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Abstract

Human motion capture (mocap) data, recording the
movement of markers attached to specific joints,
has gradually become the most popular solution
of animation production. However, the raw mo-
tion data are often corrupted due to joint occlu-
sion, marker shedding and the lack of equipment
precision, which severely limits the performance
in real-world applications. Since human motion
is essentially a sequential data, the latest methods
resort to variants of long short-time memory net-
work (LSTM) to solve related problems, but most
of them tend to obtain visually unreasonable re-
sults. This is mainly because these methods hardly
capture long-term dependencies and cannot explic-
itly utilize relevant context, especially in long se-
quences. To address these issues, we propose a
deep bi-directional attention network (BAN) which
can not only capture the long-term dependencies
but also adaptively extract relevant information at
each time step. Moreover, the proposed model, em-
bedded attention mechanism in the bi-directional
LSTM (BLSTM) structure at the encoding and de-
coding stages, can decide where to borrow infor-
mation and use it to recover corrupted frame ef-
fectively. Extensive experiments on CMU database
demonstrate that the proposed model consistently
outperforms other state-of-the-art methods in terms
of recovery accuracy and visualization.

1 Introduction
Human motion capture has gradually become the most pop-
ular motion storage technology in the industry, attracting a
large number of scholars’ interest in research [Zhou et al.,
2018; Bütepage et al., 2017; Mall et al., 2017]. It can be used
in virtual reality, special effects movies, electronic games,
and other related fields[Lu et al., 2018]. However, the raw
mocap data may fail in completely recording the movement of
all joints (including missing joint) due to inevitable reasons,
such as marker falling off or joint occlusion. This inaccuracy
and incompleteness of the captured data are often encoun-
tered even by professional motion capture equipment[Cui et
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Figure 1: Example result on tai chi. The first row is the ground
truth, the second row is the damaged motion sequence, and the re-
mains represent the recovery results of different methods. Note that
the recovered motion by our method is indistinguishable from the
ground truth, while the results of competitive methods are more or
less unreasonable.

al., 2019]. Further, corrupted motion sequences usually re-
veal a complex pattern in following aspects. First , the distri-
bution of missing joints is unknown and arbitrary. Second, if
the missing trajectory is too long, the information that can be
used to repair the damaged motion will be insufficient. Third,
the recovery accuracy will decrease rapidly in the case of
large-scale movement (e.g., dancing, boxing). These factors
present a major challenge for recovering the missing joints
effectively.

Recently, some researchers have attempted to model hu-
man motion using deep neural networks [Mall et al., 2017;
Holden, 2018]. They present various structures to solve
related problems of recovering missing joints, which ade-
quately analyze and utilize the spatio-temporal correlation of
human motion[Gui et al., 2018]. Especially, the BLSTM-
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based recurrent autoencoder[Mall et al., 2017] pave a golden
path for modeling human motion. Although these models
have made tangible progress, the performance may degrade
rapidly over a long motion sequence because recurrent net-
works hardly capture the long-term temporal dependency and
overcome the error accumulation problem. Besides, differ-
ent motion frames should contribute unequally to the network
while the previous models cannot consciously treat the con-
text differently.

To address these aforementioned issues,we propose a deep
bi-directional attention network (BAN) for motion recovery
which leverages the attention mechanism and bi-directional
long short-time memory network (BLSTM). Our inspira-
tion comes from the recent theories of human attention
which posit that human behavior can be efficiently mod-
eled by the attention mechanism [Bahdanau et al., 2014;
Zhou et al., 2016; Yang et al., 2016]. Specifically, the struc-
ture of our model consists of two components, encoder, and
decoder, in which the attention mechanism is embedded to
efficiently capture long-term temporal dependencies. In con-
trast to traditional attention, the proposed method adaptively
calculates the relevant inputs of the forward and backward
directions of BLSTM at the current time according to the
correlation between the previous hidden state in both direc-
tions and all inputs. The long-term temporal dependencies
are learned from chronologically arranged data and also from
the reverse-chronological ordered data, which takes into ac-
count both forward and backward dependencies simultane-
ously. For human motion recovery, our BAN network explic-
itly selects the relevant context and selectively introduces the
information from specific positions of the motion sequence to
repair the damaged motion frame.

