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Abstract
The objective in image co-segmentation is to jointly
segment unknown common objects from a given
set of images. In this paper, we propose a novel
deep convolution neural network based end-to-end
co-segmentation model. It is composed of a metric
learning and decision network leading to a novel
conditional siamese encoder-decoder network for
estimating a co-segmentation mask. The role of the
metric learning network is to find an optimum la-
tent feature space where objects of the same class
are closer and that of different classes are sep-
arated by a certain margin. Depending on the
extracted features, the decision network decides
whether input images have common objects or not
and the encoder-decoder network produces a co-
segmentation mask accordingly. Key aspects of the
architecture are as follows. First, it is completely
class agnostic and does not require any seman-
tic information. Second, in addition to producing
masks, the decoder network also learns similarity
across image pairs that improves co-segmentation
significantly. Experimental results reflect an excel-
lent performance of our method compared to state-
of-the-art methods on challenging co-segmentation
datasets.

1 Introduction
Image co-segmentation plays a significant role in computer
vision since it identifies images that have common objects
and jointly segments out those objects from them (Fig. 1).
Further, co-segmentation has the potential to improve re-
sult of single image segmentation as it integrates information
from a group of similar images [Rother et al., 2006]. It can
be used as a tool for image retrieval, annotation, object recog-
nition and person re-identification.

Existing common challenges in the co-segmentation prob-
lem are to find suitable features when the appearance, shape
and pose of foregrounds vary significantly, foreground has
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Figure 1: Illustration of co-segmentation of an image pair.
Columns 1-4 show an input image pair, the corresponding ground
truth mask pair, the estimated mask pair and the corresponding com-
mon foreground object obtained using the proposed model.

notable similarities with background, and images contain
missing foregrounds. There has been a significant amount
of work on unsupervised co-segmentation [Hati et al., 2018;
Joulin et al., 2012; Vicente et al., 2010]. But, in general,
these methods are sensitive to the selected hand-crafted fea-
tures and require exhaustive feature tuning. There also have
been some semi-supervised approaches [Batra et al., 2010;
Wang and Shen, 2016] where users provide sparse foreground
and background labels on training images as scribbles and
the co-segmentation algorithm learns background and fore-
ground appearance models from these images. To handle the
aforementioned challenges, these methods have to iterate be-
tween learning appearance models and acquiring human in-
puts, which is difficult.

In order to solve those difficulties, we propose a CNN
based simple end-to-end architecture for co-segmentation
(Fig. 2). Our model utilizes a siamese convolution-
deconvolution (encoder-decoder) network, which takes a pair
of images as input, produces intermediate convolutional fea-
tures using feature encoders and conditionally maps those
features into corresponding co-segmentation masks using de-
coders. These masks are used to extract the common object
(Fig. 1). We use a siamese metric learning network that learns
an optimal latent feature space where objects belonging to the
same class are closer and objects from different classes are
well separated, without using semantic class labels. Further-
more, we use a decision network on top of the metric learning
network to produce a binary label, indicating the presence or
absence of a common object in the input image pair. Together
these two networks condition the siamese encoder-decoder
network to perform an accurate co-segmentation depending
on the presence of a common object in the input image pair.

During training, the binary ground truth masks of the train-
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ing images guide the encoder-decoder network to differen-
tiate common objects from the background based on the
learned features. The metric learning part guides the encoder-
decoder network to reduce intra-class object distance and in-
crease inter-class object distance. As identifying outlier im-
ages is very difficult during co-segmentation, we propose a
novel training strategy. In the case of positive samples (an
image pair with a common object), we train the whole net-
work. However for negative samples (an image pair with no
common object), we only train the complete metric learning,
decision, encoder and certain part of decoder network (please
see Sec. 3.5 for more detail). During testing, the decision net-
work predicts the presence or absence of a common object in
them and accordingly the siamese encoder-decoder network
estimates the corresponding co-segmentation masks.

The main contributions of this paper are:

• We propose a twofold siamese network architecture that
is class agnostic.

• One of them being a novel conditional siamese encoder-
decoder network and the other being a siamese metric
learning network followed by a decision network, which
takes input from intermediate layers of decoder network,
as opposed to conventional approaches that use the en-
coder output as input. This design helps to generate bet-
ter co-segmentation masks through image similarity.

• We propose a novel training strategy which helps the
network to discard outlier images and boost performance
with low amount of training data.

