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Abstract

In this paper, we propose a decentralized dis-
tributed algorithm with stochastic communication
among nodes, building on a sampling method
called “edge sampling”. Such a sampling algorithm
allows us to avoid the heavy peer-to-peer commu-
nication cost when combining neighboring weights
on dense networks while still maintains a compa-
rable convergence rate. In particular, we quanti-
tatively analyze its theoretical convergence prop-
erties, as well as the optimal sampling rate over
the underlying network. When compared with pre-
vious methods, our solution is shown to be un-
biased, communication-efficient and suffers from
lower sampling variances. These theoretical find-
ings are validated by both numerical experiments
on the mixing rates of Markov Chains and dis-
tributed machine learning problems.

1

Decentralized optimization [Tsitsiklis, 1984; Tsitsiklis e al.,
1986] focuses on the development and analysis of solving
optimization problems that are defined over networks. Dif-
ferent from the centralized distributed optimization where in-
formation from distributed nodes needs to be sent to a cen-
tral unit (e.g., the “Parameter-Server” framework in [Li ef al.,
2014]), computation nodes in this framework only contact
their immediate neighbors so the computation and commu-
nication are totally decentralized. Such a learning paradigm
finds its applications in a variety of research areas, including
sensor network estimation [Rabbat and Nowak, 20041, multi-
agent coordination [Necoara, 2013; Cao et al., 2013], dis-
tributed tracking [Olfati-Saber and Sandell, 2008] and source
scheduling [Chunlin and Layuan, 2006]. In these cases, data
may naturally be distributed and observed over the network
and sending all data to a fusion center leads to extra trans-
portation costs. This issue is compounded by privacy and
security concerns, where it is favorable to compute models
locally for political, privacy-sensitive and technological rea-
sons.
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The performance of decentralized optimization is known
to be affected by the mixing ability of the underlying net-
works [Boyd er al., 2004; Levin and Peres, 2017; Boyd et al.,
2006]. For dense networks, each node is well-connected to its
neighbors and therefore guarantees sufficient information ex-
change on each round, leading to faster convergence rates.
However, on the other side of the coin is the heavy compu-
tation and communication cost when transporting and com-
puting parameters among nodes. As a canonical example,
consider Online Gradient Descent (OGD) on a dense network
called “n-complete network”, where each node is connected
to all the remaining nodes and the overall network obtains
the best mixing ability. The combination step on each round
requires a collection of neighboring parameters with O(nd)
cost, dominating the following O(d) cost in the local online
gradient descent phase when n is sufficiently large. This is-
sue is further compounded by the scenarios when the com-
munication is costly or each node has limited storage space
to buffer the neighboring parameters [Iyengar e al., 2004;
Balcan et al., 2012; Woodruff and Zhang, 2017]. On the
other hand, sparse and poorly-connected networks require
less neighboring communication costs and storage demands
but suffer from slower convergence rates and poor adaptation
ability to changes for networks. It seems the merits of achiev-
ing faster convergence rates while using less frequent neigh-
boring communication for large networks cannot be obtained
simultaneously in the decentralized optimization.

In this paper, we address this issue by proposing a de-
centralized optimization based on a sampling strategy named
“edge sampling”, allowing the dense networks to be dynam-
ically sparse to reduce communication burden while main-
taining a comparable convergence rate. More specifically,
each node selects a subset of its connecting edges based on
a sampling parameter, as well as the original combination
weight, to generate an unbiased estimation when combining
neighboring parameters. Such a strategy is shown to be un-
biased, communication efficient and graph-dependent, which
in fact allows us to use a relatively small sampling rate to
avoid the redundant communication on dense networks while
maintaining most connections on poorly-connected networks.
These properties are further validated with both theoretical
analysis where we show this sampling strategy allows the al-
gorithm to converge significantly faster than the unsampled
method when giving the same communication budget (e.g.,
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Unbiased | Low Variance | Graph Dependent | Communication Efficient
DDA v v v X
Syn Gossip [Boyd et al., 2006] X X X v
DDA-NS [Duchi et al., 2012] X X X v
This Paper [ v [ v [ v v

Table 1: Algorithm Comparison. DDA stands for an unsampled baseline and the following three act as sampling algorithms.

converge O(n) faster in the above mentioned n-complete
networks) and experimental results on the mixing rates of
Markov Chains and distributed machine learning problems.

