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Abstract

Vehicle detection and recognition in remote sensing
images are challenging, especially when only lim-
ited training data are available to accommodate var-
ious target categories. In this paper, we introduce
a novel coarse-to-fine framework, which decom-
poses vehicle detection into segmentation-based
vehicle localization and generalized zero-shot vehi-
cle classification. Particularly, the proposed frame-
work can well handle the problem of generalized
zero-shot vehicle detection, which is challenging
due to the requirement of recognizing vehicles that
are even unseen during training. Specifically, a hi-
erarchical DeepLab v3 model is proposed in the
framework, which fully exploits fine-grained fea-
tures to locate the target on a pixel-wise level, then
recognizes vehicles in a coarse-grained manner.
Additionally, the hierarchical DeepLab v3 model is
beneficially compatible to combine the generalized
zero-shot recognition. To the best of our knowl-
edge, there is no publically available dataset to test
comparative methods, we therefore construct a new
dataset to fill this gap of evaluation. The experi-
mental results show that the proposed framework
yields promising results on the imperative yet diffi-
cult task of zero-shot vehicle detection and recog-
nition.

1

Alongside the recent progress of remote sensing technology,
vehicle detection has experienced significant developments,
resulting in fruitful results [Soleimani et al., 2018; Cao er al.,
2016]. These methods often serve as an essential step in intel-
ligent transportation system, thus leading to numerous real-
world applications. Mainstream detection approaches that
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Figure 1: Vehicle patches extracted from remote sensing images
have different shapes, types, materials. However, they share the
same semantic space. As is shown above, visual-semantic mapping
function is utilized to obtain the semantic descriptions of test in-
stances in the testing phase for zero-shot recognition.

are popularly applied rely heavily on fully supervised learn-
ing schemes, which poses prohibitive demands on compre-
hensive training data covering all categories, which are of-
ten hard to come by. As a work-around, approaches capable
of unseen vehicle detection are required [Zhu et al., 2018;
Demirel et al., 2018].

Zero-shot learning (ZSL) [Lampert et al., 2014] is based
on the assumption that both the seen classes (with training
examples) and unseen classes (with no training examples)
share the same semantic space, where visual models for seen
classes are transferred to the unseen classes by exploiting se-
mantic relationships between the two. As is shown in Fig. 1,
although vehicles exhibit different appearance with verified
color and shape, yet they share the same semantic space such
as ’Tail: has no tail’, ’Material: metal’ and so on. Accord-
ingly, such learning scheme enables the capacity of recogniz-
ing unseen vehicle categories.

To introduce the power of ZSL, we decompose vehicle de-
tection in remote sensing images into two phases, i.e., the
vehicle localization and vehicle category label prediction.
Previously, ZSL is merely used for recognition task, which
means that it is destined to work for simple cases where only
a single dominant object is present in an image [Xian et al.,
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2017; Romera-Paredes and Torr, 2015; Xian et al., 2016;
Jiang et al., 2017]. Such a setting works fine in most cases.
Nonetheless, in the context of vehicle detection, different
kinds of objects from unseen classes and seen classes ap-
pear in one image at the same time, wherein the standard
recognition setting no longer stands. This is especially true
for detection in remote sensing images that contain objects of
different kinds and with different scales. Under such circum-
stance, typical ZSL methods meets its end. Notably, our goal
is to simultaneously detect each individual instance of vehicle
classes, even in the absence of any visual examples of those
classes during the training phase. To make it more suitable for
the task of zero-shot detection in remote sensing images, task-
specific ZSL strategy is of great importance. Consequently,
we propose to learn latent attributes for generalized zero-shot
vehicle detection, in which the test vehicle instance can not
only come from unseen classes but seen classes.

As another evidence in the traditional detection task and
the newly developed manuscripts on zero-shot detection of
natural images, category labels with fine-grained bounding
boxes annotations should be provided for training [Redmon
and Farhadi, 2017; Demirel et al., 2018]. This inevitably in-
troduce additional annotation burdens. Furthermore, in re-
mote sensing images, sufficient bounding box annotations for
object detection is unavailable. We are thus motivated and
propose to make full use of the given annotation of exist-
ing remote sensing datasets for semantic segmentation task.
Thus we propose to locate vehicles of original remote sens-
ing images in a pixel-wise level and then feed them to sub-
sequent generalized zero-shot vehicle recognition phase for
fine-grained vehicle classification.

