the TOU price signal.

3.2 Group Incentive Mechanism
In the local microgrid, each household can interact with
power grid directly. But it is better for these households to
coordinate into a group as in [Cailliere et al., 2016] to lo-
cally match the production and the consumption of the group,
which not only helps balance the demand and supply for the
power grid but also saves costs for households. We design an
incentive-driven market mechanism to attract users to join in
a group for coordination. The microgrid market mechanism
has two trading processes: the internal trading process and the
external trading process. Households trade inside the group
first to satisfy the demand of each other. If the internal trad-
ing cannot fully meet the group, then the external smart grid
will deal with the unsatisfied demand. To encourage users to
actively participate in such a microgrid, we set the internal
power price and external power prices as follows:

pos,t ≤ pin,t ≤ pob,t , (7)

where pos,t and pob,t are the current power selling and buying
prices for customers, which are different due to utility pro-
gram fees. pin,t is the current internal power trading price.
With such a constraint price, households are willing to trade
inside first because of the better price and the same usage
guarantee as directly interacting with the outer grid. On the
other hand, smart grid may benefit from such a market mech-
anism because of possible peak load reduction by the group
coordination. It is common to see extra aggregate demand or
supply after internal trading. Thus, the final cleaning price
for electricity integrated with external trading is:

ps,t =

{
pin,t ψb,t+pos,t (ψs,t−ψb,t )

ψs,t
, i f ψs,t ≥ ψb,t

pin,t , i f ψs,t < ψb,t

pb,t =

{
pin,t , i f ψs,t ≥ ψb,t
pin,t ψs,t+pob,t (ψb,t−ψs,t )

ψb,t
, i f ψs,t < ψb,t

,

(8)

where ps,t and pb,t are the power selling price and buying
price at time t. ψs,t and ψb,t are the total power selling and
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buying amount at t. We can observe that ps,t is always in the
range [pos,t , pin,t ] and pb,t is always in [pin,t , pob,t ], which indi-
cates customers are willing to trading inside for better prices.

For reducing energy cost, households need capture over-
all market dynamics to decide when to buy and sell power.
Through the incentive mechanism, we turn the smart home
community a multiagent system, where each agent’s reward is
determined by trading prices affected through the aggregation
of the group behavior. Promoting the group coordination is
needed for better cost optimization and such a problem is in-
herently multiagent and can be solved by MARL approaches.

4 Entropy-Based Collective Multiagent
Reinforcement Learning Framework

4.1 EB-C-MARL Algorithm
Previous works of the home energy management mainly
focus on optimizing a single household’s or a small-scale
customers’ electricity operating cost [Atzeni et al., 2013;
Berlink and Costa, 2015; Wu et al., 2018]. As they are never
designed for large-scale multiagent systems, applying exist-
ing approaches directly for the household community may
bring the potential harm such as raising a new peak load and
even jeopardizes the infrastructure of power grids. Thus, it
is necessary to investigate the home EMS algorithm from the
perspective of a household community as presented in this
paper. Algorithm 1 describes our EB-C-MADRL framework.

Algorithm 1 Entropy-based collective MARL in microgrid
Input: the episode number M; each episode’s step number T ; the

household number N.
Output: constructed DQN or A2C.
1: Initialize the deep network with random weights;
2: Set the initial collective group behavior approximations a

′
s,t =

0,a
′

b,t = 0,~C
′
e,t =~0, t = 1,2, ..,24;

3: for episode = 1,2, ...,M do
4: Initialize state s1 and all households’ state (o1

1,o
2
1, ...,o

N
1 );

5: for t = 1,2, ...,T do
6: for i = 1,2, ...,N do
7: Household i chooses Pi

c,t and Ci
e,t based on its state

oi
t and the approximations of market dynamics a

′
s,t , a

′

b,t and ~C
′
e,t ;

8: end for
9: Process actions, collect market information as,t , ab,t and

~Ce,t , update a
′

s,t%24 = as,t , a
′

b,t%24 = ab,t and ~Ce,t%24 = ~Ce,t ;
10: for i = 1,2, ...,N do
11: Compute individual entropy hi

t by Equation 15 and
electricity operating cost ri

t by Equation 17;
12: end for
13: Observe st+1 and all households’ state (o1

t ,o
2
t , ...,o

N
t );

14: Update neural networks with Equation 2 or Equation 4;
15: end for
16: end for

The descriptions of the process of EB-C-MADRL are
shown in Algorithm 1. Line 1 initializes network parame-
ters. Line 2 initializes approximations of the collective group
behavior for 24 hours. Line 4 initializes the starting state and
households’ observations. Line 6-8 chooses actions for each
household based on its observation and the approximations

of collective group behavior detailed in Section 4.2. Line 9
executes actions and abstracts market dynamics. Line 10-13
shows that once actions are performed, each household’s re-
ward and entropy are calculated as in Section 4.3 and the next
state is observed. Line 14 updates the neural network.

