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Abstract
Deep recurrent neural networks have achieved im-
pressive success in forecasting human motion with
a sequence to sequence architecture. However,
forecasting in longer time horizons often leads to
implausible human poses or converges to mean
poses, because of error accumulation and difficul-
ties in keeping track of longerterm information. To
address these challenges, we propose to retrospect
human dynamics with attention. A retrospection
module is designed upon RNN to regularly ret-
rospect past frames and correct mistakes in time.
This significantly improves the memory of RNN
and provides sufficient information for the decoder
networks to generate longer term prediction. More-
over, we present a spatial attention module to ex-
plore and exploit cooperation among joints in per-
forming a particular motion. Residual connections
are also included to guarantee the performance of
short term prediction. We evaluate the proposed al-
gorithm on the largest and most challenging Hu-
man 3.6M dataset in the field. Experimental results
demonstrate the necessity of investigating motion
prediction in a self audit manner and the effective-
ness of the proposed algorithm in both short term
and long term predictions.

1 Introduction
Human dynamics modelling has received increasing attention
in recent years, considering its wide application in different
scenarios, such as autonomous driving systems and human-
robot interactions. The target of human motion prediction is
to generate future continuous and realistic human poses given
a seed sequence, which can further assist human motion anal-
ysis. For example, forecasting the motion of pedestrian is
essential for self-driving cars to avoid collision, and antici-
pating human motion could boost the understanding of user
intent for a seamless human-machine collaborations.

Human motions in practice can be rather complicated, and
often of high uncertainty, which makes the human motion
prediction task difficult and challenging. Thanks to the de-
velopment of human motion capture systems and pose es-
timation algorithms [Nie et al., 2018; Tekin et al., 2016],

large-scale human motion datasets are available for investi-
gating machine learning approaches in human dynamics anal-
ysis. Traditional approaches focus on hidden Markov models
[Lehrmann et al., 2014], linear dynamical systems [Pavlovic
et al., 2000], Gaussian process latent variable models [Urta-
sun et al., 2008; Xu et al., 2013] and bilinear spatio-temporal
basis models [Akhter et al., 2012]. However, there exists
trade-offs between model capacity and inference complexity
for these approaches, which make them difficult to be trained
on large datasets. Motivated by the success of Recurrent Neu-
ral Networks (RNN), a wide variety of RNN-based methods
have emerged to tackle the human motion analysis problem.
For example, Encoder-Recurrent-Decoder network [Fragki-
adaki et al., 2015] has been proposed to learn temporal de-
pendencies, with spatial encoder and decoder wrapped upon
recurrent cell and last hidden state encoding human poses.
Besides directly encoding human poses by hidden variables,
Residual RNN models velocity representations, which boosts
the short-term prediction performance by applying seq2seq
model with residual connections [Martinez et al., 2017].

Though these methods have achieved impressive perfor-
mance in analyzing human motion, there are still some draw-
backs. Firstly from the temporal aspect, these RNN-based
methods are devoted to predict future sequence and keep
moving forward without looking back to handle error ac-
cumulation, which increases the difficulties in maintaining
faraway information. On the other hand, considering phys-
ical limitations (e.g. gravity) and structural constraints be-
tween body parts, it is essential to highlight different impor-
tance of body joints in motion. Given an action across dif-
ferent frames, each joint would have distinct levels of move-
ments and those with more movements deserve more atten-
tion. Given these drawbacks, it is difficult for existing ap-
proaches to accomplish plausible motion predictions for ape-
riodic actions, especially over long time horizon [Gehring et
al., 2017], due to the mean pose problem. To deal with such a
limitation, GAN networks are also proposed, [Barsoum et al.,
2017] is the first to do probabilistic motion prediction with
WGAN-GP. Although different losses have been added, it’s
still hard to tell if the training has converged. Fidelity and
continuity discriminators with geodesic loss introduced by
[Gui et al., 2018] to boost the performance, however, it uses
action labels as input, which makes it supervised method.

In this paper, we propose to retrospect human dynamics
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with attention. It is necessary to look back in order to move
forward. Accounting for past mistakes not only enables a
timely self-correction, but also strengthens the confidence in
making the subsequent prediction. We develop a retrospec-
tion module to constantly examine past motion sequence,
which is beneficial for keeping track of longer-term motion
information. A spatial attention module is designed to dis-
tinguish importance of different joints in each frame, so that
more attention can be paid on joints that involve more move-
ments or movement tendency. The proposed algorithm out-
performs RRNN in both quantitative and qualitative evalua-
tions on the Human 3.6M dataset. We can produces more
realistic and coherent human motion predictions.

