
The Price of Governance: A Middle Ground Solution to Coordination in
Organizational Control

Chao Yu1∗ and Guozhen Tan2

1School of Data & Computer Science, Sun Yat-Sen University, Guangzhou, China
2School of Computer Science & Technology, Dalian University of Technology, Dalian, China

yuchao3@mail.sysu.edu.cn, gztan@dlut.edu.cn

Abstract
Achieving coordination is crucial in organizational
control. This paper investigates a middle ground
solution between decentralized interactions and
centralized administrations for coordinating agents
beyond inefficient behavior. We first propose the
price of governance (PoG) to evaluate how such
a middle ground solution performs in terms of ef-
fectiveness and cost. We then propose a hierarchi-
cal supervision framework to explicitly model the
PoG, and define step by step how to realize the core
principle of the framework and compute the opti-
mal PoG for a control problem. Two illustrative
case studies are carried out to exemplify the appli-
cations of the proposed framework and its method-
ology. Results show that the hierarchical supervi-
sion framework is capable of promoting coordina-
tion among agents while bounding administrative
cost to a minimum in different kinds of organiza-
tional control problems.

1 Introduction
Imagine a fairy tale that you were the king of an ancient k-
ingdom. Owning a large piece of land, you were now facing
a tricky problem: how to divide the land into smaller admin-
istrative districts such that you can run your kingdom as effi-
ciently as possible? You might choose to directly govern each
citizen by yourself. While you could take full control of your
kingdom in this way, a heavy burden would definitely be im-
posed. Or, you might prefer letting each district administrate
itself. As the number (size) of districts is getting larger (s-
maller), however, your kingdom tends to be more fragmented
and thus your authority is prone to be weakened. Facing this
dilemma, you were puzzled: what is the best size for the par-
tition such that your control is not impaired but at the same
time the whole kingdom can function efficiently?

Although this fairy tale seems naive, it reveals a fundamen-
tal yet challenging issue in organizational control, where cen-
tralization and decentralization are two completely opposite
solutions to guarantee system performance. Application do-
mains include but are not limited to the management of sup-
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ply chains [Giannoccaro, 2018], resource allocation in cog-
nitive radio networks [Hasegawa et al., 2014] or multiuser
OFDMA networks [Yassin et al., 2017], and multi-robot for-
mation/consensus control [Oh et al., 2015]. In these domains,
it is crucial to design efficient coordination mechanisms that
enable all the agents to reach an agreement in areas of com-
mon interest. While centralized mechanisms often rely on
a dictatorial authority to formulate, specify and enforce how
the agents should coordinate with each other, decentralized
mechanisms enable agents to coordinate via local interactions
and without relying on any centralized authority.

On one hand, it is generally believed that system per-
formance could be improved upon given dictatorial control
over agents’ actions. Imposing such control, however, can
be costly or even infeasible in large systems due to the ex-
pense of high administrative cost. Moreover, as the envi-
ronments where agents reside in become even more dynam-
ic and open, continuously monitoring and governing each a-
gent’s behavior will soon become intractable. On the other
hand, pure decentralized mechanisms usually cannot guaran-
tee satisfactory performance if no external interventions or
explicit mechanisms are imposed. As in the social dilemma,
for example, pure rational behavior based on best-response
reinforcement learning will end up with non-cooperative de-
fection, also known as selfish equilibria, which is subopti-
mal with respect to the social welfare [Bazzan et al., 2011;
Yu et al., 2015]. In coordination games, high level of coordi-
nation among distributed learning agents are rarely achieved
if no extra mechanisms are introduced, especially in situation-
s with stochastic and partial information [Kapetanakis and
Kudenko, 2002]. Similar results can also be observed in vari-
ous congestion games, for example, resource allocation prob-
lems, in which inductive reasoning or regret-based learning
would always lead to inefficient equilibria that are far worse
than the optimum [Oh and Smith, 2008].