The specific contributions of this paper are summarized as
follows: 1) We propose a novel bi-directional recurrent au-
toencoder for human motion recovery using attention mecha-
nism. To our best knowledge, this is the first research attempt
to exploit attention mechanism of BLSTM structure for hu-
man motion recovery. 2) We introduce the attention mecha-
nism to efficiently capture long-term dependency and focus
on the most important semantic information. 3) The exper-
imental results demonstrate that the BAN achieves superior
recovery accuracy and higher-quality visual results even for
long-term motion sequences.

2 Related Work
Human motion recovery. Because of the inherent prop-
erties and structural constraints of human motion, the re-
pair of missing joints cannot be simply regarded as data fill-
ing [Xia et al., 2018]. Many researchers have developed
various methods to solve the problem of human motion re-
covery based upon the statistical properties (i.e., sparsity)
of human motion [Lai et al., 2011]. Xiao et al.consider
motion recovery from the perspective of sparse represen-
tation and propose a novel method named l1 -sparse repre-
sentation (SR-L1) of missing markers prediction [Xiao et
al., 2011]. Low-rank matrix completion [Tan et al., 2013;
Hu et al., 2018], which usually seeks to find the lowest rank
matrix for observed data, has been widely used for motion re-
covery. [Lai et al., 2011] first propose that damaged human

motion can be efficiently recovered based on the low-rank
prior, in which they use the singular value threshold method
to solve the rank minimization problem. [Tan et al., 2013]
suggest that mocap data based on trajectory representation
can be used instead of frame representation, and the rank of
this representation can be reduced because the lower rank is
more suitable for the low-rank model. Nevertheless, these
prior-based methods tend to yield unreasonable results for
severely corrupted motion sequences. Because if the missing
ratio is too large or the missing time is too long, the statistical
property of low rank will no longer be satisfied.

Deep learning for human motion. Human motion is es-
sentially a sequential data, which is naturally suitable for
the sequential model in deep learning [Ruiz et al., 2018;
Holden et al., 2017; Martinez et al., 2017]. Holden et
al.develop various networks for human motion denoising and
editing [Holden, 2018], but these structures abandon the tem-
poral aspect of motion data. Alternatively, [Mall et al., 2017]
propose a deep bi-directional recurrent network to clean up
incomplete motion data wherein they use fully connected
network to capture the joint correlation and temporal con-
sistency of the human skeleton. [Fragkiadaki et al., 2015]
present a recurrent autoencoder structure named Encoder-
Recurrent-Decoder (ERD) to predict human body pose, in
which they use LSTM [Hochreiter and Schmidhuber, 1997;
Rumelhart et al., 1986] layer to learn temporal-spatial corre-
lation of motion sequence. These structures achieve excel-
lent results only in short-term sequences and cannot be di-
rectly used for recovering missing joints. For motion recov-
ery, [Kucherenko and Kjellström, 2018] use a standard LSTM
structure to recover motion sequence with missing markers in
a short period of time.

Attention modeling. The seq2seq networks have produced
stellar results, but one of the most challenging problems
is the performance decline rapidly with the increase of se-
quence length [Bahdanau et al., 2014; Zhou et al., 2016;
Yang et al., 2016]. To solve this problem, Bahdanau et
al.adaptively select the relevant partially hidden state into
the decoder at each time step using the attention mechanism
[Bahdanau et al., 2014]. Yang et al., propose a hierarchi-
cal attention network for text classification using stacked re-
current layers, with each layer utilizing attention mechanism
[Yang et al., 2016]. You et al., build an attention variant to
learn to selectively tend to semantic concept proposals and
integrate them into the recurrent neural network [You et al.,
2016], which has achieved great success in the image cap-
tion. More recently, a dual-stage attention mechanism is pro-
posed by [Qin et al., 2017] for time series prediction. In the
first stage, the attention mechanism is equipped on a standard
LSTM encoder to select the relevant inputs, while in the sec-
ond stage the feature representation is also adaptively selected
for decoding.

3 Methodology
3.1 Problem Formulation and Notation
In our work, a mocap matrix consists of a sequence of
frames (poses), where each frame records 3D position
of every joint and we formulate mocap data as X =
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Figure 2: Illustration of bi-directional attention network (BAN). The bi-directional attention can adaptively calculates the relevant inputs of
the encoding and decoding stages, respectively. a) In the encoding phase, the input attention calculates the weight of each frame and then
inputs the newly calculated data to both directions of the BLSTM encoder unit. b) In the decoding phase, the attention similarly feeds the
re-weighted context vector into the decoder.

