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Abstract

We study the complexity of several manipulation
and control problems for six prevalent approval-
based multiwinner voting rules. We show that these
rules generally resist the proposed strategic types.
In addition, we also give fixed-parameter tractabil-
ity results for these problems with respect to several
natural parameters and derive polynomial-time al-
gorithms for certain special cases.

1 Introduction

Investigating the complexity of various strategic voting prob-
lems has been an active topic in Computational Social
Choice over the last three decades. Since the pioneering pa-
pers [Bartholdi et al., 1992; Bartholdi et al., 1989], many
manipulation, control, and bribery problems have been pro-
posed for single-winner voting rules. Recently, these prob-
lems have been extended to multiwinner voting systems. En-
riching this line of research, we propose some natural manip-
ulation and control problems for approval-based multiwinner
voting rules, and investigate the complexity of these prob-
lems for approval voting (AV), satisfaction approval voting
(SAV), net-satisfaction approval voting (NSAV), proportional
approval voting (PAV), approval-based Chamberlin-Courant
voting (ABCCV), and the Minimax approval voting (MAV).
A necessary notion in the study of manipulation is the
preference of a voter over all possible outcomes. Unlike
ranking-based single-winner voting rules where every voter
has a linear preference over all candidates and the outcome
is a single winner, in approval-based multiwinner voting it is
even not clear how to deduce voters’ preferences over com-
mittees based on their dichotomous preferences over candi-
dates. A number of approaches for this purpose have been
proposed recently (see, e.g., [Lackner and Skowron, 2018;
Laslier and Van der Straeten, 2016; Peters, 2018]). For ex-
ample, a voter may prefer a committee to another one if
the former contains more of her truthful approved candi-
dates. In a more conservative situation, a voter is more sat-
isfied with the former one only if the former one contains
not only more of her approved candidates but also all of
her approved candidates included in the latter one. The two
approaches lead to the concepts of cardinality-strategyproof
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and subset-strategyproof respectively when only one manip-
ulator is considered (see, e.g., [Peters, 2018]). In contrast
to the celebrated Gibbard-Satterthwaite theorem for single-
winner voting [Gibbard, 1973; Satterthwaite, 1975], there
exist strategyproof multiwinner voting rules such as the AV
rule (with respect to the above two concepts). However,
many multiwinner voting rules are not strategy-proof. For
example, Peters [2018] recently showed that any multiwin-
ner voting rules which satisfy some proportional proper-
ties are not cardinality- and subset-strategyproof. In addi-
tion, Aziz et al. [2015] showed that SAV is not cardinality-
strategyproof. Motivated by these non-strategy-proofness re-
sults, many multiwinner manipulation problems have been
proposed recently. Particularly, Aziz et al. [2015] studied the
WINNER MANIPULATION and WINNER SET MANIPULA-
TION problems. In the WINNER MANIPULATION problem
we are given an election, a distinguished candidate, and an
integer ¢, and the question is whether we can add ¢ additional
votes so that the distinguished candidate is included in the
winning committee. In the WINNER SET MANIPULATION
problem, there are multiple distinguished candidates, and the
question is whether we can add ¢ additional votes so that the
distinguished candidates are exactly the winners. In all of
these problems, it is assumed that the manipulators have one
clear target set of candidates/candidate whom they want to
make the winners. However, in some cases, manipulators
only want to improve the outcome, and there may be expo-
nentially many outcomes which are preferred to the current
outcome. In these cases, the above assumption seems not to
be very natural, since asking the manipulators to enumerate
all improved outcomes and solve the problem for each enu-
meration is not acceptable from the complexity point of view.

In this paper, we study two new versions of manipula-
tion problems where some voters, referred to as manipu-
lators, want to improve the election result by coordinately
misreporting their truthful approved candidates. In particu-
lar, manipulators judge the results with respect to the two
approaches discussed above. Notice that unlike the above
manipulation problems, in our problems manipulators do
not fix the candidates whom they want to make winners.
In addition, we study some control problems called CON-
STRUCTIVE CONTROL BY ADDING VOTERS/CANDIDATES
(CCAV/CCAC) and CONSTRUCTIVE CONTROL BY DELET-
ING VOTERS/CANDIDATES (CCDV/CCDC) for multiwinner
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voting. These problems are direct generalizations of the ex-
tensively studied control problems for single-winner voting
rules [Faliszewski and Rothe, 2016].