Related Works: Our work directly follows the optimiza-
tion paradigm by decomposing the learning into two phases,
namely “combination phase” and “adaptation phase”, in re-
cent gradient-based decentralized optimization [Ram et al.,
2010; Duchi et al., 2012; Sayed and others, 2014; Shi et al.,
2015; Yuan et al., 2016]. The idea of replacing the determin-
istic combination phase with a stochastic counterpart is partly
explored in previous distributed studies [Boyd er al., 2006;
Duchi et al., 2012], but the these algorithms consider node-
based sampling strategy and suffer from both biased estima-
tion and large variances (see algorithm comparison in Table.
1). In the following parts, we consider the unsampled algo-
rithm as a baseline and further these existing algorithms as
competitors. Our sampling strategy is also partly related to
“graph sparsification” techniques in [Spielman and Srivas-
tava, 2011; Spielman and Teng, 2011], where the authors
present algorithms to produce sparsifiers for dense networks,
but their works mainly focus on maintaining the Laplacian
matrix spectral gap while our method applies to the general
doubly stochastic matrix. Finally, our work is also partly
related to studies on time-varying graphs [Nedi¢ and Ol-
shevsky, 2015; Nedic et al., 2017] as the underlying graph
becomes dynamic after sampling, but our work differs from
these works as it does not make extra graph connection as-
sumptions only requires the original graph to be connected.

Notations: Lower-case letters («, 3, - - - ) denote as scalars
and lower-case bold letters (w,v,---) are used as vectors.
Upper-case letters (U, P, Q) denote matrices. For distributed
algorithms, the element a; ; of a fixed matrix A € R™*"
denotes the combination weight from node j to node ¢. The
singular values of A are denoted as o1 (A) > o9(A4) > --- >
on(A). 1refers to an x 1 vector with all elements equaling
to 1. For a graph, D represents its degree matrix with d,q,
denoting its maximum degree, and J represents its adjacency
matrix.

2 Decentralized Optimization with Edge
Sampling

We formally propose our decentralized optimization algo-
rithm with edge sampling in this part. Although such a
learning paradigm can be generally adopted to most gradient-
based decentralized algorithms, we focus on its application
to the well-known DDA [Duchi er al., 2012] algorithm in this

paper.
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2.1 Standard Distributed Dual Averaging (DDA)
We start from introducing the standard Distributed Dual Av-
eraging (DDA) algorithm [Duchi er al., 2012] that acts as
our baseline. Consider a graph G = (V, E)) with vertex set
V={1,---,n}andedgeset E CV x V. Eachnodei € V
stores its own parameters w; € R and uses the associated
local function f; : R¢ — R to evaluate the performance of its
parameters. The communication between nodes is specified
by the graph G: node ¢ can only directly communicate with its
immediate neighbors N (i) = {j € V| (,7) € E} through a
combination matrix A. The overarching goal of decentralized
optimization is minimizing a global objective defined by the
average over the local functions:
1 ,
flw) = - ZZ:;ﬁ(w) subject to w € Q. (1)

In DDA algorithm, each node stores a primal parameter w!
and an auxiliary dual variable zﬁ. On each round, it updates
its parameters as follows:

=" a2l + 0fi(wh),

JEN(2)
with =11 (2 r")
1
= arg min {(zﬁ“,w) + w(w)} . (3
weQ ui

In particular, node ¢ first computes its new dual parame-
t+1 . . .
ter z," from a weighted average of the neighboring param-

eters z and its own subgradient df;(w?). The next local it-

erate Wf“ is chosen by minimizing an averaged first-order
approximation to the function f; with a proximal function
to ensure the primal parameters do not oscillate wildly. Typ-
ical examples of v include ¢; regularization ¥)(w) = ||w||1,
{5 regularizations ¢ (w) = ||w||3 and the entropy functions
PY(w) Z;i:l w; log(w;) — w;.