We perform extensive experiments and ablation studies on
various challenging co-segmentation datasets such as the
PASCAL-VOC dataset [Everingham et al., 2010], the Inter-
net dataset [Rubinstein et al., 2013], the MSRC dataset [Ru-
binstein et al., 2013], and demonstrate significant improve-
ment in performance over state-of-the-art methods.

2 Related Work
The unsupervised object co-segmentation problem was intro-
duced by [Rother et al., 2006] where they provide a solu-
tion for handling two images with a Markov random field
(MRF) based generative. [Joulin et al., 2010] solved co-
segmentation using clustering by finding discriminative ob-
ject features, whereas, the method in [Vicente et al., 2010]
uses Boykov-Jolly model and a dual decomposition technique
based optimization. The method in [Wang et al., 2013] repre-
sents each image in a linear functional space and learns a lin-
ear transformation between different functional space to per-
form co-segmentation. Many researchers have also been try-
ing to solve the co-segmentation problem with different de-
grees of supervision. [Rubio et al., 2012] trained SVM classi-
fier on top of a Gaussian Mixture Model to find out correspon-
dence between different regions of input images. The method
in [Rubinstein et al., 2013] uses dense correspondences and
saliency. [Hsu et al., 2018] also used saliency along with
a pretrained convolution network in an unsupervised man-
ner to solve co-segmentation. [Chen et al., 2014] used seg-
mentation prior (seed) with learned detector. The method in
[Quan et al., 2016] uses CNN features obtained from VGG

net and handcrafted features for superpixels and subsequently
implements two separate graph-cuts for background and fore-
ground superpixels. The methods in [Batra et al., 2011;
Batra et al., 2010; Dong et al., 2015; Wang and Shen, 2016]
propose semi-supervised solutions using sparse scribbles.
[Yuan et al., 2017] proposed a deep neural network based
end-to-end co-segmentation model where they extracted a set
of object proposals and applied deep conditional random field
to find co-occurring objects. Subsequently, they segmented
objects from these proposals independently. Therefore, their
method is not robust against outliers. A very recent CNN
based deep co-segmentation network presented in [Chen et
al., 2018] additionally used attention for solving the prob-
lem. The work in [Li et al., 2018] also uses a siamese CNN
to estimate co-segmentation masks. Different from their ar-
chitecture, our proposed siamese encoder-decoder network is
conditioned by a siamese metric learning network and de-
coder network that learn similarity across common objects
(discussed in detail in the next section) which helps us in ob-
taining significantly better co-segmentation performance.

3 Proposed Network Architecture
Given a pair of input images, our aim is to segment the com-
mon objects from them. It should be noted that our prob-
lem setting is quite challenging, since we assume that the
images do not always contain common objects, and when
there is a common object, their poses and appearances may
vary significantly. Humans have the ability to identify ob-
jects of the same class even if they significantly differ in pose,
shape and appearance. To capture this aspect, we incorpo-
rate a metric learning approach to learn a latent feature space,
which ensures that objects from the same class will be pro-
jected very close to each other and that of different classes
will be projected far apart at least by a margin irrespective
of their shape, pose and appearance variations. Furthermore,
the object should be distinguishable from its background. Let
{Ii}2i=1 ∈ Rq×q be a pair of input images and {Mi}2i=1 ∈
Rq×q be the corresponding ground truth binary masks high-
lighting the regions of common object. Our objective in the
proposed network is to estimate such masks {M̂i}2i=1 using a
conditional siamese encoder-decoder network. The proposed
network architecture is shown in Fig. 2(a). It is composed
of three major components: a conditional siamese encoder-
decoder network, a fully-connected siamese metric learning
network and a decision network.