4.2 Collective Group Behavior
All households are frequently interacting in the local micro-
grid market as each household determines its action choices
at each time slot. Such a massive dynamic property raises
huge challenges for the home EMS algorithms particularly
RL based ones. One primary problem is that each agent’s
policy is changing as training progresses, and the environ-
ment becomes non-stationary from the perspective of any in-
dividual agent [Lowe et al., 2017]. Even if we could obtain
actions from other agents without the privacy conservation to
mitigate the non-stationary issue, in the large-scale multia-
gent systems, the representation of the joint action becomes
another prominent problem. The joint action space of the
agents grows exponentially with the number of agents, which
makes the value function learning extremely hard [Yang et
al., 2018]. The mean field approach in [Yang et al., 2018]
is not applicable in microgrid since there is no “neighbor” for
agents to interact with and each agent instead interact with the
microgrid market only. However, in market settings where
agents are influenced from their collective action effect, we
could represent such collective influence by the market dy-
namics abstraction to avoid the action space explosion and
finally mitigate the non-stationary problem. To approximate
the collective influence of agents, we also resort to the daily
periodicity in the power grid. Next we describe how the mar-
ket dynamics abstraction is integrated with DQN and A2C.

Collective DQN
As Section 3.2 shows, households can be divided into buyer
and seller groups dynamically to determine the electricity
buying and selling prices. From each agent i’s perspective, it
is coordinating with the mircogird market instead of directly
interacting with any individual agent. Thus, we could abstract
market macro-actions to replace other agents’ joint action to
simplify the multiagent Q-function significantly. The joint-
action Q-function can be simplified as follows:

Qi(s,a1,a2, ...,aN)≡ Qi(s,ai,amarket), (9)

where the abstraction of market dynamics amarket includes the
seller group collective action as (total supply amount), the
buyer group collective action ab (total demand amount) and
group EV charging distribution ~Ce. One additional privacy
benefit is that each household only need to access to its own
states and abstract market dynamics and cannot access to any
other household. Then we obtain Equation 10:

Qi(s,ai,amarket)≈ Qi(oi,ai,as,ab, ~Ce). (10)

The abstractions of current market dynamics cannot be ex-
actly obtained as all households make decisions at the same
time. Instead we propose using group collective actions at
the same time slot in the previous day to approximate current
market dynamics. As inhabitants exhibit similar living habits
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in daily life, it is reasonable to assume their energy activities
have similar daily periodicity especially for group statistics:

Qi(oi,ai,as,ab, ~Ce)≈ Qi(oi,ai,a
′
s,a

′
b,~C

′
e), (11)

where a
′
s, a

′
b and ~C

′
e are group action statistics at one day ago.

The loss function for collective DQN is defined as:

L (θ) = ∑
k
[(yDQN

k −Qi(oi
t ,a

i
t ,a
′
s,t ,a

′
b,t ,~C

′
e,t ;θ))2], (12)

where yDQN
k = ri

t + γ max
ai

t+1

Qi(oi
t+1,a

i
t+1,a

′

s,t+1,a
′

b,t+1,
~C
′

e,t+1;θ−).

Collective A2C
Similarly, the collective market actions also benefit each
agent’s home EMS policy when applying A2C by providing
abstract information of other agents’ current policies.

π
i(s,a1, ...,ai−1,ai+1, ...,aN)≡ π

i(s,amarket)

≈ π
i(oi,as,ab,~Ce,t)≈ π

i(oi,a
′
s,a

′
b,~C

′
e,t).

(13)

With õi = (oi,a
′
s,a

′
b,
~C
′
e) for simple presentation, the loss of

policy network of collective A2C is given by:

∇θ J(π i
θ ) = Ea∼π i

θ

[∇θ log(π i
θ (a

i
t |õi

t))A(õ
i
t ,a

i
t)],

where A(õi,ai
t) = Qi(õi

t ,a
i
t)−∑

ai

π
i
θ (a

i|õi
t)Q

i(õi
t ,a

i)

= (ri
t + γ ∗V π i

θ (õi
t+1;ϕ))−V π i

θ (õi
t ;ϕ).

(14)

V π i
θ (õi

t ;ϕ) = ∑ai π i
θ
(ai|õi

t)Q
i(õi

t ,a
i) denotes the expected return.