We obtain many interesting results. For instance, we show
that our manipulation problems are NP-hard even when there
are more manipulators than non-manipulators, but become
polynomial-time solvable if there are a constant number of
manipulators. This stands in contrast to many other manipu-
lation problems for both single-winner and multiwinner vot-
ing rules, where one usually has NP-hardness results when
there is even one or two manipulators, but has polynomial-
time solvability results when the number of manipulators
is larger than the number of non-manipulators [Aziz et al.,
2015; Bartholdi et al., 1989; Davies et al., 2014]. For control
problems, we also reveal how the number of distinguished
candidates, the committee size, and their relation shape the
response of voting rules to the control problems.

2 Preliminaries

We assume the reader is familiar with the concepts of NP-
hardness, polynomial-time solvability, and fixed-parameter
tractability (FPT).

In the approval model, an election is a tuple (C,V)
where C'is a set of candidates and V' a multiset of votes cast
by a set of voters. Each vote v € V is a non-empty sub-
set of C, consisting of the candidates approved by the corre-
sponding voter. So, two votes can approve exactly the same
candidates and this explains why we use the notion of mul-
tiset for votes. For ease of exposition, we exchangeably use
the terms vote and voter. For a subset C’ C C and a sub-
multiset V' C V, (C’, V') is (C, V) restricted to C’" and V",
Precisely, (C',V’) is obtained from (C, V') by first remov-
ing all votes not in V', and then removing all candidates not
in C’ from every remaining vote. For a candidate ¢ € C, we
denote by V'(c) the multiset of votes approving ¢, i.e., V(c) =
{fveVi]ecew} For &' C C,let V(C') = Ueer Vo).
Moreover, for a submultiset V' C V of votes, let C (V") de-
note the set of candidates approved in at least one vote in V,
ie., C(V') = U,eyv. For a submultiset V' C V and a
multiset U of |V’| votes, let (V_y+,U) be the multiset ob-
tained from V' by replacing V' with U. A multiwinner voting
rule maps each election (C,V) and an integer & to a class
of k-subsets of C, called winning k-committees. In practice,
when there are several winning k-committees, a tie-breaking
scheme is used to select one from them.

We study some important approval-based multiwinner vot-
ing rules which can be categorized into two groups. With
respect to each rule, each k-subset of candidates receives a
score and the winning k-committees are those with the de-
sired score. For the first group of rules the score of a commit-
tee is the sum of the scores of its members. These rules are
referred to as additive rules in the literature.

Approval voting (AV) The score of a candidate c is the num-
ber of votes approving c. The winning k-committees are
those with the highest score.

Satisfaction approval voting (SAV) Each candidate ¢ re-
ceives ﬁ points from each vote v approving c; hence,

638

the score of cis ) .,y ﬁ Similar to AV, winning k-

committees consist of those with the highest score, i.e.,
committees w C C' with the maximum possible value
of 3, ey 2% among all subsets of k candidates. SAV

[v]

was proposed by Brams and Kilgour [2014].

Net-satisfaction approval voting (NSAV) This rule is a
variant of SAV which captures the idea that if addition
of approved candidates in the winning k-committee in-
creases the satisfaction of a voter, then addition of dis-
approved candidates should decrease the satisfaction.
Let m be the number of candidates. The satisfaction of a
vote v derived from an approved candidate is measured
as ﬁ and from a disapproved candidate is mi|u\' This

rule aims to maximize voters’ satisfaction and hence
winning k-committees w are those with the maximum

valueof ) .y, (

candidates .

ZCEUEV ﬁ - Zcevev m—|v|*
by Kilgour and Marshall [2012].