In this paper, we investigate the possibility of a middle
ground solution between decentralized interactions and cen-
tralized administrations, by which self-interested agents can
utilize a proper level of coordination to improve their perfor-
mance beyond inefficient equilibria or uncoordinated behav-
ior. Based on the two quantitative criteria of price of anarchy
(PoA) and price of monarchy (PoM), we propose the price of
governance (PoG) to evaluate how such a middle ground so-
lution performs in terms of effectiveness and cost. The PoA
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measures the inefficiency of a decentralized solution with re-
spect to the natural objective function, while PoM is defined
as the practical cost of centralized administration. By com-
bining these two criteria into an overall value of PoG using a
combination function, an optimal middle ground solution can
be properly discovered to make the best trade-off between in-
efficiency/cheapness of decentralization and optimality/high
cost of centralization.

Motivated to explicitly model PoG and seek its optimal val-
ue, we then introduce a hierarchical supervision framework,
which nicely reflects the features of organizational structure
and hierarchical governance in human societies. We define
step by step how to realize the core principle of hierarchical
supervision in the framework and compute the optimal PoG
for a control problem. We then carry out a preliminary set
of simulations in two case studies: the norm learning (N-
L) problem [Delgado, 2002] and multi-agent resource selec-
tion (MARS) problem [Oh and Smith, 2008], to evaluate the
efficacy of our framework. Results show that the hierarchi-
cal supervision framework can facilitate coordination among
agents (i.e., reducing the PoA) compared to a pure decen-
tralized solution. At the same time, an optimal PoG can be
achieved to bring out the maximum coordination promotion
while bounding the PoM significantly lower than that of a
centrally administrated system.

2 Seeking the Optimal PoG
2.1 The Price of Governance
In its original form, the price of anarchy (PoA) was defined
as the worst-case ratio between the value of social cost in a
Nash equilibrium and that of some social optimum. To ex-
pand the realm of its applications, PoA has also been gen-
eralized to many other contexts, such as for defining the in-
efficiency of a multiagent learning algorithm in resource al-
location problems [Oh and Smith, 2008], and more broad-
ly the inefficiency of decentralization [Youn et al., 2008;
Cole et al., 2015]. Following this, we define PoA as the ra-
tio of performance loss at an equilibrium (convergence) to
the optimal performance that could possibly be achieved by a
centralized optimization approach. More formally,

PoA =
ψopt − ψdis

ψopt
, PoA ∈ [0, 1] (1)

where ψopt is the optimal performance using a centralized
solution and ψdis is the performance of a decentralized solu-
tion. The performance can be any criterion that evaluates a
solution, e.g., coordination level or convergence speed.

Analogous to the price of anarchy, we can define the price
of monarchy as the practical cost of maintaining centraliza-
tion in a system. To simplify illustration, we mainly discuss
managerial cost in terms of communication cost. Thus, the
lower bound of the price of monarchy is found in a fully de-
centralized non-communicating system, and the upper bound
of the price of monarchy is found in a fully centralized sys-
tem. Let ϕdis and ϕopt denote a communication cost function
of a decentralized solution and a centralized solution, respec-
tively. Price of Monarchy (PoM) is given by:

PoM =
ϕdis

ϕopt
, PoM ∈ [0, 1] (2)

The Price of Governance (PoG) then can be computed us-
ing a combination function Γ of PoA and PoM:

PoG = Γ(PoA, PoM) (3)
By defining different function Γ, one can capture various

patterns of behavior towards totalitarianism or liberalism, de-
pending on the specific purpose of solving a target problem.

2.2 The Hierarchical Supervision Framework
Inspired to model PoG and seek its optimal value, we then
introduce the hierarchical supervision framework, which is
composed of the following five steps.
Step 1: Segmentation of social groups. To model hierar-
chical supervision and organizational governance in human
societies, a social group is first divided into a set of subgroups
according to some predefined methods. Interactions of sub-
group members are purely local and decentralized, and may
be constrained by certain external factors such as network
topologies or social relationships. In each sub-group, a su-
perior governor monitors and administrates the behavior of
its subordinates. The governor can be any one of the sub-
ordinate agents in the sub-group or another dedicated agent.
A governor can also interact with another governor or other
governors to exchange their information or learn from each
other using social learning strategies.
Step 2: Aggregation of public opinions. In each sub-
group, agents make decisions in a fully decentralized manner.
Agents may
• learn from the outcome of interaction with another ran-

domly chosen member using reinforcement learning;
• copy another member’s behavior using some imitation

rules; or simply
• make decisions independently.