The convergence rate of the standard DDA is well-
established as O(1/+4/T") in the previous research [Duchi et
al., 2012] with the following assumptions.

Combine: z

2

Adapt:

Assumption 1. Function Assumption: each function f;(w) is
L-Lipschitz continuous w.r.t the same norm || - || on §, namely

1fi(x) = fiy)| < Llx =yl forx,y € Q.
Assumption 2. Network Assumption: the network is con-
nected and the corresponding combination matrix A is irre-
ducible with non-negative elements. Further more, the com-
bination matrix A is assumed to be doubly stochastic, namely

n n
E aij =1, E aij =1
i=1 j=1
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is true foralli € {1,--- ;n}andj € {1,--- ,n}.
Theorem 1. Under the assumption I and 2 and setting the

step size 0t o< RJL;\%(A), the DDA algorithm converges as
/ RL log(T’
PO~ flwt) < o 2 BTV oy

= VT T—0a(A)

with W' denoting the average weight (w} +---+wT )/T',
c denoting a universal constant, R denoting another con-
stant to upper bound Y(w*) < R? and o3(A)
max {A2(A4), |\, (4)[}.

2.2 Distributed Dual Averaging with Edge
Sampling (DDA-ES)

Performance of the above DDA algorithm is known to be af-
fected by the underlying combination matrix A and its cor-
responding component a; ;. Dense combination matrix A
allows the information to be well-transported among nodes
while leads to heavy communication cost at the same time. To
alleviate this issue while still maintain a comparable perfor-
mance, we propose an edge sampling algorithm named DDA-
ES as follows.

DDA-ES algorithm requires each existing edge e; ; € E to
appear with probability

Dij = 5

1+ =
on each round, with z denoting a graph-dependent parameter

to control the sampling rate.

When an edge (i,j) € E is sampled on round ¢, the new
combination weights b} ; and b’ ; will be scaled by a factor

1/pij:

t 3t
bivjbm.{

to guarantee an unbiased estimation:

1 .
Di,j : alv]

0

if edge e; ; is sampled;

otherwise,

(6)

E [sz] :pi,j . i—jam— = ai_j.
s

A normalization step is finally performed on each node to
preserve row-stochasticity for matrix B(t):

bi,=1— Y b, forie[l,---,n].

J=1\i

@)

It’s worth mentioning that although b} ; also acts as an un-
biased estimation for a; ;, the new combination matrix B(¢)
is not strictly “doubly stochastic” as bﬁl can occasionally be
negative. However, we shall show (S.M. B, Lemma 4) bound-

A2
i,

ing z as [
L)

2047;, j
is sufficient to ensure the convergence of our proposed algo-
rithm.

0<2z< min
a@J';éO

®
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Algorithm 1 Distributed Dual Averaging with Edge
Sampling (DDA-ES)
1: Input: Convex set 2, combination matrix A, step-size
{n'}forVi e {1,--- ,n}.
2: Initialize: w? = 0andz) = 0forVi € {1,--- ,m}.
3: Set 0 < z < min

g, { [Azli,j}

2ai,j
4. fort=1,--- ,T do

5:  Sample each edge with probability p; ; = H%
6:  if edge e; ; appears then v

) : ; t gt _ 1
7 Assign weight b; ; = bj; = *-ai
8. else
9: Assign weight b} ; = b}, =0
10:  end if
11:  Normalize: b ; =1 — 377 ,\; b} ; fori € [1,--- ,n].
12:  for Each learnerli e Vdo

. t

13: Combine: z; ™' = > jen) Ui 25 + 0fi(wi)
14: Adapt: witl =114 (27 nt)
15:  end for
16: end for
17: Output: w! fori=1,---,n

Remark: The sampling rate p; ; in (5) is designed with the fol-
lowing merits. (1) It allows the communication matrix B(t)
to be an unbiased i.i.d estimation of the previous dense ma-
trix A. (2) p;,; is designed to be positively correlated to a; ;,
since the combination weight a; ; between node ¢ and j often
indicates the importance of a certain edge e; ; € E. For in-
stance, if a certain edge acts as a bottleneck of the underlying
graph, its weight a; ; in the original combination matrix A
is generally larger to increase information exchange, and our
edge sampling strategy is designed to sample this edge more
frequently to boost communication between nodes. (3) Most
importantly, this sampling strategy leads to the convenience
in analyzing the convergence rate of DDA-ES algorithm, as
shown in Sec. 3.