In general, the contributions of this paper are three-fold:

e A hierarchical DeepLab v3 is introduced with hierarchi-
cal connections, which fully capture the global and local
features for the pixel-wise level vehicle localization.

Generalized zero-shot recognition with latent attributes
learning are introduced to handle the challenging task
of fine-grained vehicle classification even when they are
not trained. We lead the latent attributes that are both
discriminative and semantic-preserving.

A new dataset is constructed based on the ISPRS 2D
semantic labeling contest dataset, which provides exten-
sive experimental studies for the task of generalized ve-
hicle detection.

The remainder of this paper is organized as follows: re-
lated works are introduced in Sec.2. Detailed descriptions
of the proposed framework is well illustrated in Sec. 3. In
Sec. 4, we conduct quantitative experiments to verify the ef-
fectiveness of the proposed framework. Finally, we conclude
this paper in Sec.5.

2 Related Work

We note that a new study of generalized zero-shot vehicle de-
tection is provided for remote sensing images. In this section,
we will first discuss the models of semantic segmentation and
zero-shot detection of natural images and then give a brief re-
view of the application of ZSL in remote sensing images.
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2.1 Semantic Segmentation

Semantic segmentation presents pixel-wise level classifica-
tion that has many applications, e.g., automatic driving.
FCN [Long et al., 2014] brings the first work that utilizes
full convolution network for such a dense classification task,
which supports the feeding images with different resolutions.
DeepLab vl and v2 [Chen et al., 2018a] proposes atrous con-
volution to not only enlarge the field of view but cost lim-
ited extra computation. To further capture the information of
each layer, and is inspired by the SPPNet [Zhao et al., 2016],
DeepLab v3 [Chen et al., 2017] adopts pyramid network with
atrous convolution. To alleviate the information decay, our
network employs hierarchical connections with global aver-
age pooling to deliver detail descriptions from the low-level
layers, which helps the detection of small objects.

2.2 Zero-Shot Detection

Zero-shot detection is a new concept that has come into the
community. It is proposed to detect objects even when they
have not been trained before. Recently, there appear some
manuscripts on zero-shot detection in the community of nat-
ural images. Zhu et.al and Demirel et.al retain the effi-
ciency and effectiveness of YOLO [Redmon and Farhadi,
2017] for objects seen during training, while improving its
performance for novel and unseen objects [Zhu et al., 2018;
Demirel et al., 2018]. Ankan[Ankan Bansal, 2018] intro-
duces background-aware approaches that use a fixed back-
ground class and iterative latent assignments that are based
on RCNN [Girshick et al., 2016] framework. However,
these models require bounding box annotations in the training
phase, which is a limitation in the remote sensing commu-
nity. Our framework is different from the detection models
that need well-annotated bounding boxes.

2.3 Zero-Shot Learning in Remote Sensing
Imagery

Various ZSL methods have been developed in the general
field of natural images analysis. However, to the best of
our knowledge, there are limited works focusing on exploring
zero-shot recognition in remote sensing. Among these works,
Li et al. first introduced zero-shot recognition into remote
sensing research with a label refinement phase to classify
novel scenes in high-resolution remote sensing images [Li ef
al., 2017]. Later on, Sumbul ez al. introduced a new dataset
for zero-shot tree classification [Sumbul et al., 2017]. Differ-
ent from the aforementioned methods, we study the zero-shot
vehicle detection task of remote sensing images, which is the
first in the literature.