4.3 Reward Shaping with Individual Entropy
For reducing the daily peak load, we use a mechanism called
individual entropy to diversify household EV charging to
different time slots. As [Muratori, 2018] shows, with more
market share, the uncoordinated EV charging would result in
higher peak loads as EV charging usually happens when peo-
ple arrive home after work. Even learning with RL algorithms
for each household, the uncoordinated learning will result in
high peak load. It is because that EV would charge in the low
electricity price period coincidentally and there is no explicit
factor to diversify the EV charging in training. Inspired by
[Verma et al., 2018] which maximizes agent density entropy
to make taxi drivers well-proportioned in different regions,
we utilize the entropy to diversify the EV charging behavior.

Unlike using the system’s total entropy for each agent in
[Verma et al., 2018], we use more accurate individual entropy
hi

t to assign credits of contributing to the system’s entropy
for each household. Intuitively, if one household chooses a
low-frequency action different from others, a higher bonus
would be assigned to the household as it contributes more to
the system’s entropy Ht . If user i chooses an action ai

t from
action set A at t, then hi

t for user i is calculated as follows:

hi
t =
− log pai

t

N
, (15)

where pat is the frequency of action at in all actions per-
formed at t. hi

t gives the incentive to choose a different action

from current high-frequency actions. Therefore, it helps re-
duce the peak load by mitigating the phenomenon that house-
holds charge EV concurrently. The individual entropy is ac-
curate credit assignment of the system’s entropy which repre-
sents the distribution degree of EV charging behavior:

∑
i

hi
t = ∑

i

− log pai
t

N
= ∑

ai
t

−nai
t
log pai

t

N
= ∑

ai
t

−pai
t
log pai

t
= Ht .

(16)

Also, the individual entropy is hoped to only affect the EV
charging action which often happens in low-price periods.
Therefore, we add an adjustment term to lower the weight
of entropy when the current TOU price pb,t is high. The final
reward for household i with individual entropy is given as:

ri
t =

{
Pi

c,t ∗ pb,t +
coe f
pb,t
∗hi

t , i f Pi
c,t ≥ 0,

Pi
c,t ∗ ps,t +

coe f
pb,t
∗hi

t , i f Pi
c,t < 0,

(17)

where pb,t and ps,t are the power buying and selling prices at
t. Pi

c,t and Pi
c,t are household i’s current power purchasing and

selling amount. hi
t is the entropy bonus term for household

i in Equation 15 while coe f is the entropy coefficient. Each
agent receives the reward signal including hi

t from the market.

5 Experiments and Analysis
5.1 Experiment Settings
We use various real-world data to establish our microgrid
simulation environment. TOU electricity price from [Wu et
al., 2018] and residential power consumption data in 2013
from [Muratori, 2018] are used. The power consumption data
contains 200 households’ consumption patterns in US. The
home battery and EV configurations are the same as in [Wu
et al., 2018]. The daily driving distance data used to calculate
the EV status when arriving home obeys gamma distribution
[Lin et al., 2012] with shape at 1.6 and scale at 20. The pa-
rameters are highly frequent in daily vehicle driving distance
datasets [Lin et al., 2012] and the average daily driving dis-
tance is close to [Plötz et al., 2017] in the US. We use ir-
radiance data in 2013 of Building 8167, Gatton Campus [of
Queensland, 2018] for PV generation. For user diversity, we
vary each household’s installed power capacity from 1.1kW p
to 4.4kW p at uniform distribution. For simplification, we set
the electricity selling price in the external trading process pos
at half of current TOU price, which is used as external elec-
tricity purchase price pob for households. The internal trading
price is set as the average between current pos and pob. Next,
we validate EB-C-MADRL in the simulated microgrid.

5.2 Validating the Collective Group Behavior
We first validate the collective group behavior abstrac-
tion. At each time t, agents i in total 200 agents receives
(pt ,H i

b,t ,H
i
p,t ,H

i
l,t ,E

i
a,t ,E

i
d,t ,E

i
b,t ,a

′
s,t ,a

′

b,t ,
~C
′
e,t). We adopt DQN

and A2C as control algorithms for each household. For
speeding up the training process in the large-scale settings,
we consider parameter sharing in the home EMS strategies
as households can be viewed as homogeneous agents and
the learned policy is a generalized strategy for households.
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Such a training paradigm is widely adopted in multiagent re-
inforcement learning algorithms and shows excellent perfor-
mance [Yang et al., 2018]. We use the first four weeks’ data
in 2013 for training and the remaining data for evaluation.
The training phase contains 125 episodes and each episode
lasts for 28 days with interaction interval being an hour.