{x1, x2, ..., xt, ..., xn} ∈ R3d×n with 1 ≤ t ≤ n. A frame at
time step t is expressed as xt ∈ R3d, where d is the number
of markers in a human skeleton. We plan to solve the prob-
lem of motion recovery from the corrupted observation with
missing markers. Assuming that X ∈ R3d×n is the underly-
ing complete mocap data, and let Xcor ∈ R3d×n denotes a
corrupted motion sequence. The values of the missing mark-
ers are recorded in the mocap data as 0 by the binary mask
M ∈ R3d×n, i.e., Xcor = X �M , where the symbol � de-
notes element-wise product. Then we transform the motion
recovery task into optimizing a function g and f to minimize
the difference between the recovered motion f(g (Xcor)) and
the complete motion sequence X:

min
f,g
‖X − f(g (Xcor))‖ . (1)

Then we use the autoencoder to fit the function f and g.
The encoder Y = g(Xcor) maps the observation Xcor in
to a low-dimensional representation, and then the decoder
Xrec = f(Y ) maps back into the input manifold to recon-
struct the original signal.

3.2 Encoder with Bi-directional Attention
Our inspiration comes from human visual attention and
BLSTM [Zhou et al., 2016; Qin et al., 2017; Bahdanau et al.,
2014]. When humans receive a signal, they selectively re-
ceive stimulation as input in early stage. BLSTM, modeling
sequential data from both forward and backward directions,
has achieved superior performance. For motion encoder, not
all frames contribute equally to the representation of BLSTM
in the forward and backward directions. Therefore, we con-
sider introducing attention mechanism into BLSTM to select
the relevant input from two directions adaptively. The overall
architecture of BAN is illustrated in Figure 2.

Assuming that the input sequence of the encoder is X =
[x1, x2, xt, ..., xT ], the bi-directional attention embedded in

BLSTM includes forward and backward directions which can
be built through a multi-layer perceptron. The calculation for
the forward direction of BLSTM is formulated as:

eitf = vTef tanh(Wef [
−→
h t−1;

−→s t−1] + Uefxi) ,

αi
tf =

exp (eitf )∑T
i=1 exp (e

i
tf )

,

x̃tf =
∑T

i=1 α
i
tfxi ,

(2)

where Wef ∈ RT×2m and Uef ∈ RT×3d are the weight
matrix, and vef is a parameter to learn. αi

tf is the atten-
tion weight vector, which determines the importance of all
inputs at time step t.

−→
h t−1 and −→s t−1 are the hidden state

and the cell state of forward BLSTM, respectively. With this
process, we can extract the relevant input x̃tf as the input
of forward LSTM at each time step t. Then, we can get
−→
h t by newly weighted x̃tf ,

−→
h t =

−−−−→
LSTM (x̃tf ) . Similarly,

the hidden state of backward LSTM can be calculated via←−
h t =

←−−−−
LSTM (x̃tb) .

Finally, we obtain the hidden state at time step t by con-
catenating the forward hidden state

−→
h t and backward hidden

state
←−
h t, i.e.,

ht = [
−→
h t,
←−
h t] . (3)

When we use the bi-directional attention mechanism to pro-
cess the motion sequence, the encoder will adaptively select
input frame through the importance of each frame for each
direction of the bi-directional LSTM, instead of treating all
frames equally.

3.3 Decoder with Bi-directional Attention
After all the frames are encoded, we will obtain a representa-
tion h of the corrupted motion. Then, the decoder maps the
learned representation back into a recovered human motion.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

703



Figure 3: Qualitative results and visual comparisons with competitive methods in four different types of motion sequences. In each sub-
figures, green segment are recovered parts and the unreasonable bone is circled with orange.