Each agent then reports its decision to its governor, who then
aggregates all the information from its subordinates to form
a public opinion using various democratic mechanisms. This
public opinion summarizes the overall attitude towards the
members’ behavior in the governor’s group.
Step 3: Generation of supervision policies. After obtain-
ing the public opinion, each governor then generates a su-
pervision policy by exchanging its information with anoth-
er governor and learning from situations in other subgroups.
The generated supervision policy is deemed as the most suc-
cessful behavior in the neighbourhood, and can be in different
forms such as being the majority action adopted by the mem-
bers, the action that performs the best (i.e., with the highest
reward) or their combinations.
Step 4: Adaption of local behavior. The supervision pol-
icy is then passed down to the group members by the gover-
nor in order to entrench its influence in the group. According
to the targeted problem, this integration process can be con-
ducted in distinct manners. The supervision policy can be
used to dictate the policy for group members directly, or as a
suggestive guide to adapt members’ behavior through modi-
fying their behaviorial parameters (e.g., learning speed or ex-
ploration mode), transforming the environmental components
(e.g., states or rewards), or changing the way how members
interact with each other (e.g., to whom to interact).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

652



Step 5: Calculation of the optimal PoG. PoA can be com-
puted as the ratio of the performance value at convergence to
the optimal performance value using a centralized solution
that a single governor supervises the whole group. PoM can
be computed as the practical communication cost of main-
taining centralization in the group. The communication cost
can be in different forms such as the number of message ex-
change or the geometrical distance between group members
and the governor. Then, PoG can be calculated using a pre-
defined combination function Γ that depends on the specific
purpose of solving a target problem. As the size of subgroups
indicates different levels of centralization and thus different
PoG, the whole problem is then reduced to seeking the opti-
mal size of subgroups in which case the minimal PoG can be
achieved. Let p ∈ P be a partition of the group. The problem
is now transformed into the following optimization problem:

min
p∈P

PoG = Γ(PoA, PoM)

s.t. kp(PoA, PoM) = 0, ∀p ∈ P (4)

where k is the PoA and PoM relationship function that is
determined by the chosen coordination solution. The con-
straints in Eq. (4) means that for each partition of the group,
its PoA and PoM value should satisfy their relationship func-
tion. For a problem that PoA, PoM and their relationship
function can be computed in a closed form, general optimiza-
tion methods can be applied to compute the solution of this
optimization problem. The other more straightforward way is
to sample in the partition space in different levels of granu-
larity, and then apply approximation methods to estimate the
relationship between PoA and PoM. The optimal PoG then
can be easily derived by solving the combinatorial equations
of relationship function k and PoG function Γ.

3 Two Case Studies
3.1 The Norm Learning Problem
Social norm is an important concept in multiagent systems to
facilitate coordination among agents by posing constraints on
agents’ behavior [Shoham and Tennenholtz, 1997]. The norm
learning (NL) problem deals with how a social norm can be
established in a bottom-up manner via agents’ local learning
interactions. This problem has attracted a great interest in re-
cent years and extensive investigations have been conducted
under various assumptions about agent interaction protocol-
s, societal topologies, and observation capabilities [Yu et al.,
2014; Vouros, 2017; Hasan et al., 2015].

Problem Description
Considering a typical setting of network topology, a group of
agents are organized in a social network and each agent can
only interact with its neighbors, using either reinforcement
learning approaches or some predefined imitation rules. The
interactions between two agents can be modeled as a pure Co-
ordination Game (CG) [Sen and Airiau, 2007], in which the
agents are rewarded positively when their actions are consis-
tent and penalized otherwise. The goal is to enable all the

agents to reach an agreement (social norm) in the whole sys-
tem. Although this problem seems simple, successfully solv-
ing it is a challenging task due to the widely recognized ex-
istence of sub-norms, which prevents completely consistent
social norm in the whole group [Mihaylov et al., 2014].

Application of the Methodology
We now provide an illustration of how to apply the proposed
methodology in solving NL problems in a structured system
where agents interact with each other using basic reinforce-
ment learning algorithms. Some results in this section ap-
peared in an earlier version of our work in [Yu et al., 2018].

Step 1: Group segmentation. We use an R ∗ R grid net-
work by default, and separate it into n ∗ n (1 ≤ n ≤ R) sub-
groups (In case of n being not divisible by R, the remaining
agents on the border are included in a single subgroup.), each
of which is denoted as Cx. We imagine a governor located in
the geometrical center of each subgroup.