3 Generalized Zero-Shot Vehicle Detection
Framework

We formulate the vehicle detection task in remote sensing im-
ages with only pixel-wise level annotations by a hierarchi-
cal DeepLab v3 model and a generalized zero-shot recogni-
tion phase. The proposed framework is shown in Fig. 2. It
consists of two components, i.e., a hierarchical DeepLab v3
for coarse-grained vehicle recognition to locate the vehicle in
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Figure 2: Flowchart of the proposed framework. Original remote images are fed into this framework directly. A hierarchical DeepLab v3
model is utilized to localize the general locations of vehicles in the images. Then, vehicle pathes are fed into generalized zero-shot recognition
phase to predict their category labels. Generalized zero-shot recognition with latent attribute learning process enables the posibility of
correctly classifying the vehicle patches even they are not trained during the training phase.

a pixel-wise level and a generalized zero-shot vehicle fine-
grained classification phase to learn latent attributes for vehi-
cle categorization not matter they have been trained or not.

3.1 The Hierarchical DeepLab v3 Model for

Coarse-Grained Vehicle Recognition

Note that vehicle patches in remote sensing images suffer
low-resolution, the consecutive striding in previous segmen-
tation models is harmful to segmentation procedure because
of the signal decimation. We propose to improve the DeepLab
v3 model with atrous convolution and hierarchical connec-
tions to alleviate such signal decimation.

Atrous Convolution.

Atrous convolution serves as an important tool that allows
us to explicitly enlarge the filter’s field-of-view [Chen et
al., 2017; 2018b]. Multi-scale information can be captured
through performing atrous convolution with different atrous
rates. i.e., we sample the input signal with different strides.
Consider two-dimensional signals, for each location 7 on the
output Feat and a filter w, atrous convolution is applied over
the input feature map x with an atrous rate of s, the formula-
tion is:

Feat = Zx[z + s * kJwlk],
k

6]

where s denotes the atrous rate that is equivalent to convolv-
ing the input x with upsampled filters produced by inserting
s — 1 ’hole’s between two consecutive filters.
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The Hierarchical DeepLab v3 for Coarse-Grained
Vehicle Recognition.

Atrous convolution has been adopted in DeepLab [Chen et
al., 2018a; 2017] and caught much attention. However, the
spatial resolution of the final feature maps is usually 32X
smaller than the original input images in the task of semantic
segmentation, which implicitly indicates that information of
small objects is discarded. To this end, as shown in Fig. 2,
we propose a hierarchical DeepLab v3 with hierarchical con-
nections to concatenate low-level features with higher-level
features of the same spatial resolution. 1x1 convolution and
global image pooling are applied to reduce the number of
channels and obtain more informative details of the input im-
age, respectively. This extra hierarchical connections help to
alleviate the information reduction thus improves the perfor-
mance of pixel-wise classification. These coarse-grained ve-
hicle patches are further fed into the generalized zero-shot
fine-grained recognition phase to classify the vehicle cate-
gories.

3.2 Generalized Zero-Shot Vehicle Fine-Grained
Classification

Typical supervised classification methods can do nothing
when there comes an instance of new species. In this section,
we introduce generalized zero-shot recognition that aims to
recognize vehicles in remote sensing images even when they
haven’t been trained.
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Formulation

Given a training set S = {(z¢,y5)}1,, i.e., the seen classes,
where z; € X is a d-dimensional column vector for the
i-th training image from |Y®| seen classes. yi € Y* is
the label of x;. Similarly, the unseen classes, is defined
as U = {(=},y}) ;L:l where 7 is a d-dimensional col-
umn vector of the j-th test image from |Y*| unseen classes
and yi € Y" is its corresponding label. We utilize the
human-defined attributes as semantic information for knowl-
edge transfer between seen classes and unseen classes, which
can be denoted as A = {a;},. Here, a; indicates human-
defined attribute vector for the i-th class. We generally learn
a visual-semantic mapping in the training process. Then, the
mapping function is used for the unseen instances. Typical
ZSL method predicts the category label of unseen instance
x§ from label sets of Y*.

Typical ZSL setting assumes that test instances come from
the unseen classes so that each of them is categoried to one
of the labels in Y. Label sets of seen classes and unseen
classes are disjointed, i.e., Y*( Y™ = @. In generalized
ZSL scenario, the resource of test images is flexible and they
can come from either seen classes or unseen classes. Each of
them is categorized to labelsin Y = Y* (JY™.