2 Methodology
We adapt sequence-to-sequence (seq2seq) architecture
[Sutskever et al., 2014], which is widely used in recent RNN
based methods for motion generation, as shown in Figure
1(a). It consists of two networks, an encoder which takes as
input a sequence of observed human poses and a decoder. The
encoder takes as input a sequence of observed human poses
and generates latent representations. The decoder produces
the predicted poses according to the latent representations.

Formally consider an observed seed sequence of human
poses X1:t = [x1, x2, ..., xt], where xi ∈ RK is the repre-
sentation of skeletons corresponding to a particular human
pose and K is the number of joint angles. The objective of
human motion prediction is to produce the continuous human
poses after X1:t, noted as X̂(t+1):(t+T ), which are close to
ground truth X(t+1):(t+T ), where T is the length of predic-
tion sequence. The historical information can be maintained
by Gated recurrent unit (GRU) [Cho et al., 2014] by keep
updating its hidden state at each time step. Thus, we have a
sequence of hidden states h1:t+T−1. The traditional objec-
tive in this task is to minimize the mean squared error (MSE)
between the ground truth and prediction sequence as

Lseq =
1

T

t+T∑
t′=t+1

||x̂t − xt||22. (1)

It is difficult for RNN based methods to keep track of
long-term information and capture spatial correlations, which
would cause larger error and generate static or even unrealis-
tic poses [Li et al., 2018]. To handle long-term dependencies
and capture spatial dynamics accurately, we propose a ret-
rospection module with attention upon GRU. Residual con-
nection [Martinez et al., 2017] is deployed to enable the de-
coder to learn velocity representation instead of human poses
directly, which improves short-term predictions and motion
continuity. For the spatial decoder network wrapper upon
GRU cell, we use two fully-connected layers with dropout
to prevent overfitting and further explore the spatial corre-
lations. An overview of the proposed algorithm for human
motion prediction is shown in Figure 1.

2.1 Retrospection Module
We construct a retrospection module (RM), which can be re-
garded as a temporary memory to retrospect previous infor-
mation. Equipped with attention techniques, RM can assist

GRU to memorize long-term information as well as capture
temporal correlations. Since human motions are continuous,
complicated, and always of high uncertainty, the performance
of motion predictions can highly depend on many frames in
the sequence. As a result, the retrospection module shall be
executed for several times over the whole sequence to retro-
spect sufficient information. To accomplish this, we set an-
chor points every C frames on GRU’s hidden states as

P1:n = h1::C = [hC , h2C , ..., hnC ], (2)

where n is the number of anchor points, and nC is less than
t+T . Figure 1(c) illustrates the architecture of our retrospec-
tion module.

We set a retrospection module at each anchor point. In
particular, we select a subsequence before the anchor point,
and feed RM the first token of this subsequence and the hid-
den state of this anchor point to initialize the retrospection.
The decoder network in RM is expected to predict the rest
of this subsequence. The decoder in RM shares the same
weights with that in seq2seq, as shown in Figure 1(a). For
expression simplicity, we adopt a new variable y to repre-
sent elements in the sequence {x1, · · · , xt, x̂t+1, · · · , x̂t+T }.
Given the k-th anchor point, we select the subsequence Y =
{y(k−1)C+1, · · · , ykC}, where the length of the subsequence
has been fixed as C. The hidden state is calculated as,

ĥs+1 = GRU(ys, Pk), (3)

where s = (k−1)C+1, functionGRU denotes one step up-
date of GRU cell and Pk is the hidden state corresponding to
the k-th anchor point, which is the initial hidden state. Then
the first human pose generated through RM is computed as

ŷs+1 = f(ĥs+1) + ys, (4)

where function f represents two fully-connected layers for-
ward operation. According to [Martinez et al., 2017], resid-
ual connection is also adopted in Eq. (4), so that f(ĥs+1)

can represent the velocity and f(ĥs+1) + ys represents the
output human pose. Taking ŷs+1 as the new ys and ĥs+1 as
the new Pk in Eq. (3), the hidden state in GRU cell can be
updated, and we can easily predict the next frame ŷs+2 in Eq.
(4) accordingly. The rest subsequence can thus be predicted
recursively by repeating the aforementioned calculations.