Step 2: Aggregation of public opinion. At time step t,
in each subgroup Cx, agent i chooses an action ai with the
highest Q-value or randomly chooses an action with an ex-
ploration probability εti. Agent i then interacts with a ran-
dom neighbor j and receives a payoff ri. The learning ex-
perience in terms of action-reward pair (ai, ri) is reported to
agent i’s governor x, and the governor aggregates all the in-
formation from its subordinates into two values Fx and Rx.
Value Fx(a) indicates the overall acceptance (i.e., frequen-
cy) of action a in subgroup Cx and value Rx(a) indicates the
overall reward of action a in Cx. Fx(a) can be calculated as
Fx(a) =

∑
i∈Cx

δ(a, ai), where δ(a, ai) is the Kronecker delta

function, which equals to 1 if a = ai, and 0 otherwise. Rx(a)
can be calculated by Rx(a) = 1

Fx(a)

∑
i∈Cx,ai=a

ri. Especially,

Rx(a) is set to 0 if Fx(a) = 0. Each governor x then com-
bines the actions of each subgroup into a public opinion ox
using democratic voting mechanism (ox = arg maxa Fx(a)
is the action most accepted by the subgroup).

Step 3: Generation of supervision policies. After gener-
ating the public opinion, each governor then generates a su-
pervision policy ax, which indicates the social norm, i.e., the
most successful behavior, in the neighborhood. To this end,
the governor resorts to social learning with another gover-
nor by changing their information and comparing the per-
formance of their public opinions. Many social learning s-
trategies can be applied for this purpose, and we here em-
ploy the widely used imitation rules from the evolutionary
game theory (EGT) [Szabó and Fath, 2007], given by px→y =

1
1+e−β(uy−ux) , where px→y is a probability for governor x to
imitate the action of neighboring governor y, ux = Rx(ox) is
the fitness of the public opinion of governor x, uy = Ry(oy)
is the fitness of neighboring governor y, and β > 0 is a pa-
rameter to control selection bias.

Step 4: Adaption of local behavior. Each agent i in a sub-
group adjusts its learning behavior in order to comply with
the generated supervision policy from its governor. By com-
paring its action ati with the supervision policy ax, agent i can
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evaluate whether it is performing well or not so that its learn-
ing behavior can be dynamically adapted to fit the supervi-
sion policy. Learning rate and exploration rate are two funda-
mental tuning parameters in RL. Heuristic adaption of these
two parameters thus models the adaptive learning behavior
of agents. More specifically, when agent i has chosen the
same action with the supervision policy (i.e., ati = ax), it de-
creases its learning rate to maintain its current state (αt+1

i =
(1 − λ)αt

i), otherwise, it increases its learning rate to learn
faster from its interaction experience (αt+1

i = (1−αt
i)λ+λ),

where λ ∈ [0, 1] is a parameter to control the adaption rate.
The exploration rate can be updated likewise. Finally, agent
i updates its Q-value using the new learning rate αt+1

i and/or
exploration rate εt+1

i . The proposed mechanisms are based
on the concept of “winning/losing” in the well-known multi-
agent learning algorithm WoLF (Win-or-Learn-Fast) [Bowl-
ing and Veloso, 2002]. While the original meaning of “win-
ning/losing” in WoLF and its variants is to indicate whether
an agent is doing better or worse than its Nash-Equilibrium
policy, this heuristic is gracefully borrowed here to evaluate
the agent’s performance against the supervision policy.
Step 5: Calculation of optimal PoG. We sample the size
of subgroup from n = 1 to n = R and derive PoA and PoM
for each size of subgroup through simulations. The PoA in-
dicates the ratio of performance loss at an equilibrium (con-
vergence) to the optimal performance that could possibly be
achieved by a centralized optimization approach. In the NL
problem, the performance loss can be reflected by the consen-
sus level of the whole group, i.e., the proportion of agents in
the whole system that have not achieved a consensus. Thus,
PoA can be computed as the proportion of agents with sub-
norms in the system. As for the PoM, the geometric distance
between a group agent and its governor is used to represent
the communication cost. For each case of subgroup size, the
PoA and PoM pair can be obtained accordingly. Function ap-
proximation methods then can be applied to fit all the pairs
to derive the relationship function k between PoA and PoM.
Finally, given a predefined function Γ, the optimal PoG value
and its associated subgroup size can be found accordingly.