JwNo| _ Jw\v|
|v] m—|v|

) among all subsets of &

Here, the score of each candidate c is
L NSAV was proposed

Now we give the definitions of the second group of rules.

Approval-based Chamberlin-Courant voting (ABCCYV)
A voter is satisfied by a committee if this committee
includes at least one of her approved candidates. The
score of a committee is the number of voters satisfied
by it, and winning k-committees are those with the
maximum score. ABCCV is a variant of the original
rules proposed by Chamberlin and Courant [1983], and
was suggested by Thiele [1895].

Proportional approval voting (PAV) The score of a com-

mittee w C C'is ZUGV,Uﬂw;é@ (Zl“:qw‘ %)
k-committees are those with the maximum score. PAV
seems to be first studied by Thiele [1895].

Minimax approval voting (MAV) The Hamming distance
betweenw C C andv C C'is |w\v|+|v\w]|. The score
of a committee w is the maximum Hamming distance
between w and the votes, i.e., max, ey (|w\v|+|v\ w|).
Winning k-committees are those having the smallest
score. This rule was proposed by Brams et al. [2007].

. Winning

It should be pointed out that calculating a winning k-
committee for the second group of rules is NP-hard [Aziz et
al., 2015; LeGrand, 2004, Procaccia et al., 2008], standing in
contrast to the polynomial-time solvability for additive rules.

Now we formulate the problems studied in this paper.
Let ¢ be a multiwinner voting rule.

CARDINALITY-BASED COALITION MANIPULATION (CBCM)

Given: An election (C,V), the current winning k-
committee w € ¢(C,V,k) C C for some inte-
ger k, and a submultiset Vi C V' of votes cast by
some voters called manipulators.

Question:  Is there a multiset U of |Vj| votes such that for all

winning k-committees w' € p(C, (V_w,,U), k),
it holds that |[v N w’| > |v Nw]| for all v € Vi?

'By convention, if |v| = m, we take \wf\v\‘ —o.

m—|v
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We can replace [v N w’| > |v N w]| in the above definition
with (vNw) C (vNw') to obtain a variant of the CBCM prob-
lem which we call SUBSET-BASED COALITION MANIPU-
LATION (SBCM).

Now we extend the definitions of four standard single-
winner voting control problems to multiwinner voting. These
control problems model the scenario where some external
agent (e.g., the election chair) aims to make some distin-
guished candidates the winners by modifying the election.

CONSTRUCTIVE CONTROL BY ADDING VOTERS (CCAV)

Given: An election (C, V), a positive integer k < |C], a
multiset U of votes, a non-empty subset J C C
of at most k distinguished candidates, and a non-
negative integer £.

Question:  Is there U’ C U such that |[U’| < £ and J belongs

to all winning k-committees of ¢(C, V U U’, k)?

In the CCAV problem, the votes in V' are referred to as
registered votes and the ones in U are unregistered votes.

CONSTRUCTIVE CONTROL BY DELETING VOTERS (CCDV)

Given: An election (C, V), a positive integer & < |C|,
a non-empty subset J C C' of at most k distin-
guished candidates, and a non-negative integer £.

Question:  Is there V’ C V such that |[V’| < £ and J belongs

to all winning k-committees of o (C, V' \ V', k)?

CONSTRUCTIVE CONTROL BY ADDING CANDIDATES (CCAC)

Given: Anelection (CUD, V), a positive integer k < |C|,
a non-empty subset J C C of at most k distin-
guished candidates, and a non-negative integer £.

Question: Is there D’ C D of at most £ candidates such

that J belongs to all winning k-committees of
e(CUD,V,k)?

In the above definitions, we call C' the registered set of
candidates and D the unregistered set of candidates.

CONSTRUCTIVE CONTROL BY DELETING CANDIDATES (CCDC)

Given: An election (C,V), a positive integer & < |C],
a non-empty subset J C C' of at most k distin-
guished candidates, and a non-negative integer £.

Question:  TIs there a subset C’ C C'\ J of at most £ candidates

such that |C\C’| > k and J belongs to all winning
k-committees of ¢(C \ C, V, k)?