2.3 Node-Wise Implementation of DDA-ES

The above DDA-ES algorithm cannot be directly executed
since most decentralized algorithms are implemented on
nodes instead of the edges connecting them, so we provide
its practical node-wise implementation as follows. For each
existing edge e; ; € F, node ¢ and node j can trigger the
communication independently with probability

Dij =Pji=1—+/1—pij.
The peer-to-peer communication is executed if at least one

node triggers the communication, guaranteeing the final sam-
plingratetobe 1 — (1 — ﬁi7j)(1 — f)j,,‘) = Dij-

3 Convergence Analysis

We establish the convergence analysis for DDA-ES algorithm
in this part, followed by some discussions on the sampling
strategy for different graphs.
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3.1 Convergence Rate

Theorem 2. Let {B(t)} be an i.id. sequence of doubly
stochastic matrices generated in Algorithm 1. By setting the
Ty 1onz) VLl\_[:(Z) DDA-ES converges as

RL log(T+/n)

step size nt o

ST ¥ « Lt 08U VL) 9
with  probability —at least 1 — 1/(T?n) for
any node i € {1,---,n}, with k(z) =

max {\3(A) — 22X2(A4) + 22, A2 (A) — 22X, (A) + 2z},
Proof: See Supplementary Material B!.

The above theorem shows that DDA-ES algorithm con-
verges with a speed of O(1/v/T), similar to the rate estab-
lished in Theorem 1 for standard DDA . It also numerically
reveals how the sampling parameter 2 affects the spectral gap
1 — k(z) and therefore the final convergence rate. A good
sampling rate z will guarantee our gain in reducing the com-
munication cost does not offset the loss in the convergence
rate, and we shall establish the choices in the following part.

3.2 Convergence Comparison

For fair comparison, we adopt a scheme proposed in [Zhang
et al., 2013] by comparing the convergence rate of DDA-ES
with the baseline under the same communication budget.

Clearly, when giving the sample communication budget,
DDA-ES algorithm is able to update more iterations as it sam-
ples a subset of existing edges and bears less communication
cost per iteration. A more precise description is established
as

T=T/p(2), (10)

with T and T" denoting the overall updating iterations for
DDA-ES and DDA separately. Here p(z) denoting the aver-
aging sampling rate for DDA-ES by summing p; ; over the
total edge number |E|:

N Dic1 Z?:H»l Dij

Substitute 7" in (9) with T"/p(z), we have

)< 2L log(T"v/n/p(2))
T VT pz) V1-(2)

For simplicity of analysis, we ignore the effect of con-
stant values ¢, ¢ and assume 7" is sufficient large so that

log(T"/n/p(z)) = log(T"y/n)+log(1/5(2)) ~ log(T"y/n).

Now the difference between the convergence rate of DDA-
ESin (11) and the baseline of DDA in (4) can be summarized
into a factor:

D it Dt alajjrz

B

Jw !

)= f(w"

)

— ]. — 09 (A)
[(z) == Vp(2) - —F—=" (12)
1—k(2)
'Supplementary materials is available on the website: https:

/Iwww.dropbox.com/s/v8bgjby9odexiqa/Sampling_SuppMaterial.
pdf?d1=0.
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Our goal now lies in minimizing the T'(z) by analyzing
its two components: the lower sampling rate p(z) < 1
in DDA-ES reduces I'(z) while the decreasing spectral gap
1 —09(A) > 1 — k(z) increases our target value. The op-
timal z* corresponds to the best trade-off between these two
components, namely

p(2)
1—k(2)

z* = argminT'(z) = argmin
z€(8) z€(8)

13)

3.3 Acceleration of Edge Sampling with Optimal
Sampling Parameter z*

To show the benefits of edge sampling, we start from a simple
example on the n-complete graph and establish its theoretical
results in the following corollary.