Experiments and Results
First, we would like to test whether the proposed hierarchical
supervision framework is capable of facilitating coordination
among agents (i.e., reducing the PoA), compared on a pure
decentralized learning approach. We conduct the investiga-
tion on a 10∗10 grid network, which is separated into several
4 ∗ 4 clusters (the remaining 2 agents on the border are in-
cluded in a single group). We consider stateless version of
Q-learning, and each agent can choose from 4 actions as de-
fault. Parameters α and ε are initially set to 0.1 and 0.01,
respectively. Moreover, parameter β and γ are both set to
0.1. The final results are averaged over 1000 independent
runs. We compare our hierarchical learning approaches (de-
noted as HL) to the fully decentralized individual learning
(IL) approach that agents learn randomly with another agent
and update their strategies independently.

The left part in Figure 1 [Yu et al., 2018] shows that the co-
ordination ratio of the whole group using different approaches
increases as learning proceeds, but the hierarchical learning

Figure 1: The left part plots the dynamics of PoA in terms of average
reward using different learning approaches. HL-α, HL-ε, and HL-
α · ε denote, respectively, the three approaches under the proposed
hierarchical supervision framework when agents adapt their learning
rate α, exploration rate ε, and both rates at the same time. The other
three approaches represent the IL approaches with a decaying α, a
decaying ε or a fixed α and ε. The right part shows the relationship
between PoA and PoM, and the calculation of the optimal PoG in
the NL problem.

approaches (especially HL-ε and HL-α · ε) can reach a high-
er convergence level than the individual learning approach-
es. This result indicates that by introducing a certain level
of centralized control, the PoA can be greatly reduced. The
right part in Figure 1 plots the relationship between PoM and
PoA when the subgroup size takes different values of n in a
30× 30 grid network. As we can see, a larger size can result
in a higher consensus level (i.e., lower PoA). This is easy to
understand because each governor can have a more power-
ful control force over the group comparatively when the sub-
group size is larger. The communication cost, however, al-
so increases as the subgroup size becomes larger, causing a
higher PoM. It is obvious that the PoA and PoM are two con-
tradictory criteria that evaluate the coordination performance.
PoA indicates the consensus level while PoM indicates the
cost for achieving this performance. Higher PoM indicates a
more centralized system (i.e., higher cost) and thus a better
coordination performance (i.e., lower PoA) can be achieved.
We can observe that the PoA and PoM exhibit a monotonous
relationship with a long tail phenomenon. This indicates that
the PoA can be reduced significantly by only introducing a bit
of centralized control, e.g., when subgroup size is less than
10. This improvement, however, is only at the expense of
very low communication cost, as reflected by the low value of
PoM. We then apply simple function approximation methods
to fit all the PoM-PoA pairs to derive the relationship func-
tion k, and derive the optimal PoG value and its associated
subgroup size, on the tangent point between the curve of PoG
function and the fitting curve of relationship function k.

3.2 The MARS Problem
The multi-agent resource selection problem (MARS) is a
class of congestion games characterized by a large number of
self-interested agents competing for common resources [Oh
and Smith, 2008]. This so called congestion effect is appar-
ent in many real-world situations, ranging from traffic routing
in transportation systems, bandwidth allocation in communi-
cation networks, to other versions of tragedy of the commons
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that are characterized by negative externalities.

Problem Description
Formally, an MARS problem can be defined as a quadruple
of (N,Θ, A,R), in which N = 1, 2, ..., n is a set of agents,
Θ = r1, ..., rm denotes a set of resources available for agents
in N , At = a1 × ... × an denotes the resource choices of
the agents at time t where ai ∈ Θ, ∀i ∈ N , and Rt : Θ ×
At → < is a reward function. In MARS, a reward associated
with using a resource is defined as a function of the number
of concurrent users of the resource, and all users using the
same resource share the same reward. So, agents’ valuations
of congested resources are not exogenously-determined, but
rather are endogenous functions of one each other’s actions.