3.1 Conditional Siamese Encoder-Decoder
Network

The proposed encoder-decoder network has a convolution
feature encoder and co-segmentation mask decoder. The
siamese encoder consists of two identical feature extraction
CNNs with shared parameters and is built upon the VGG 16
architecture. The input image pair I1 and I2 (224 × 224)
is passed through the encoder network, which is composed
of 13 convolutional layers (conv) and five max-pooling (MP)
layers as shown in Fig. 2. The output of each encoders is a
high level semantic feature map f1 or f2, having 512 channels
with a spatial size of 7× 7.
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Figure 2: Illustration of the proposed deep convolution neural network architecture for co-segmentation. [Top]: An input image pair (I1,
I2) is passed through a pair of encoder-decoder networks, with shared weights (indicated by vertical dotted lines). Output feature maps of
the ninth decoder layer pair (cT9) are vectorised (fu1, fu2) by Global Average Pooling (GAP) and fed to a siamese metric learning network.
Its output vector pair (fs1, fs2) is then concatenated and fed to the final decision network, which is a multi-layer perceptron that produces
a binary label (ŷ), one or zero, indicating presence or absence of any common object in the input image pair. [Bottom]: Details of the
encoder-decoder network. 64-conv indicates convolution using 64 filters followed by ReLU. MP stands for max-pooling with a kernel of size
2× 2. NNI stands for nearest neighbour interpolation. We perform deconvolution using convolution-transpose operation (convT). Red dotted
line arrows show backpropagation for positive samples and green dotted line arrows show backpropagation for both positive and negative
samples. The complete network is trained for positive samples. For negative samples, the decoder network after cT9 is not trained.

The siamese decoder block that follows the encoder, per-
forms the task of producing foreground masks of the common
objects. It consists of two identical deconvolution networks.
The input to this network is the semantic feature map pair
f1 and f2 produced by the encoder. The decoder network
is formed by five spatial interpolation layers with 13 trans-
posed convolution layers (convT) as shown in Fig. 2 [Bot-
tom]. In the encoder, we have used max-pooling as it makes
the extracted features spatially invariant and contextual. Do-
ing so, we loose the spatial resolution of the input images.
The role of the decoder network is to transform these low
resolution feature maps to co-segmentation masks with reso-
lution equal to that of the input. To increase the size of the
feature maps, we use nearest neighbour interpolation (NNI),
which is fast compared to bi-linear or bi-cubic interpolation.
However, this way of increasing size introduces blurring and

spatial artifacts. Therefore after each NNI, transposed convo-
lution has been performed to reduce these artifacts. All de-
convolution or transposed convolution layers except the final
layer are followed by a ReLU operation. The final decon-
volution layer produces two single channel maps with size
224 × 224, which are converted to co-segmentation masks
M̂1, M̂2 by sigmoid function. The output layer of this net-
work (see Fig. 2) is gated by the binary output of the deci-
sion network (discussed in Sec. 3.3) to produce a conditional
siamese convolutional network. The conditional parameter is
used during the feed-forward and backpropagation stages, as
detailed in Sec. 3.5.

3.2 Siamese Metric Learning Network
It consists of two fully connected layers with dimensions 128
and 64, respectively. The first layer has ReLU as non-linearity
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and the second layer does not have any non-linearity. This
network takes input fu1 and fu2 from the siamese decoder
network and outputs a pair of feature vectors fs1 and fs2 that
represent the objects in the learned latent space. Since the de-
convolution layers at the middle of the decoder network cap-
ture sufficiently enough object information, we use the out-
put of the ninth deconvolution layer (56× 56 and having 256
channels) as the input to this network. We use global average
pooling (GAP) over each channel of the deconvolution layer
to get two 256 dimensional vectors. To train the network,
we use standard triplet loss Sec. 3.4. During backpropagation
this also updates the nine decoder deconvolution layers and
thirteen encoder convolution layers as shown in Fig. 2 which
leads to better masks.

3.3 Decision Network
During testing, we are required to infer whether the input im-
age pair contains common objects. We achieve this using a
decision network that detects the presence or absence of com-
mon objects. This network is built upon the feature similarity
network and has two fully connected layers with dimensions
32 and 1, respectively. The input to the network is a 128 di-
mensional vector obtained by concatenating fs1 and fs2. The
first layer is associated with a ReLU non-linearity. The sec-
ond layer is associated with a Sigmoid function that gives a
probability signifying presence or absence of common object
in the two input images. During testing, we threshold the
probability and convert it to a binary label. For an input im-
age pair if the decision network predicts a binary label one,
we compute the corresponding binary masks at the output of
the siamese decoder network.

3.4 Loss Function
The loss function used to train the proposed network is

Lfinal = w1L1 + w2L2 + w3L3 (1)
where L1, L2 and L3 are the losses used for training the
siamese encoder-decoder network, the siamese metric learn-
ing network and the decision network, respectively.