Notice that CCAV, CCDV, CCAC, and CCDC with the re-
striction |J| = k = 1 are exactly the extensively studied con-
structive control (by adding/deleting voters/candidates) prob-
lems for single-winner voting (precisely, the unique-winner
model of the problems) [Faliszewski and Rothe, 2016].

A multiwinner voting rule ¢ is immune to a control type
(adding/deleting voters/candidates) if it is impossible to make
some J C C, which is not contained in the current winning k-
committee, be included in all winning k-committees, by per-
forming the corresponding operation. Otherwise, we say ¢ is
susceptible to this control type.

Remark. In the above control problems, the goal of the exter-
nal agent is to make the distinguished candidates be included
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in all winning k-committees. This is natural in many situa-
tions. For example, when the external agent is not aware of
the tie-breaking scheme, or when a randomized tie-breaking
scheme is used, the external agent may want to make sure
that her favorite candidates become winners with no risk at
all. The above situation also motivates our requirement on w’
in the manipulation problem.

Additionally, we would like to point out that our hardness
results also apply to multiwinner voting rules which always
select exactly one winning k-committee by utilizing a spe-
cific tie-breaking scheme (see, e.g., [Bredereck et al., 2017]
for descriptions of some tie-breaking schemes). In fact, our
hardness reductions are established carefully to avoid ties.
Moreover, our P- and FPT-algorithms for the additive rules
can be adapted to solve these variants when ties are broken
lexicographically.

3 Related Work

Meir et al. [2008] proposed some control and manipulation
problems and considered ranking-based multiwinner voting
rules where each voter holds a linear preference over all can-
didates. In their models, candidates have utilities to strate-
gic agents who attempt to achieve a winning k-committee
yielding as maximum total utilities as possible. In our con-
trol problems, the strategic agents have some fixed candi-
dates whom they want to make winners. We remark that NP-
hardness proofs of our problems can be modified to show the
NP-hardness of their utility-involved variants by assigning to
some candidates very high utilities.

Aziz et al. [2015] and Bredereck er al. [2017] studied
other manipulation problems where the manipulators have
not cast their votes and want to make exactly one distin-
guished candidate be included in the winning k-committee.
Aziz et al. [2015] also studied the WINNER SET MANIPU-
LATION problem which seeks a given number of additional
votes so that a given k-subset of candidates becomes the win-
ning k-committee. A generalization of this problem has been
studied in [Bredereck er al., 2017]. Recently, Faliszewski et
al. [2017] studied bribery problems for approval-based mul-
tiwinner voting rules, where the goal is to ensure one distin-
guished candidate to be included in the winning k-committee
by applying a limited number of modification operations.

Our paper is also related to the works of Laslier and Van der
Straeten [2016], Peters [2018], and Yang and Wang [2018]
who studied strategyproofness of approval-based multiwin-
ner voting. However, they were concerned with mathematical
properties of these rules and focused only on one manipulator.

In addition, our study is somewhat related to the con-
trol problems in group identification [Yang and Dimitrov,
2018]. Group identification models the scenario where vot-
ers and candidates (individuals) coincide and the goal is to
select a subset of socially qualified candidates without the
size constraint. The group control problems consist in mak-
ing some given distinguished individuals socially qualified by
adding/deleting/partitioning the individuals.

Finally, we would like to point out another line of research
concerning manipulation in approval-based multiwinner vot-
ing. In particular, in this setting, it is assumed that voters
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have linear order preferences over candidates and the ques-
tion is whether voters have incentive to submit non-sincere
votes in order to improve the result. Recall that a vote is
sincere with respect to a linear order over candidates if the
approved candidates are exactly those ranked above some
threshold candidate in the linear order. Moreover, voters com-
pare different outcomes based on some preference extension
principles such as the Kelly extension principle, Géirdenfors
extension principle, etc. We refer to [Barbera er al., 2004;
Endriss, 2013] and references therein for further discussions.