We propose an adaptive input using bi-directional attention
mechanism for correlation coding so that the decoder can pay
attention to the most useful context in both directions along
time step. As shown in Figure 2, the attention weight of each
time step t is calculated by the hidden state and the cell state
of the previous time with:

ditf = vTdf tanh(Wdf [
−→c t−1;

−→e t−1] + Udfhi) ,

βi
tf =

exp (ditf )∑T
i=1 exp (d

i
tf )

,

h̃tf =
∑T

i=1 β
i
tfhi ,

(4)

where the −→c and the −→e denote the hidden state and cell state
in forward LSTM of the decoder. Udf ∈ RT×2m and Wdf ∈
RT×2m is the learnable weight matrix. vTdf is a parameter
vector that needs to be learn. We use the following formula to
simply express this forward and backward process, i.e.,−→c t =←−−−−
LSTM(h̃tf ),←−c t =

←−−−−
LSTM(h̃td). Then, the hidden state of

the decoder can be determined by concatenating −→c t and←−c t,
i.e.,

ct = [−→c t,
←−c t] . (5)

Finally, given the corrupted motionXcor = X�M , the re-
covered motion sequence is obtained by feeding the semantic
context ct into the time-distributed fully connected network.
During training, our BAN takes Xcor and M as inputs, and
then outputs the restored motion Xrec at the same size as the
input motion. Finally, we use the following formula to get the
recovered motion:

X̃ =M �Xcor + (1−M)�Xrec . (6)

In particular, X̃ is the weighted sum of Xcor and Xrec. No-
tice that only the missing joint is reconstructed and the other
parts are equal to the input.

3.4 Optimization
Let X be the original motion sequence, Xcor be corrupted
motion, M be the mask matrix, Xrec be the recovered mo-
tion. We use two main losses to train our network.
Reconstruction loss, that encourage the generator to pre-
serve the information form the visible part of the sequence:

Lrec = ‖M �Xcor + (1−M)�Xrec −X‖2 . (7)

Bone length loss, which enforce constant bone length of the
whole generated sequence:

Lbone =
n∑

i=1

d∑
j=1

∥∥lreci,j − li,j
∥∥
2
, (8)

where the li,j denotes the j-th bone length of i-th frame of
complete sequence, lreci,j is the corresponding segment of the
recovered motion. The joint loss function is then formulated
as:

Ljoint = λrecLrec + λboneLbone , (9)

where the λrec = 0.95 and λbone = 0.05 are the trade-off hy-
perparameters to fine-tune the importance of each loss term.
They are determined by 10-fold cross validation.

4 Experiments
4.1 Dataset and Preprocessing
In this paper, we use CMU mocap database with 31 joint
markers for the human body. Therefore, each frame can be
represented as Xt ∈ R3×31. We adopt the following methods
to preprocess the mocap data.

(a) Uniform height. Before training, we scale all mocap
data to achieve a uniform height. According to previous work
[Holden, 2018], an appropriate scaling factor can be calcu-
lated by the average of all the bones of the actor.
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Figure 4: Quantitative comparisons of RMSE using different methods with 40% of continuous frames having missing joints

(b) Local reference system. We transform all the poses
into the coordinate system with its root joint as the origin and
use the y-axis in the world coordinate system as our y-axis.
The x-axis is the horizontal direction from the left shoulder
joint to the right shoulder joint. Then, the z-axis is produced
by calculating the cross product between x-axis and y-axis.

(c) Normalization. We normalize the mocap data into the
range [-1,1] by subtracting mean pose over the whole dataset
and dividing into the absolute maximal value in the dataset.

The proposed model and other competitive methods are
evaluated over the same configuration. During the training
and testing, we randomly remove a certain number of active
joints (10%, 20%, 30%, 40%), which is consistent with the
situation of missing joints randomly. To simulate continuous
missing of joint, we use gaps with a length of 60 frames where
the total length of these gaps is 80% of the sequence, and
randomly insert them into the mocap matrix. Such process-
ing makes the position of the missing joint in the sequence
random, while the length of the missing joint is 60 frames
at the minimum and 80% of the sequence at the maximum,
and concentrated at 40%, thus ensuring the randomness of the
missing position and the continuous missing length simulta-
neously.

4.2 Implementation and Baselines
Our network uses BLSTM as decoder and encoder where
each LSTM has 512 hidden units. The BAN model is trained
using Adam [Kingma and Ba, 2014] with a learning rate of
0.001, and a more efficient mini-batch size 128 is applied to
optimize the network. In our work, we use dropout [Srivas-
tava et al., 2014] as the regularization method on the LSTM
layer and the penultimate layer. With the dropout rate setting
to 0.4, the model has better generalization performance. Note
that the weights in our model are initialized randomly. The
code will be aviliable on the page: http://mocap.ai.