The El Farol bar problem (EFBP) is a simple example of
MARS, which was introduced in [Arthur, 1994]. In EFBP, a
set of n agents repeatedly make decisions of whether to attend
a bar or not on certain nights. The only observations available
to the agents are the past history of attendance at the bar. The
bar is a congested resource so that the payoff of attending a
bar is high only if the number of attendees at the bar on the
night is less than a certain threshold ζ. The agents receive
the worst payoff if the bar is over crowded. Thus, an agent
needs to reason about the attendance so as to decide whether
to attend it or not. However, a rational agent always fails to
learn the best decision based on its expected reward, since
all agents are simultaneously learning the same information
and reason in the same manner. This leads to the rationality
paradox in general MARS problems.

Application of the Methodology
In the bar problem, we apply the methodology of our hierar-
chical supervision framework in the following five steps.

Step 1: Group segmentation. We imagine 900 people liv-
ing in a district with 30*30 blocks, which can be separated
into several subgroups with n∗n blocks. The different values
of n thus indicate different levels of centralized governance.

Step 2: Aggregation of public opinion. Each member i
has a probability of pi to attend the bar. A community gov-
ernor in each subgroup collects the information of how many
subordinates went to the bar last night (i.e., attendance radio
in the subgroup) and the average reward of subordinates in the
subgroup. The attendance radio in the subgroup is the public
opinion and the average reward is its performance

Step 3: Generation of supervision policies. Based on the
public opinion from the subgroup in terms of attendance radio
and its reward, the governor applies reinforcement learning
to update her knowledge about whether to attend the bar. To
apply the tabular form of Q-learning, we transform the atten-
dance radio between [0, 1] into a set of discrete actions. More-
over, the governors need to learn from other governors by
comparing their performance. Simple imitation rule (e.g., the
Fermi rule) can be employed for this purpose. If the governor
accepts the action of another governor in the social learning
process, she informs the new action to her subordinates as
the subversion policy, otherwise, the governor chooses an ac-
tion based on the Q values using an exploration strategy, and
informs her subordinates the chosen action accordingly

Figure 2: The dynamics of attendance in the bar problem. In the
benchmark case, agents make their decisions without any hierarchial
control. In the hierarchical supervision case, n indicates the size of
subgroups in the 30*30 group.

Step 4: Adaption of local behavior. When receiving the
supervision policy in terms of attendance probability ai, a
subordinate agent i updates its policy of attendance proba-
bility pi directly by pi = (1 − µ) ∗ pi + µ ∗ ai, where µ is
a learning rate. In the next round, agent i decides whether to
attend the bar based on the updated attendance probability.

Step 5: Calculation of optimal PoG. We normalize the
PoA by PoAn = 1 − rn−rmin

rmax−rmin , where rn is the average
reward of group size n, rmin and rmax are the minimum and
maximum average reward for different sizes of subgroups, re-
spectively. The calculation of PoM is: PoMn = cn−cmin

cmax−cmin ,
where cn is the communication cost of group size n, cmin

and cmax are the minimum and maximum communication
cost for different sizes of subgroups, respectively. The ge-
ometric distance is still used to represent the communication
cost. The relationship function between PoA and PoM, as
well as the optimal size and PoG value then can be derived in
the same way as in the NL problem.

3.3 Experiment Results
We set the threshold of attendance ζ to 540, which means
that the bar can only accommodate 60% of total 900 agents
at most. If more than 540 agents attend the bar, they will re-
ceive a penalized reward to indicate a crowded situation. The
learning parameter µ is set to 0.1. In Q-learning, the range
of attendance probability in between [0, 1] is divided into 50
discrete actions, with the interval between two adjacent ac-
tion being probability of 0.02. Exploration rate ε is set to
0.01. In each trial, the experiment runs for 1000 nights (i.e.,
time steps), and we take the average of rewards in the last 100
time steps for evaluation. As a benchmark, agents maintain
the probability of attendance, and update the policy by learn-
ing with an arbitrary agent in the system using the imitation
rule. The results are averaged over 1000 trials.