4 Manipulation

In this section, we consider the manipulation problems and
show that in general these problems are NP-hard. Our reduc-
tions are from the classic VERTEX COVER problem. A vertex
cover of a graph G is a subset of vertices whose removal re-
sults in a graph without any edge.

VERTEX COVER

Given: A graph G = (N, A) where N is the set of vertices
and A is the set of edges, and an integer «.
Question: Does G have a vertex cover of size k?

It is well-known that the VERTEX COVER problem remains
NP-hard even in 3-regular graphs [Mohar, 2001].

Theorem 1. CBCM and SBCM for AV are NP-hard.

Proof. Let (G = (N, A), k) be a VERTEX COVER instance
where G is 3-regular. Letn = |N'|and m = |A|. Without loss
of generality, assume that m > 4. For each vertex b € N, we
create a candidate denoted still by b for simplicity. Addition-
ally, we create x candidates ¢y, ca, ..., c, disjoint from N.
Therefore, there are in total n + « candidates. We create the
following votes. First, we create 4 non-manipulative votes
each of which approves exactly cy,...,c,. In addition, for
each edge {b,b'} € A, there is a manipulator whose truthful
approved candidates are exactly b and b'. Let the vote cast
by the manipulator be v(b,b’) = {b,b’'}. Therefore, there
are m + 4 votes in total. Finally, we set & = k. The cur-
rent winning k-committee is w = {cy,. .., ¢, } regardless of
tie-breaking schemes. Notice that w does not include any
candidate approved by some manipulator. As a consequence,
this instance has the same answer to CBCM and SBCM.
Now we prove the correctness of the reduction. Suppose
that G has a vertex cover S C N of size «. If all manipulators
turn to approve exactly the candidates corresponding to .S, the
score of each candidate in .S increases from 3 to m > 4, and
hence candidates in S' form the unique winning k-committee.
For the opposite direction, if there exists no vertex cover of
size k, then no matter which k¥’ < k candidates from NV are in
the final winning k-committee after the manipulators change
their votes, there is at least one manipulative vote v(b, b’) such
that none of b and ¥’ is in the final winning k-committee. [

Similar to the reduction in the above proof, we can show
the NP-hardness of CBCM and SBCM for SAV. Clearly, after
all manipulators change to approve candidates corresponding
to a vertex cover S of size k, the SAV score of each candi-
date in S changes from 3/2 to m/k. Given this, to prove the
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NP-hardness of CBCM and SBCM for SAV, we need only
to create m — 5 further votes approving ci,...,c, so that
in the original election each c¢; has SAV score (m — 1)/x 2.
Moreover, we can also show the NP-hardness of CBCM and
SBCM for other rules studied in this paper.

Theorem 2. CBCM and SBCM for SAV, NSAV, PAV, ABCCV,
and MAV are NP-hard.

In the NP-hardness proofs, the number of manipulators is
even larger than the number of non-manipulators. The NP-
hardness in this case stands in contrast to the polynomial-
time solvability of the classic coalition manipulation prob-
lem (see [Faliszewski and Rothe, 2016] for the definitions)
for many ranking-based single-winner voting rules, where
the manipulators can always make the distinguished candi-
date the winner by ranking the distinguished candidate in the
top and ranking other candidates greedily. On the other hand,
for a constant number ¢ of manipulators, the classic coalition
manipulation problem for many single-winner voting rules is
already NP-hard even when ¢ = 1,2 [Bartholdi er al., 1989;
Davies et al., 2014]. However, this is not the case for our
problems. In particular, we show that CBCM and SBCM for
AV, SAV, and NSAV are polynomial-time solvable when the
number of manipulators is a constant.

Theorem 3. CBCM and SBCM for AV, SAV, and NSAV are
polynomial-time solvable if there are a constant number of
manipulators.