Generalized Zero-Shot Vehicle Fine-Grained Recognition
[Jiang et al., 2017, Yan et al., 2018] have demonstrated that
it’s important to learn discriminative attributes, which helps to
obtain specific perspective for the classification task. There-
fore, we propose to learn latent attributes for generalized
zero-shot vehicle recognition. The loss is defined as:

£y = min | XW - YP||%, s.t., w3 <1, Vi, (2
where ||.||% denotes the Frobenius norm, w; is the i-th col-
umn of W. W is a dictionary that performs projection from
visual features to latent discriminative attributes. P can be
viewed as classifiers for the latent discriminative attributes.
Here we have Y = [y1, 92, ...,ys] and y; = [0,0,1...,0] is a
one-hot encoded vector corresponding to category ;.
Human-defined attributes present category-level descrip-
tions directly and involves real-world meanings. To make the
learned latent attributes semantic-preserving, a linear trans-
form is designed to connect human-defined attributes with the
latent attributes. Especially, the function is formulated as:

Lo = min || XW = AQ|F, sty a3 <1, Vi, (3

where A denotes the human-defined attributes. @ is a linear
function to be learned, which guarantee the semantic mean-
ings of the latent distinctive attributes.

To further make the learned visual-semantic mapping both
discriminative and semantic-preserving, a function () corre-
lates the human-defined attributes and the latent attributes, PP
is utilized for the classification task. It can be inferred that it
will help to implicitly combine strongly correlated attributes
and prefers discriminative attributes.

Lo =min]|AQ = YPIl%, st lpill3 < 1, Vi, @)
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Algorithm 1 Training procedure of the proposed model.

Require:
1: X: training images from seen classes;
: Y corresponding labels for training images;
: A: human-defined attributes;
a: hyper-parameter;
: [ : hyper-parameter;
: ~v: hyper-parameter;
Ensure: Projection function, i.e., W, P and Q) ;
7: Initialize W, P, () randomly;
8: Choose vehicle patches for training;
9: while not converge do

10: optimize W while fix P and @ ;
11: optimize P while fix W and Q;
12: optimize () while fix W and P;
13: end while

14: return W, P and () ;

To be more adaptable for fine-grained vehicle recognition
task, we propose to consider these factors simultaneously and
the objective function is formulated as:

Lpui =Ly + Ly +7L3 &)
«, [ and v are hyper-parameters that control the strength
of each constrain. Eq. 5 is convex for W, P and () individu-
ally, but is not convex for them simultaneously. Therefore, we
solve it using an alternating, which circularly fixes the other
parameters and optimizes one parameter one time. In each
optimization, the sub-problem is transferred to a conventional
least square minimization problem that can be optimized by
the Lagrange dual, which has a closed-form solution. The
overall optimization procedure is shown in Algorithm 1.
Given a test remote sensing image, it is first fed into the
semantic network to obtain the locations of the vehicle cate-
gory and to extract the features of vehicle patches, i.e., ¢(x;).
These patches are subsequently fed into the generalized zero-
shot recognition module and get the latent attribute represen-
tation through mapping function W. The Nearest Neighbor
(NN) algorithm is utilized to perform generalized zero-shot
recognition. In general, the object function for zero-shot in-
ference phase is defined as follows:

labely, = argmin [|¢(z:)W — AQ|[%, (6)
where ¢(z;) indicates the feature vector of x;. A denotes the
human-defined attributes. W and ) are the mapping func-
tions to project the visual feature vectors and human-defined
attributes to latent discriminative attributes, respectively.

4 Experiments

4.1 Datasets and Settings

Datasets. Note that there is no dataset available in the task
of generalized zero-shot vehicle detection of remote sensing
images. We introduce a new dataset based on images from
ISPRS WG III/4 2D Semantic Labeling Contest'. Each of

"http://www2.isprs.org/commissions/comm3/wg4/2d-sem-
label-potsdam.html
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the original images is with the size of 6,000x6,000 pixels,
consisting of the true orthophoto of Potsdam with ground
sampling distance of 5 cm and together with pixel-wise level
semantic annotation. We automatically crop vehicle patches
from the images and produce 12,495 vehicle patches to con-
struct the training set for generalized zero-shot recognition.
They are categorized into 16 classes.