From Figure 2, it is clear that the number of participants in
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Figure 3: The relationship of PoA and PoM in the bar problem in
the case of 30*30 group (the left part), and the relationship of PoA
and PoM in different sizes of agent groups (the right part)

the benchmark model is fluctuating along the threshold, in-
dicating an inefficient equilibrium among agents. When an
agent predicts the attendance at the bar is lower than ζ, then
the agent decides to attend the bar. Since the other agents al-
so reason in the same manner, the entire population decides
to attend the bar, ending up with the worst payoffs. There-
fore, agents face contradicting outcomes by making decision-
s based on their rationality. This rationality paradox can be
greatly alleviated using the proposed framework by imposing
a certain level of centralized control on the agents. As can be
seen, the number of overcrowded nights is significantly re-
duced when n = 10. The performance is further promoted
when the governor has a wider control range when n = 30 in
a fully centralized manner.

The left part in Figure 3 presents the relationship curve
when the 30*30 group is divided to different sizes of sub-
groups. It shows the same pattern of result as the NL problem,
and the optimal value of PoG can be computed in the same
way as described before. The right part in Figure 3 presents
the impact of different sizes of agent population. It is appar-
ent that a higher population size R generates a lower optimal
PoG. This is an interesting phenomenon that is a bit of coun-
terintuitive. It demonstrates that the proposed methodology is
more suitable for larger systems, where decentralized control
methods cannot perform well because of the narrow vision
of agents and lack of centralized control. This also provides
an explanation on why in real-life situations, large organiza-
tions and systems such as countries and companies usually
embody the feature of hierarchical supervision structures to
make an elegant balance between centralized governance and
decentralized administration.

4 Related Work
PoA has been extensively studied in the area of computation-
al economics and computer science to study the inefficien-
cy of selfish behavior [Koutsoupias and Papadimitriou, 1999;
Andelman et al., 2009]. The mainstream research in this
direction focuses on the computational analysis of upper or
lower bound on PoA under various conditions of conges-
tion games [Wang et al., 2016; Feldman et al., 2016] and
real-world applications [Youn et al., 2008; Chen and Zhang,
2012]. However, most of these studies do not consider an ex-
plicit cost associated with the decision making process, which

is unrealistic in real-life problems where manageable cost or
communication cost is inevitable in sustaining the global sys-
tem order. While the work in [Oh and Smith, 2008] has ex-
tended the definition of PoA as a measure of inefficiency of a
multiagent learning algorithm in MARS problems, and con-
sidered adminstration cost in such contexts, our work high-
lights a general hierarchical supervision framework to explic-
itly model and trade off PoA and its associated cost.

There is also tremendous amount of work that aims to solve
coordination issues in the two case problems. For the NL
problem, numerous mechanisms have been proposed for ef-
ficient emergence of social norms while agents interact with
each other using learning (particularly reinforcement learn-
ing) methods. These mechanisms include the social learning
strategy [Sen and Airiau, 2007], the collective interaction pro-
tocol [Yu et al., 2014], the utilization of topological knowl-
edge [Hasan et al., 2018] and agents’ observation capabili-
ties [Villatoro et al., 2011]. Several solutions have also been
proposed to solve the selfish equilibria problem in MARS,
or more broadly, social dilemmas, when agents use rational
learning strategies for interaction. For example, Bazzan et al.
resorted to social instruments of hierarchy and coalition to
promote cooperation in Iterated Prisoner’s Dilemmas [Baz-
zan et al., 2011]. Oh and Smith applied social learning to pro-
mote the social welfare in MARS problems [Oh and Smith,
2008]. Our work supplements the literature by providing new
effective solutions to these two challenging problems.

5 Conclusions
In this paper, we argue for the benefits of considering both
centralized control and decentralized interactions in solving a
coordination problem. By trading off between these two as-
pects, an optimal middle ground solution, represented by the
lowest PoG, can be discovered. We implement the frame-
work using sampling-based simulations to fit the PoA and
PoM relationship curve before computing the lowest PoG.
This proof-of-concept validation is reasonable for the two
case problems where theoretical analysis and proof over the
solution and its performance are still open issues in this area.
However, building on the rich literature in game theoretical
analysis on PoA, it is possible to derive the optimal PoG in
a closed form by introducing a cost function into the prob-
lem formulation and solving the optimization problem given
by Eq. (4) directly. Moreover, richer phenomenon may be re-
vealed under various problem settings or specifications, e.g.,
combination functions, or cost measurement etc. Also, we are
expecting implementations of this framework and its method-
ology in solving other real-world coordination problems, in
which efficiency and cost are the two main optimized objec-
tives (e.g., resources allocation in cognitive radio networks).
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