We compare the performance of the proposed control al-
gorithms with two baselines: rule-based and DQN, which
performs best in the previous single household case [Wu et
al., 2018]. The rule-based control algorithm is called Naive-
greedy policy described in [Berlink and Costa, 2015], which
charges the EV when arriving home and sell the energy when
there is a power surplus. Such a policy results in high electric-
ity operation costs as EVs are charged at high-price periods.
Then we augment both DQN and A2C with market dynamics
approximations to validate the collective group behavior ab-
straction. Table 1 shows the electricity operating results. And
Daily Peak Load is calculated by adding all daily peak loads
up in testing, which is not optimized temporarily.

Algorithm Operating
Cost ($)

Internal
Trading (kWh)

Peak
Load (kwh)

Naive Greedy -263195±0.06% 107277±0.01% 453303±0.06%
DQN -111133±17.0% 198762±14.06% 421048±3.14%
A2C -92174±3.39% 225251±2.70% 478322±2.57%

Collective DQN -93087±13.40% 188949±6.92% 429021±3.47%
Collective A2C -88878±4.47% 219969±3.38% 465816±3.10%

Table 1: Group Operating Results with 95% Confidence Interval

All results are averaged over the running of 20 random
seeds. Naive-Greedy policy performs poorly as it charges
EV in high-price periods and never utilizes the home battery
to store energy for the later use. With the collective group be-
havior approximations, collective DQN performs better than
DQN by 16.24% in terms of the total operating cost while
collective A2C’s cost is less than A2C by 3.58%. The collec-
tive A2C achieves the least operating cost by more internal
trading and shifting the EV charging to off-peak hours.

5.3 Validating the Individual Entropy Mechanism
Despite achieving the least cost, collective A2C still has high
peak loads caused by the uncoordinated EV charging aggre-
gation. To be specific, RL agents would independently learn
to optimize cost by discharging EV when arriving home to
make profits and charging EV in low-price periods, which
centrally results in high peak loads. To mitigate the new
peaks, we enhance collective DQN and collective A2C with
individual entropy in Equation 17 to encourage agents to di-
versify EV charging. Table 2 gives the results of related meth-
ods and the EB-C-MADRL framework with the best settings.
Compared with DQN, entropy-based collective A2C (EB-C-
A2C) achieves 24.69% cost reduction and 5.15% peak load
reduction. Note that, the operation cost is counted based on
the real electricity cost and does not include the entropy term.

Next we investigate EB-C-A2C and entropy-based collec-
tive DQN (EB-C-DQN) using different coefficients as Fig-
ure 2. EB-C-A2C achieves the best results for both the operat-
ing cost and peak load. EB-C-DQN seems not sensitive to the
individual entropy because of its deterministic policy. On the

Algorithm Operating Cost ($) Peak Load (kwh)

Naive Greedy -263195.44±168.58 453302.63±282.11
DQN -111133.42±18897.06 421048.18±13241.82

Collective A2C -88878.34±3971.80 465816.24±14448.64
EB-C-A2C -83689.13±1098.20 399381.48±11503.41

Table 2: Group Operating Results with 95% Confidence Interval

Figure 2: Group power operating results with individual entropy.

other hand, collective A2C’s stochastic policy can change its
action more easily with the slight adjustment of action prob-
abilities to get the higher entropy bonus. With the entropy
coefficient being 1, the group daily peak load could achieve
the least amount while the electricity operating cost reduces
a lot dramatically. Such a cost reduction mainly results from
two reasons. One reason is that the individual entropy im-
plicitly divides action space into two sub-spaces by directly
affecting one action sub-space only, leading to easier separate
learning of power trading and EV charging actions. Another
reason is that the combination of the approximation of cur-
rent EV charging distribution and the individual entropy re-
flects microgrid dynamics and other households’ policy ten-
dency, which further alleviates the non-stationary problem.
Too large entropy coefficient would increase both the group
peak load and electricity operating cost. This is because that
households learn to discharge and charge EV repeatedly to
get more entropy bonus which makes energy cost ignored.

6 Conclusion and Future Work
In this paper, we focus on a large-scale smart home EMS
problem. First, we model the group energy optimization as
a multiagent coordination problem in an incentive market.
Then we propose EB-C-MADRL to learn home EMS control
policies. Experiments exhibit superior performance of our
method for operating cost saving and peak load reduction.

As future work, auction mechanisms could be considered
to make microgrid market more liberal. Also, using EB-
C-MARL integrated with more advanced DRL algorithms
to explore other large-scale multiagent markets such as e-
commerce markets or water allocation markets is interesting.
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