Data Split. We train the hierarchical DeepLab v3 on the IS-
PRS 2D Semantic Labeling Contest dataset introduced above
with the provided pixel-wise level annotations. This contest is
to classify image pixels of remote sensing images into 6 cate-
gories, e.g., vehicle, tree and building. The zero-shot classifi-
cation network is trained through the cropped vehicle patches.
12 categories of them are randomly selected for seen classes
and the remaining 4 categories for unseen classes.
Implement Details. VGG-16 [Simonyan and Zisserman,
2014] and Xception [Chollet, 2017] are employed as the
backbone of hierarchical DeepLab v3. For all experiments,
we use SGD optimizer with a momentum of 0.9 for training.
Weight decay rate is fixed as 0.0005. « and (8 are tuned us-
ing five-fold cross-validation, while + is fixed as 1. We tuned
from 100 to 700 and fix the size of latent dictionary as 400 for
better performance. The located vehicle patches are resized
into 321x321 to get a fixed size of ¢(x).

Evaluation Metrics. For the convenience of evaluation, we
use the same metric, i.e., overall accuracy for coarse-grained
vehicle recognition. IoU is further adopted for the compari-
son. We adopt the standard evaluation metrics of ZSL, i.e., the
multi-class classification accuracy (MCA) to evaluate the per-
formance of generalized zero-shot fine-grained recognition.

|V

g class;,
i=1

where class; is the prediction accuracy of i-th class. | V| cor-
responds the total number of vehicle categories.

1

MCA= —
[NV

(N

4.2 Experimental Results

In this section, we conduct comparisons to verify the effec-
tiveness of the proposed framework. For the lack of bound-
ing box annotations of remote sensing datasets, traditional de-
tection models or the zero-shot detection models are not al-
lowed for the comparison, they require bounding boxes. Fig.
3 shows several results of our framework, from which we can
observe that our framework is able to automatically detect
seen and unseen vehicles in a given remote sensing image.
Several classical approaches in the literature of zero-shot
recognition are re-implemented to adapt to the more chal-
lenging task of generalized zero-shot vehicle recognition of
remote sensing images. Tab. 1 shows several results of
the proposed framework of generalized zero-shot vehicle de-
tection. From Tab. 1, we can draw the following conclu-
sions: 1) all generalized zero-shot vehicle recognition meth-
ods surpass the randomly guessing (1/16, i.e., 6.25%), which
demonstrates the effectiveness of generalized zero-shot ve-
hicle recognition and 2) we present an effective framework
in the task of generalized zero-shot vehicle detection of re-
mote sensing images that outperforms all the comparisons
with VGG and Xception backbones. The performance can
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Method Feature MCA (%)
ESZSL  hierarchical DeepLab v3 +VGG-16 backbone 7.65
LatEm  hierarchical DeepLab v3 +VGG-16 backbone 11.46
DEM hierarchical DeepLab v3 +VGG-16 backbone 9.38
Ours hierarchical DeepLab v3 +VGG-16 backbone 16.89
ESZSL  hierarchical DeepLab v3 +Xception-65 backbone 16.87
LatEm  hierarchical DeepLab v3 +Xception-65 backbone 18.12
DEM hierarchical DeepLab v3 +Xception-65 backbone 9.38
Ours hierarchical DeepLab v3 +Xception-65 backbone 21.25
ESZSL  hierarchical DeepLab v3 +Xception-71 backbone 19.37
LatEm  hierarchical DeepLab v3 +Xception-71 backbone 20.63
DEM hierarchical DeepLab v3 +Xception-71 backbone 9.38
Ours hierarchical DeepLab v3 +Xception-71 backbone 23.75

Table 1: Comparisons on generalized zero-shot fine-grained recog-
nition setting.

Ours’

39.58

ResNet-34"
46.87

VGG-19*
46.87

VGG-16°
45.60

Method
MCA(%)

Table 2: Comparison to supervised learning methods. f: supervised
learning, b: zero-shot learning.

serve as a baseline method for the subsequent research of gen-
eralized zero-shot vehicle detection.