Proof for CBCM. Let ((C,V),w C C,k = |w|,Vu) be a
given instance where w is the current winning k-committee.
Observe that for AV, SAV, and NSAV, there are optimal
solutions where all manipulators approve the same candi-
dates in the final election and, moreover, these candidates
are all from C(Vjy), the union of the candidates approved
by the manipulators. Let ¢ = |V}y| be the number of ma-
nipulators which is a constant. The following algorithm is
mainly for AV but can be modified easily to work for SAV
and NSAV. For a subset U C V of votes, let C*(U) be
the set of candidates that are approved exactly by the votes
inU, ie, C*(U) = {¢c € C | V(¢) = U}. For each
non-empty subset S C Vj, we guess a non-negative inte-
ger zg < |C*(S)| which indicates the number of candidates
from C*(S) that are expected to be included in the final win-
ning k-committees. In addition, based on the above obser-
vation, we can guess the number &’ < k of candidates ap-
proved by all manipulators in the final election. In effect,
these guesses split the original instance into polynomially
many subinstances each of which takes as input the origi-
nal one together with a positive integer ¥’ < k, and a non-
negative integer g for every non-empty S C Vj, and asks
if there is a k’-subset w’ C C(Vjy) so that (1) all manipu-
lators prefer w’ to w; (2) for every non-empty S C Vi, w’
includes exactly g candidates from C*(S); and (3) all win-
ning k-committees contain w’ after all manipulators turn to
approve exactly the candidates in w’. We discard all subin-
stances except the ones satisfying the following conditions.

The correctness of the reduction also relies on the assumption
that & < 2 - (m — 1) which does not change the NP-hardness of the
VERTEX COVER problem in 3-regular graphs [Mohar, 2001].
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First, as we pick ¥’ < k winning candidates from C(Vy), we
require that £5CVy TS = k'. For each vote v € Vy, we
require that } 3y gz, ves @s > [v N wl. This is to ensure
that after the manipulators change their votes, the final win-
ning k-committee includes more approved candidates in ev-
ery manipulative vote. For every combination of the guessed
integers satisfying the above conditions, we further do the
following. We let all manipulators approve xg certain can-
didates in each C*(S) where ) # S C Wy and x5 > 0. In
particular, these xg candidates are those in C*(S) that have
the highest scores with respect to the non-manipulative votes
V' \ V. Let C’ be the set of all such candidates. Then, if C’
belongs to all winning k-committees now (it suffices to check
if there are at most & — &’ candidates not in C’ that have at
least the same score than that of the one in C’ with the mini-
mum score) the subinstance is a Yes-instance; otherwise, it is
a No-instance. O

Another important parameter that has been widely dis-
cussed in voting problems is the number of candidates. In
many real world applications, this parameter is small [Fish-
burn and Brams, 2005; Mattei and Walsh, 2013]. In this case,
we can enumerate all subsets of candidates in O(2™) time,
where m is the number of candidates. Fixing some C' C C
of at most k candidates such that every voter prefers every k-
committee containing C” to the current winning k-committee,
for AV, SAV, and NSAV, the optimal strategy for the manipu-
lators is that all of them approve exactly the candidates in C”.
We have the following theorem.

Theorem 4. CBCM and SBCM for AV, SAV, and NSAV are
FPT with respect to the number of candidates.

5 Control

When considering AV as a single-winner voting rule (i.e.,
when k£ = 1), it has been proved that CCAV and CCDV for
AV are NP-hard [Baumeister et al., 2010; Lin, 2010]. No-
tably, when £ = 1, PAV, ABCCYV, and AV are identical. As
a consequence, CCAV and CCDV for PAV and ABCCV are
also NP-hard when & = 1. For CCAV and CCDV, it remains
to consider SAV, NSAV, and MAV.

Theorem 5. CCAV and CCDV for SAV and NSAV are NP-
hard even when k = 1.

For MAV, we also prove that CCAV is NP-hard even when
k = 1 via a reduction from the RX3C problem and based
on the characterization of MAV single winners stated in the
following lemma.

Lemma 1. Let (C,V) be an election and A C 'V be the
submultiset of votes approving the maximum number of can-
didates, i.e., A = argmaz,cv{|v|}. Moreover, let C' be
the set of candidates approved by all votes in A, ie., C' =
MNoca v- Then, if C'" # 0, candidates in C' are tied as MAV
single winners. Otherwise, all candidates are tied as MAV
single winners.