Given a set of positive and negative pair of images
{(Iai , I

p
i ), (I

a
i , I

n
i )} (where Iai is an anchor), corresponding

pair of ground truth masks {(Ma
i ,M

p
i ), (M

a
i ,M

n
i )} and the

predicted masks {(M̂a
i , M̂

p
i ), (M̂

a
i , M̂

n
i )} obtained from the

sigmoid layer of the decoder, we use pixel-wise binary cross
entropy loss to train the encoder-decoder network as follows

L1 =
∑
i

∑
l∈[a,p,a,n]

q∑
j=1

q∑
k=1

M l
i (j, k)× log(M̂ l

i (j, k)) (2)

where M̂(j, k) and M̂(j, k) is the value of the (j, k)-th pixel
of the predicted and true mask, respectively. The loss of the
metric learning network is the standard triplet loss given as

L2 =
∑
i

max(0, ‖fu(Iai )− fu(I
p
i )‖2−

‖fu(Iai )− fu(Ini )‖2 + α)

(3)

α is a scalar valued margin. To train the decision network, we
use binary cross entropy loss given as

L3 =
∑
r

yr log ŷr + (1− yr) log(1− ŷr) (4)

yr = 1 and 0 for a positive (Iai , I
p
i ) and negative pair

(Iai , I
n
i ), respectively. And ŷr is the predicted label obtained

from it’s final sigmoid layer.

3.5 Training Strategy
As mentioned earlier, at the time of training we backpropa-
gate loss L1 only for positive samples, and losses L2 and L3

for both positive and negative samples as shown in Fig. 2.
An image belonging to a positive sample should produce an
object mask. If the same image is part of a negative sam-
ple (outlier images), it is required to produce a null mask.
Thus the decoder network is forced to produce two differ-
ent masks for one image at different instances. For negative
examples it is not required to produce any mask at all since
the decision network notifies the presence of a common ob-
ject. Hence, the role of the decision network is to reduce the
overall difficulty level of the deconvolution layers by making
them to produce object masks only for positive samples. It
helps to train the network and also improves the performance
as shown in Fig. 6. To summarize, we train the entire network
for positive samples (yr = 1) and a part of the network for
negative samples (yr = 0), thus making the mask estimation
of the siamese network a conditioned one.

During testing, we obtain the co-segmentation masks by
multiplying the output of the decoder network with the pred-
cited label (ŷr) of the decision network because of the condi-
tional network. Ideally, the output of the decision network for
any positive example is one and that for any negative exam-
ple is zero. Hence, for positive samples we obtain common
object masks and for negative samples we obtain null masks,
as desired. We show our experimental results in Fig. 6.

4 Experimental Results
We evaluate co-segmentation performance, using two com-
mon metrics. The first one is Precision, which is the per-
centage of correctly segmented pixels of both the foreground
and the background. The second one is Jaccard Index, which
is the intersection over union of the co-segmentation result
and the ground truth common foreground segment. To eval-
uate the performance of the proposed co-segmentation algo-
rithm on a set of k input images I1, I2, ..., Ik, we perform
co-segmentation on all such pairs and then report the av-
erage Precision and Jaccard index computed over all such
pairs as the final co-segmentation accuracy for the given set.
We evaluate the proposed method on three challenging co-
segmentation datasets Pascal-VOC, Internet and MSRC and
compare with state-of-the-art methods.

4.1 Implementation Details
We initialize our network with weights trained on Imagenet
dataset. We use stochastic gradient descent as our opti-
mizer and fix the learning rate and momentum at 0.00001 and
0.9, respectively for all three datasets. For Pascal-VOC and
MSRC datasets, we set the weight decay to 0.0004 and for In-
ternet we set it to 0.0005. At the time of training, we follow
[Schroff et al., 2015] for generating samples. For the case of
positive samples, we set the weights w1 = w2 = w3 = 0.33
in (1) and for negative samples we set w2 = w3 = 0.5
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Figure 3: Visual results on the PASCAL-VOC dataset. Columns 1,
3 show input image pairs and Columns 2, 4 show the corresponding
co-segmented objects obtained using the proposed method.

Method Precision (P) Jaccard Index (J)
[Faktor and Irani, 2013] 84.0 0.46

*[Quan et al., 2016] 89.0 0.52
[Wang et al., 2017] 84.3 0.52
*[Hsu et al., 2018] 91.0 0.60

Ours 95.4 0.68

Table 1: Comparison of Precision (P) and Jaccard index (J) of the
proposed method with state-of-the art methods on the PASCAL-
VOC dataset (* denotes deep learning based methods).

and w1 = 0 since L1 is not backpropagated, as explained
in Sec. 3.5. Due to memory constraint, we use a batch size of
3. Note that each input sample of the batch is a pair of input
images, either positive or negative. We resize all the input
images to 224× 224 and set the margin α to 1.