: : _ 14”7
Corollary 3. For n-complete graphs with matrix A = =

the optimal sampling parameter and its corresponding accel-
eration factor can be derived as

= and T'(z) = O(1/y/n).

Proof: See Supplementary Material C.

To achieve f(w;(T")) — f(w*) < e, the standard DDA
algorithm needs approximately O( RZQLZ) communication it-

erations while DDA-ES algorithm only needs approximately

O(%) communication rounds. In other words, the sam-
pling algorithm is approximately n-times faster than the orig-
inal DDA when given the same communication budget.
Replacing z in Eq (5) with the above corollory, we obtain
the optimal sampling rate as p; ; = 4/(n + 2). Namely, each
node in DDA-ES only needs to contact its neighbors with
O(4d) cost instead of O(nd) in standard DDA, which clearly
reduces the communication burden and avoids the network

overburden problem.

s

*

Eq (13) has a closed-form solution z* for many standard
graphs, and the acceleration of convergence rate under the
same communication cost and reduction in peer-to-peer com-
munication cost can be generally found on these graphs. In
fact, the above findings can be extended to d-regular graphs
where edge sampling technique allows the algorithm to con-
verge O(d) times faster than the baseline with large d, and the
reader is referred to Supplementary Material C for details.

As for the general case, Eq (13) may not have a closed-
form solution for any arbitrary graph. In this case, we

1 1 3 : [AQ]i.j

can simply use grid-search in {O,aﬂlilo{ Za, to find
a (sub)optimal z with O(n?) computation cost, or simply use
(4%,
2(11'.’]'

min
Qs 5 750
of I'(z) leads to the conclusion whether edge sampling accel-
erates the original algorithm in this case.

for convenience. A numerical computation

4 Experiments

We have theoretically shown the DDA-ES algorithm achieves
of goal of reducing the communication cost on each round
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DDA-NS
DDA-ES
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(a) Mixing rate of Markov chain on the k-connected
cycle. n =1000, k =75,z =0.25.

DDA
Syn Gossip
DDA-NS

DDA-ES

10-1°

10-12

10 15 20 25 30

ommunication

35

C

(b) Mixing rate of Markov chain on the random graph.

n

=1000, c =0.15,z =0.05.

Figure 1: Mixing rate of Markov chains on different networks. The gap refers to |W* — 1/n||2.

while accelerating the overall convergence rates under the
same communication budget, and we shall validate our find-
ings with numerical experiments in this part.

4.1 Experimental Setup

Competing Algorithms: We compare our DDA-ES algo-
rithm with the standard DDA algorithm, as well as two exist-
ing node sampling algorithms, namely Syn Gossip in [Boyd
et al., 2006] and DDA-NS in [Duchi et al., 2012].

Graphs: Experiments are conducted on two types of
graphs: (1) k-Connected Cycle C,, j, with each node connect-
ing to its k£ neighbors on the left and right, representing a
(2k + 1)-regular graph with theoretical optimal z*; (2) Ran-
dom Graph G, . (also known as “Erdos-Renyi graph” [Erdos
and Rényi, 1960]) with any two nodes connected with prob-
ability c, representing a general graph without closed-form
solutions for z.

Parameter Settings: For all algorithms, we set 7’
O(1/+/t) as suggested in the previous theoretical analy-
sis. The communication matrix A is set by the ‘Metropolis-
Hasting’ rule [Metropolis et al., 1953; Hastings, 1970] to
guarantee doubly stochasticity:

min {1/d(:),1/d(j)} if e;; € Fandi # j;
a; 5 = . e .
J >reny max{0,1/d(i) — 1/d(k)} if i=j.
Measurements: One natural iteration (denoted as “Itera-
tion” in figures) refers to a single execution of combination
and adaption for one round, while one communication round
(denoted as “Communication” in figures) refers to the com-
munication cost for standard DDA algorithm in one natural it-
eration. Performance of each algorithm is measured by com-
puting the gap between its status on round ¢ and the optimal
one.