To better verify the performance of our model, we chose
various methods for comparison, i.e., l1 sparse representa-
tion (SR-L1) [Xiao et al., 2011], Low-rank matrix comple-
tion (LRMC) [Tan et al., 2013], long short-time memory net-
work(LSTM) and window-based fully connected neural net-
work (FCNN)[Kucherenko and Kjellström, 2018]. The hy-
perparameters are set to be consistent with those mentioned in
their papers. Following the previous literature, the root means
squared error (RMSE) measurement is adapted to quantify
the recovered results:

RMSE(Xi, X̃i) =

√
1

np

∥∥∥Mi � (Xi − X̃i)
∥∥∥2
F
, (10)

where Xi is the complete pose, X̃i is the recovered pose, and
np is the total number of imperfect entries (i.e., missing en-
tries). Mi is the degradation operator which removes all of
the non-missing joints. Also, the bone-length error is an im-
portant criterion to determine whether the recovered motion
sequence is visually reasonable and natural, i.e.,

BLE(Xi, X̃i) =
1

np

∣∣∣Li − L̃i

∣∣∣ , (11)

where the Li and L̃i are the sum of all bone length of i-th
frame of recovered and corrupted motion, respectively.

4.3 Comparisons of Recovery Results
We first animate the comparison between our method and
the competitive methods when the various type of motion
sequences randomly lose 40% joints, such as, running, bas-
ketball, dancing, and boxing. In this case, both the missing
markers and missing time are random. For each type of mo-
tion, we also pick out the character animation by visual recov-
ery results corresponding to the five different moments of our
method and the baseline methods. In Figure 3, the green seg-
ment is the recovered joint, and the blue part is the original
joint position. In each sub-figure, the first row is the origi-
nal motion, the second row is the corrupted motion, and the
other rows are the recovery results of different methods. It
is noteworthy that the recovered frame by the BAN is very
similar to the original frame in most motion types, and the
results obtained by our model are still robust even in the case
of large-scale movements (e.g., boxing). However, the mo-
tion recovered by other methods is more or less unnatural and
lacks visibility, which may lead to a failure of the recovery.

In the practical motion capture process, it is frequent for
a certain joint to be lost continuously over a period, and the
gap caused by this situation is difficult to handle. To simulate
this situation, we continuously remove several active joints
for each sequence. In Figure 4, we find that our method is
more accurate than other methods regarding recovery error.
Besides, as the missing time increases, the recovery accuracy
of our method is more stable because bi-directional attention
makes better use of the time context which allows the BAN to
consciously determine where to borrow relevant information
and use it reasonably. However, other competitive methods
are susceptible to the number of missing frames.

As shown in Figure 3, there are many unreasonable bone
lengths in the recovery results of the baseline methods un-
der strenuous exercise, i.e., dancing, boxing. Specifically, we
mark out unreasonable bone fragments in the animation with
small circle in Figure 3. The motion recovered by our method
is more accurate, and the bone length is more natural, which
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Motion Running Climbing Basketball Boxing
short-term long-term short-term long-term short-term long-term short-term long-term

missing time 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
SR-L1 2.73 2.98 3.32 3.35 2.24 2.32 2.89 3.68 2.79 2.68 3.18 4.77 2.34 4.83 5.79 6.55
LRMC 2.17 2.89 2.69 3.53 1.78 2.23 2.78 3.27 1.12 2.54 2.87 5.13 1.46 2.34 4.12 4.31
LSTM 0.68 0.85 0.92 0.78 2.24 2.54 1.37 2.43 1.87 1.99 1.78 1.97 1.24 1.56 1.44 1.67
FCNN 0.98 1.11 1.15 1.09 1.71 1.86 2.12 2.94 2.27 2.67 2.76 2.37 2.92 2.96 3.15 3.19
BAN 0.43 0.47 0.39 0.45 0.76 0.74 1.21 1.29 0.97 1.11 1.15 1.14 1.97 1.54 1.88 1.89