4.2 PASCAL-VOC Dataset
The PASCAL-VOC dataset [Everingham et al., 2010] has 20
classes and is one of the most challenging datasets due to the
significant intra-class variations and presence of background
clutter. We randomly split the dataset in the ratio of 3:1:1 for
training, validation and testing sets. Since there is no stan-
dard split available, we repeat this splitting process 100 times
and report the average performance computed over 100 such
different test sets.
Analysis. In Table 1, we show comparative results of the pro-
posed method with state-of-the-art methods and the proposed
method significantly outperforms existing methods. The per-
formance is improved by at least eight percent in terms of Jac-
card Index and four percent in terms of precision. This can
be explained by the fact that our model involves convolution-
deconvolution with pooling operation, which involves a high
degree of context for feature computation. Furthermore, the
ground-truth mask helps to localize the foreground objects
and with that the metric learning network learns a latent fea-
ture space where common objects come closer irrespective
of their pose and appearance variations. Hence, the method
becomes robust to pose and appearance changes.

4.3 Internet Dataset
The Internet dataset [Rubinstein et al., 2013] has three
classes: Airplane, Car and Horse. Each class also con-
tains some outlier images. We use a subset of 100 im-
ages per class for our experiment as it is a common set-
ting [Quan et al., 2016; Li et al., 2018; Hsu et al., 2018;
Yuan et al., 2017].
Analysis. Comparative results of the proposed method with

Figure 4: Visual results on Internet dataset. Columns 1,3 and 5,7
show two input image pairs and Columns 2,4 and 6,8 show the cor-
responding co-segmented objects.

other state-of-the-art methods are shown in Table 2. It can be
seen that the proposed method outperforms other deep learn-
ing based methods and unsupervised methods. The method in
[Yuan et al., 2017] is heavily dependent on extracted object
proposals. Furthermore, after obtaining proposals that con-
tain common objects, the segmentation of those proposals are
done independently. Moreover, as observed in [Yuan et al.,
2017] itself the dense-CRF based model may worsen the co-
segmentation result. Our method has some similarities with
the method in [Li et al., 2018], but our use of metric learn-
ing with a decision network as opposed to a mutual correlator
as proposed in their work makes our model faster by 6 times
per epoch, and this along with conditional siamese encoder-
decoder increases co-segmentation performance by at least 6
to 8 percent from [Li et al., 2018]. We show visual results of
the proposed method in Fig. 4.

4.4 MSRC Dataset
We evaluate our method on a subset of the MSRC dataset,
which has been widely used by previous methods to evaluate
co-segmentation performance. We select the same classes,
which are cow, plane, car, sheep, bird, cat and dog, as
reported by [Vicente et al., 2010; Rubinstein et al., 2013;
Wang et al., 2013]. Each class has 10 images and there is
a single object in each image. The objects in each class have
color, pose and scale differences. The experimental protocol
and parameters are same as that of the Pascal-VOC dataset.
Analysis. Comparative results of the proposed method with
other state-of-the-art methods are shown in Table 4. The
model was trained on the Pascal-VOC dataset since the
MSRC dataset does not have sufficient number of samples for
training. Yet the proposed method outperforms other methods
by at least five percent in terms of Jaccard index. In Fig. 5,
we show visual results of the proposed method.

Figure 5: Visual results on MSRC dataset. Columns 1,3 and 5,7
show two input image pairs and Columns 2,4 and 6,8 show the cor-
responding co-segmented objects.
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Method C (P) C (J) H (P) H (J) A (P) A (J) M (P) M (J)
[Joulin et al., 2010] 59.2 0.37 64.2 0.30 47.5 0.15 57.0 0.28

[Rubinstein et al., 2013] 85.4 0.64 82.8 0.32 88.0 0.56 82.7 0.51
[Chen et al., 2014] 87.6 0.65 89.3 0.33 90.0 0.40 89.0 0.46

*[Quan et al., 2016] 88.5 0.67 85.3 0.58 91.0 0.56 89.6 0.60
*[Hsu et al., 2018] 93.0 0.82 89.7 0.67 94.2 0.61 92.3 0.70
*[Yuan et al., 2017] 90.4 0.72 90.2 0.65 92.6 0.66 91.0 0.68

*[Li et al., 2018] 94.0 0.83 91.4 0.65 94.6 0.64 93.3 0.70
*[Chen et al., 2018] - 0.80 - 0.71 - 0.71 - 0.73

Ours 95.2 0.87 96.2 0.72 96.7 0.71 96.1 0.77

Table 2: Comparison of Precision (P) and Jaccard index (J) of the proposed method with state-of-the art methods on the Internet dataset. C,
H and A stands for Car, Horse and Airplane classes. M denotes Mean value.