Theorem 6. CCAV for MAV is NP-hard even when k = 1.

However, CCDV for MAV turns out to be polynomial-time
solvable for k being a constant.
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Theorem 7. CCDV for MAV is polynomial-time solvable if k
is a constant.

The main idea of the algorithm is as follows. Let C(J)
be the set of all k-committees containing J. As k is a con-
stant, C(.J) can be calculated in polynomial time. Then, we
guess a non-negative integer x < m and a k-committee
w € C(J), where z indicates the MAV score of the win-
ning k-committees and w is supposed to be one of the win-
ning k-committees in the final election. For each guessed pair
(z,w), we delete all votes which have Hamming distance at
least z + 1 from w and update ¢ accordingly. If ¢ < O after
doing so, we discard this pair (z,w). Otherwise, we return
“Yes” if and only if for every k-committee not in C(J), there
is at least one vote which has Hamming distance at least x4 1
from this k-committee.

Now we consider control by modifying the candidate set.
Notice that for AV it is impossible to change the scores of reg-
istered candidates by adding unregistered candidates, as ob-
served already in the single-winner voting case [Baumeister
et al., 2010; Hemaspaandra and Hemaspaandra, 2007]. This
implies that AV is immune to CCAC. However, this is not the
case for SAV and NSAV, since in these two cases adding can-
didates may increase the number of approved candidates of
some votes and hence affects the scores of these candidates.
We show that CCAC for SAV and NSAV is NP-hard even in
a special case, as summarized in the following theorem.

Theorem 8. CCAC for SAV and NSAV is NP-hard even
when k = 1.

The immunity of single-winner AV to CCAC also implies
that PAV and ABCCV are immune to CCAC when k£ = 1.
More generally, one can observe that PAV and ABCCV are
immune to CCAC when the number of distinguished candi-
dates equals to k. The reason is that if some J C C'is not the
winning k-committee in the original election, then there is a
committee w other than J which has at least the same score
as that of J. As the scores of committees in the original elec-
tion do not change by adding candidates, the committee w
prevents J from being the unique winning k-committee no
matter which candidates are added.

Theorem 9. PAV and ABCCV are immune to CCAC when the
number of distinguished candidates is k.

However, when the number of distinguished candidates is
strictly smaller than £, ABCCV and PAV are susceptible to
CCAC as shown in the following example.

Example. Let C = {a,b,c}, D = {d}, J = {a},and k = 2.
For ABCCV, we create five votes v; = {a}, vy V3
{b,d}, and vy = vs = {¢,d}. For PAV, we create eight votes
vy = vg = {a},v3 = vy = vs = {b,d}, and vg = v; = vg =
{c,d}. With respect to C, the only winning k-committee is
{b, c}. However, if we add the candidate d, {a, d} becomes
the unique winning k-committee.

Concerning the complexity, CCAC for ABCCV and PAV
is co-NP-hard. In fact, we can show co-NP-hardness even
for the special case where |J| = 1 and £ = 0. In this case,
the question becomes whether a distinguished candidate p is
included in all optimal k-committees in a given election. Note
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CBCM/SBCM  CCAV CCDV CCAC CCDC

AV NP-h, P (t), FPT NP-h (k = 1), FPT NP-h (k = 1), FPT I 3

SAV NP-h, P (t), FPT NP-h (k = 1), FPT NP-h (k = 1), FPT NP-h (k = 1) NP-h (k = 1)

NSAV  NP-h,P (), FPT NP-h(k = 1), FPT NP-h (k= 1), FPT NP-h(k = 1) NP-h (k = 1)

ABBCV NP-h NP-h (k = 1) NP-h (k = 1) co-NP-h (|J| =1) co-NP-h(|J| = 1)
FPT FPT 1(|J| = k) P(k=1)

PAV NP-h NP-h (k = 1) NP-h (k = 1) co-NP-h (|J| =1) co-NP-h (|.J| = 1)
FPT FPT 1(|J| = k) P(k=1)