We also include a comparison between supervised learn-
ing and unsupervised learning. VGG-16, VGG-19 [Simonyan
and Zisserman, 2014] and ResNet-34 [He et al., 2015] are se-
lected as the backbone of supervised learning models. The
results are illustrated in Tab. 2. Note that our baseline frame-
work is based on VGG-16 backbone, our framework obtains
an MCA of 39.58% under ZSL settings, which is only 5.62%
lower than the supervised classification method that based on
a VGG-16 backbone (45.60%), demonstrating the success of
the proposed framework.

4.3 Ablation Study

Hierarchical Connection. Tab. 3 presents the comparison of
coarse-grained recognition, from which we find that our base-
line model achieves an accuracy of 90.1% that surpasses other
recently proposed comparisons of RITL7 [Liu ef al., 20171,
KLab3 [Kemker e al., 2018] and DeepLab v3 [Chen er al.,
2017]. This implicitly indicates that we provide more accu-
rate vehicle localizations. The only difference between the
proposed hierarchical DeepLab v3 and DeepLab v3 is that
our model employs extra hierarchical connections to alleviate
signal decimation. It shows in Tab. 4 that our model brings
more accurate result of vehicle localization and feature ex-
traction, which helps a promising improvement in the subse-
quent vehicle fine-grained classification task. With Xception-
65 and Xception-71 backbone, our framework achieves more
improvements. Note that there are no IoU results available of
other methods, we present in Tab. 5 the IoU of our models.

Latent Attribute Learning. Among all the methods pre-
sented in Tab. 1, ESZSL [Romera-Paredes and Torr, 2015]
proposes an easy but efficient method for zero-shot recogni-
tion with directly human-defined attributes, LatEM [Xian et
al., 2016] presents the first work that focuses on fine-grained
object recognition in natural images with multiple dictionar-
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(a) Origin remote sensing images (b) Coarse-grained Classification Results

(c) Vehicle localization

(d) Vehicle localization results (e) Fine- gralned Classification Results

Figure 3: Generalized zero-shot detection results of the proposed framework. Each row corresponds to a group of results. Green rectangles
and red rectangles in (e) represent localized vehicles with right and wrong label predictions, respectively.

Method Backbone Accuracy(%)
RITL_7 FCN-8s 88.4
KLab_3 - 86.4
DeepLab v3  VGG-16 backbone 89.2
Ours VGG-16 backbone 90.1
Ours Xception-65 backbone 92.3
Ours Xception-71 backbone 92.5

Table 3: Comparison in the task of overall coarse-grained recogni-
tion in pixel-wise level.

Method
F1 score(%)

RITL_7
92.8

KLab_3
92.0

DeepLab v3
93.3

Ours
94.1

Table 4: Comparison in the task of coarse-grained vehicle recogni-
tion in pixel-wise level.

ies and DEM [Zhang et al., 2017] delivers a work to learn
an end-to-end model with human-defined attributes. The im-
provement of MCA among our framework, DEM and ESZSL
demonstrates the success of learning latent attributes for gen-
eralized zero-shot fine-grained recognition.

5 Conclusion

In this paper, we propose and tackle a challenging problem
of generalized zero-shot vehicle detection of remote sensing
images. A coarse-to-fine framework that consists of the pro-
posed hierarchical DeepLab v3 for recognizing and localiz-
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Method Ours+VGG-16  Ours+Xception-65
ToU 84.74 85.99

Ours+Xception-71
86.13

Table 5: IoU of coarse-grained recognition in pixel-wise level.

ing vehicles in a coarse-grained manner following by gen-
eralized zero-shot vehicle classification with latent attributes
learning for fine-grained vehicle classification is introduced
to solve the problem. The experiment results on the new
dataset constructed based on ISPRS Potsdam 2D Semantic
Labeling Contest dataset demonstrates the effectiveness of
the proposed framework. In the future, we would like to bring
more generalized one-step deep networks for this task. We
will also construct and test our framework on other remote
sensing datasets and stick to improving the performance of
generalized zero-shot vehicle detection.
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