Method C (P) C (J) H (P) H (J) A (P) A (J) M (P) M (J)
Ours 94.6 0.85 93.0 0.67 94.3 0.65 94.0 0.72

Table 3: Precision (P) and Jaccard index (J) of our proposed model
trained with the Pascal-VOC, evaluated on the Internet dataset.

Method Precision Jaccard Index
[Vicente et al., 2010] 90.0 0.71

[Rubinstein et al., 2013] 92.2 0.75
[Faktor and Irani, 2013] 92.0 0.77

[Wang et al., 2013] 92.2 -
*[Li et al., 2018] 94.4 0.80

*[Chen et al., 2018] 95.3 0.77
Ours 96.3 0.85

Table 4: Comparison of Precision and Jaccard index of the proposed
method with state-of-the-art methods on the MSRC dataset.

4.5 Ablation Study
To show the role of our fully connected siamese metric learn-
ing network and decision network, we create a baseline model
CoSegNet-base by removing the metric learning and deci-
sion networks from the proposed architecture. We concate-
nate features f1 and f2 along their channels to make a fea-
ture map with 1024 channels for image I1 and feed it to the
corresponding decoder network. The same is done for im-
age I2. It should be noted that, for our baseline model, we
train the whole siamese encoder-decoder network for nega-
tive samples also using null mask. In Table 5, we compare
the baseline model with our proposed model on different co-
segmentation datasets. It can be seen from Table 5 that the
proposed conditional siamese encoder-decoder network per-
forms significantly better which justifies the inclusion of the
fully connected siamese metric learning network and deci-
sion network with a novel training strategy. The advantage of
the proposed CoSegNet architecture over the CoSegNet-base
architecture is visually illustrated in Fig. 6. Different class
objects in the image pair are incorrectly detected as common
objects by CoSegNet-base, whereas CoSegNet correctly de-
tects that there is no common object in the image pair. In
Table 6, we compare the performance of our proposed model
by feeding input features, obtained from different layers of
the siamese deconvolution network, to the siamese metric
learning network. In Table 6, f1 and f2 are the output fea-
ture maps of the siamese encoder network and cT3, cT6, cT9

and cT11 are the output feature maps of the third, sixth, ninth
and eleventh deconvolution layers, respectively. The model
performs the best for cT9 because (a) sufficient object infor-
mation has been fed to the input of the metric learning mod-

Figure 6: [Ablation study] Visual results on the Internet dataset.
Columns 1, 2 show input image pairs, Columns 3, 4 show the ob-
jects obtained (incorrectly) using CoSegNet-base, and Columns 5, 6
show that the proposed method (CoSegNet) successfully performs
co-segmentation on input image pairs even in the absence of com-
mon object (Rows 1-3), indicated by empty boxes.

ule, (b) the number of deconvolutional layers (cT11 and cT13)
dedicated for producing co-segmentation masks is optimal.

Architecture
Dataset CoSegNet-base CoSegNet

Pascal-VOC 0.47 0.68
Internet 0.61 0.77
MSRC 0.63 0.85

Table 5: Comparison of Jaccard index (J) of the proposed model
with the baseline model on different datasets.

Dataset \ Layer f1,f2 cT3 cT6 cT9 cT11

Pascal-VOC 0.63 0.65 0.66 0.68 0.64
Internet 0.67 0.68 0.68 0.72 0.65

Table 6: Comparison of Jaccard Index (J) of the proposed model
for connecting the input of the metric learning network to different
layers of the decoder network.

5 Conclusion
In this paper, we present a novel and efficient CNN-based
architecture for solving image co-segmentation. Based on a
conditional siamese encoder-decoder architecture, combined
with a siamese metric learning and a decision network, we
achieve better than state-of-the-art performances on various
datasets, and demonstrate good generalization performance
on segmenting objects of the same classes across different
datasets, and robustness to outlier images.
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