MAV NP-h NP-h (k = 1) NP-h (|.J| = 1) NP-h (|.J| = 1) NP-h (|.J| = 1)
FPT P (k), FPT P(k=1)

Table 1: Here, “NP-h” stands for “NP-hard”, “I” for “immune”, and “P” for “polynomial-time solvable”. In addition, ¢ denotes the number
of manipulators, and J denotes the set of distinguished candidates. All FPT results are with respect to the number of candidates. “P(¢)/P(k)”
means that the result holds only when ¢/k is a constant. Note that £ = 1 implies |J| = 1, but not the other way around.

that this is also a special case of CCDC, CCAV, and CCDV.
We denote this special case by p-CC.

Theorem 10. p-CC for ABCCV and PAV is co-NP-hard, and
p-CC for MAV is NP-hard.

From the above theorem, we obtain the following corollary.

Corollary 1. CCAC and CCDC for ABCCV and PAV are co-
NP-hard, and for MAV are NP-hard. In addition, CCDV for
MAV is NP-hard. These results hold even when |J| = 1.

Unlike the immunity of AV to CCAC, it is easy to see that
AV is susceptible to CCDC. Concerning the complexity, we
can show that CCDC for AV is polynomial-time solvable.

Theorem 11. CCDC for AV is polynomial-time solvable.

However, for SAV and NSAYV, the complexity of CCDC is
the same as CCAC.

Theorem 12. CCDC for SAV and NSAV is NP-hard even
when k = 1.

The NP-hardness of the special case where k = 1 is not
applicable to ABCCV and PAV. In fact, in this special case
CCDC for ABCCV and PAV is polynomial-time solvable be-
cause CCDC for single-winner AV is polynomial-time solv-
able. For MAV, we can also show the polynomial-time solv-
ability in this special case based on Lemma 1.

Theorem 13. CCDC for MAV is polynomial-time solvable
when k = 1.

6 Some FPT Results for Control

In the previous section, we showed that many control prob-
lems are computationally hard. In this section, we consider
these problems from the parameterized complexity point of
view. First, it is easy to see that CCAC and CCDC for all
rules studied in this paper are FPT with respect to the num-
ber of candidates, and CCAV and CCDV for AV, SAV, and
NSAV are FPT with respect to the number of votes. Based on
Lenstra’s theorem on ILP [Lenstra, 1983], we can show the
following FPT results.

Theorem 14. CCAV and CCDYV for AV, SAV, and NSAV are
FPT with respect to the number of candidates.
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For the second group of voting rules, we can obtain similar
results.
Theorem 15. CCAV and CCDV for ABCCV, PAV, and MAV
are FPT with respect to the number of candidates.

Finally, we provide some FPT results for CCAC/CCDC
with respect to the number of added/deleted candidates plus
the number of voters.

Theorem 16. CCAC and CCDC for SAV, NSAV, PAV, ABCCYV,
and MAV are FPT with respect to the combined parameter £+
n, where { is the number of added/deleted candidates and n
is the number of voters.

Recently, with respect to the number of voters, the param-
eterized complexity of control by adding/deleting candidates
for single-winner voting rules has been studied, and it turned
out that many problems are fixed-parameter intractable [Chen
et al., 2017]. Tt is interesting to explore whether similar re-
sults hold for CCAC and CCDC for multiwinner voting rules,
with respect to only the number of voters.

7 Concluding Remarks

In this paper, we have studied the complexity of several ma-
nipulation and control problems for numerous approval-based
multiwinner voting rules. We showed that these rules gener-
ally resist these strategy behavior by giving many hardness
results. However, it should be pointed out that our study is
purely based on worst-case analysis. Whether these problems
are difficult to solve in practice requests further investiga-
tions. In addition to the hardness results, we also derived sev-
eral FPT-algorithms with respect to natural parameters and
polynomial-time algorithms for some special cases of these
problems. We refer to Table 1 for a summary of our results.

Finally, as winner determination for PAV, CCAV, and MAV
is NP-hard, manipulation and control problems for these rules
may belong to higher complexity classes. We leave this as
open problems for future work.
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