Motion Tai chi Dancing Swordplay Gymnastics
short-term long-term short-term long-term short-term long-term short-term long-term

missing time 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
SR-L1 1.93 1.98 2.23 2.47 3.84 3.54 4.89 6.26 2.33 2.79 3.15 3.58 3.36 3.94 4.99 5.89
LRMC 0.87 1.19 2.29 2.83 1.53 2.43 4.28 4.77 2.32 2.85 3.78 4.24 2.46 4.78 5.02 6.76
LSTM 1.35 1.45 1.28 1.34 1.23 1.16 1.49 1.36 3.09 2.89 3.01 3.17 3.18 2.94 3.13 3.27
FCNN 2.77 2.31 2.28 2.32 2.42 2.98 2.64 2.42 2.69 3.28 3.36 3.42 3.52 3.77 3.43 3.49
BAN 0.44 0.64 0.59 0.73 1.36 1.44 1.31 1.42 1.17 1.11 1.15 1.34 1.57 1.84 1.78 1.91

Table 1: Quantitative comparisons of RMSE between BAN and others baselines for short-term and long-term motion sequence on 8 activities
of the CMU dataset. The proposed BAN model consistently outperforms these baselines in almost all the scenarios.

SR-L1 LRMC LSTM FCNN BAN
Running 0.412 0.541 0.632 0.265 0.075
Dancing 1.289 0.857 1.062 1.185 0.036
Basketball 1.375 0.946 0.632 1.087 0.128
Boxing 1.012 0.763 0.422 0.545 0.117
Tai chi 0.411 0.421 0.489 0.321 0.066
Climbing 1.212 0.431 0.542 0.873 0.217
Swordplay 1.321 0.772 0.989 1.245 0.223
Gymnastics 1.652 1.763 1.322 1.745 0.307

Table 2: Comparison of average bone-length error using different
methods under different types of motion. The results of BAN are
highlighted for each motion sequence.

makes the recovery result more in line with the real visual
pose. We also measure the average bone-length error (BLE)
for each motion sequence with 40% number continue frame
having missing joints. From the quantitative comparison in
Table 2, we can see that the bone-length error recovered by
BAN is very small, and such a small error is difficult to ob-
serve in the actual animation. This means that under such
a bi-directional attention mechanism, our model can find the
most relevant context from the motion sequence to repair the
damaged frame.

Due to the uncertainty and diversity of human motion,
long-term human motion recovery is a challenging problem.
To examine the limits of our method, we conduct a set of
stress experiments to test recovery error in longer missing
time, though occurring less frequently. We select 8 motion
with a length of 2500 and divide all the sequences into several
categories: periodic (running, climbing), non-periodic (bas-
ketball, boxing, tai chi) and large-scale (dancing, swordplay,
gymnastics). Then, we remove all information about a par-
ticular joint (e.g., thigh, forearm) for each group of motion
with 500 ms missing time intervals. Note that the longest
missing time is 2000 ms (80%), which has never been eval-
uated in previous literature. The quantitative comparison is
shown in Table 1. We observe that our method is superior to
the competitive methods in all scenarios. With the increase
of motion duration, the advantages of the proposed method
gradually appear, while the performance of other methods

drops sharply. In particular, our method is still robust on
long-term motion recovery because bi-directional attention
can adaptively learn the feature representation of different
motion sequences. This indicates that the proposed method
is efficient for capturing long-term dependencies and explic-
itly utilizing relevant semantic information. However, when
too many consecutive frames are damaged, our method also
becomes slightly worse. One possible reason for this is that
the missing trajectories are too long, making it difficult for the
network to borrow information from the appropriate location,
thus pay attention to other suboptimal location.

5 Conclusion
In this work, we have proposed the bi-directional attention
network, which can capture long-term dependency and mo-
tion correlation from forward and backward directions. This
method effectively utilizes the spatio-temporal information
of human motion by learning the relevant feature represen-
tation of each pose, which dramatically expands the perfor-
mance of motion modeling. We demonstrate that our model
significantly improves the performance of human motion re-
covery concerning accuracy and visualization results, even in
the case of long sequences or different missing distributions.
However, there are still two defects that cannot be ignored:
High time consumption, because the LSTM encoding and
attention weight computation are non-parallel; Performance
degradation for handling high missing ratio (> 80%). For-
tunately, the cases of high missing ratio rarely occur in real-
world applications. In the future work, we plan to use the
idea of the generative model to further expand the scope of
application of the proposed model and consider applying it to
other tasks of human motion.
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