4.2 Mixing Rate of Markov Chains

We first conduct experiments to show the mixing rates of
Markov chain for all algorithms?, which quantifies the dif-

The standard mixing rate of Markov chain is modified to better
simulate the combination step in (2).
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fusion ability of the networks [Levin and Peres, 2017] and
also determines the convergence rates of distributed algo-
rithms [Duchi er al., 2012]. Each node is first given an
initial value w! based on a predefined n-dimensional sim-
plex, and then mixes its value with its neighbors as w!*! =
D ien (i) @ijw§. We measure the gap between the network’s
current status W' = (wf, - -+ ,w!) and the final stable distri-
bution 1/n by calculating their gap, namely |[W! — 1/n||2.
Figure 1(a) reports the mixing rate of Markov chain on
k-connected cycle. Previous analysis in Sec 3.3 shows the
edge sampling algorithm converges O(2k + 1) times faster
than the standard DDA, and this is validated in figure 1(a) as
DDA-ES algorithm only needs a few rounds to reach its equi-
librium distribution 1/ and significantly outperforms its un-
sampled counterpart. Similar phenomenon can be observed
in 1(b), where DDA-ES algorithms also converges faster than
its competitors on the random graph. Sampling techniques in-
cluding “Syn Gossip” and “DDA-NS” can boost the mixing
rate of Markov chain on the k-connected graph but performs;
worse than the baseline on the random graph, and their per-
formance is consistently inferior to our proposed algorithm.

4.3 Distributed Logistic Regression

We now consider a distributed optimization problem for the
a9a dataset®. Each node 7 on the network receives a subset of
the dataset and a local loss function:

fi(w) =log (147w )

to perform online logistic regression. The overall goal is
minimizing the average of these local functions: f(w)
LS, filw), with proximal function in Eq (3) set as
(w) 2||w||> and A = 1073. Since Theorem 1 and 2
hold for any node i, the performance of all algorithms is mea-
sured by calculating the gap f(W7 ) — f(w*) with the weight
w7 on the first node.

Figure 2(a) and 2(b) compare the communication-
efficiency for all four algorithms. Consistent with previous

*https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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(b) Convergence rate of communication rounds.
Random graph, n = 1000, c= 0.15, z= 0.05.
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(d) Convergence rate of natural iterations.
Random graph, n = 1000, c=0.15, z= 0.05.

Figure 2: Distributed binary classification on different networks. The gap refers to f (viflT/) — f(w™).

Markov chain experiments, DDA-ES enjoys the best commu-
nication utilization and achieves the fastest convergence rate
when given the same communication budget. In the mean-
while, we also observe that DDA-ES algorithm suffers from
a lower variance when compared with Syn Gossip and DDA-
ES algorithms.

Figure 2(c) and 2(d) illustrate the convergence rate in terms
of natural iterations. As can be observed from the figures,
the standard DDA algorithm obtains the fastest convergence
rate in this case since it combines information from all neigh-
bors on each round. In the meanwhile, we can also observe
that the DDA-ES algorithm converges almost exactly like the
standard DDA even equipped with a relatively lower sam-
pling rate and less communication on each round, indicating
the sampling technique can efficiently reduce redundant com-
munication and lead to better utilization of information ex-
change. Its competing sampling algorithms, Syn Gossip and
DDA-NS, cannot match its performance in both graphs. In
particular, due to the lowest sampling rate, f(w7 ) — f(w*)
for Syn Gossip algorithm only occasionally drops down when
information exchange is executed, while for most of the time,
it only minimizes towards its own local function and therefore
performs poorly on the overall datasets.
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5 Conclusion

In this paper, we propose and analyze a decentralized opti-
mization algorithm based on a new sampling strategy named
“edge sampling”. This strategy provides an unbiased i.i.d. es-
timation of the initial combination matrix, while significantly
reduce the communication cost on dense and well-connected
networks. A comparable convergence rate is still preserved
and even outperform the baseline algorithm when giving the
same communication budget. When compared with existing
node sampling algorithms, our strategy shows its superiori-
ties for suffering from less sampling variance and being more
communication-efficient, which are further validated by both
theoretical analysis for its convergence rate and numerical
experiments on the mixing rates of Markov chain and dis-
tributed machine learning problems.
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