Note that ys is the first token of subsequence to initialize
the prediction, which is not part of the predicted subsequence,
the length of predicted one is C − 1. Given this predicted
subsequence {ŷs+1, · · · , ŷs+C−1}, the predicted loss for the
k-th retrospect module can be computed as

LRM (k) =
1

C − 1

s+C−1∑
t′=s+1

||ŷt′ − xt′ ||22. (5)

Note that for each anchor point, we need to predict C − 1
frames before it. The overall loss for the whole sequence
{x1, · · · , xt, x̂t+1, · · · , x̂t+T } can then be written as

LRM =
n∑

k=1

LRM (k). (6)
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Figure 1: An illustration of our retrospection module with attention on RNN model (RMA-RNN). The red-blue skeletons represent the ground
truth, and the green-purple skeletons represent the prediction. GRU cells with blue background are anchor points selected, which are initial
states of retrospection module (RM). We introduce spatial attention to focus on joints with more movements (Fig. (b)). With the current GRU
hidden state and the first token of subsequence before anchor points, retrospection module predicts the rest of subsequence for each anchor
point, as a process of looking back previous frames (Fig. (c)).

Finally, we combine this retrospection loss with the orig-
inal seq2seq loss to achieve the resulting objective function:

Lmodel = Lseq + αLRM , (7)

where α is a hyper parameter to balance the influence of these
two terms. The proposed retrospection module can signifi-
cantly enhance the ordinary RRNN method by fully investi-
gating previous information. By retrospecting subsequence
before the anchor point, short-term dependencies in frames
can be captured. On the other hand, multiple anchor points
have been set over the entire sequence to prevent the encoded
information from vanishing and improve long-term memory.

2.2 Spatial Attention
Attention mechanism is helpful in various tasks [Chen et al.,
2018]. In this paper, we propose to explore different impor-
tance of joints by assigning spatial attention weights on all
the joint angles, so that more attention could be paid on the
joint angles that are more informative in describing the mo-
tion. For example, “walking” involves more movement on leg
joints, however, “smoking” involves more rotation of arms.

Figure 1(b) illustrates the framework of the proposed spa-
tial attention module. We suppose that the importance of
joints mainly depends on the current input pose and the last
hidden state that represents the motion velocity. At each time
step t, given the input pose xt = [xt,1, xt,2, ..., xt,K ], the at-
tention scores are computed as

score(xt) =Wa tanh(Wxxt +Whht−1 + bxh) + ba, (8)

where ht−1 is the last hidden state, Wa, Wx and Wh are
weight matrices and bxh and ba are bias vectors. This score
stands for the importance of each joint angle and is normal-
ized by a Softmax layer as

at,n =
exp(score(xt,n))∑K
i=1 exp(score(xt,i))

, (9)

where n ∈ [1,K]. Instead of taking original input xt, the
modified input at · xt using spatial attention would be more
beneficial for the subsequent processing, as the informative
joint angles can be highlighted while those minor ones are
weaken in the computation. GRU cells are adopted after the
spatial attention module to further process the pose vectors.
Thus, the inputs fed to GRU cell in Eq. (3), ys and ŷs+i

(i ∈ [1, C − 1]), will be replaced with as · ys and as+i · ŷs+i,
as well as the inputs fed to GRU cell in seq2seq model.

3 Experiments
In this section, we evaluate the performance of the proposed
RMA-RNN algorithm for human motion prediction as well
as the roles of its different modules.

3.1 Experimental Settings
In experiments, we followed previous works [Fragkiadaki
et al., 2015; Martinez et al., 2017], and focusd on the Hu-
man 3.6M dataset [Ionescu et al., 2014], which is currently
the largest human motion dataset for 3D mocap data anal-
ysis. Human 3.6M dataset provides 15 activities performed
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Walking Eating Smoking Discussion
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
ERD 0.93 1.18 1.59 1.78 2.24 1.27 1.45 1.66 1.80 2.02 1.66 1.95 2.35 2.42 3.61 2.27 2.47 2.68 2.76 3.16
LSTM-3LR 0.77 1.00 1.29 1.47 1.84 0.89 1.09 1.35 1.46 1.97 1.34 1.65 2.04 2.16 3.61 1.88 2.12 2.25 2.23 2.45
SRNN 0.81 0.94 1.16 1.30 1.78 0.97 1.14 1.35 1.46 2.09 1.45 1.68 1.94 2.08 2.64 1.22 1.49 1.83 1.93 2.24
DAE-LSTM 1.00 1.11 1.39 N/A 1.39 1.31 1.49 1.86 N/A 2.01 0.92 1.03 1.15 N/A 1.77 1.11 1.20 1.38 N/A 1.73
Zero-velocity 0.39 0.68 0.99 1.15 1.32 0.27 0.48 0.73 0.86 1.38 0.26 0.48 0.97 0.95 1.69 0.31 0.67 0.94 1.04 1.96
RRNN 0.33 0.55 0.70 0.77 0.98 0.26 0.43 0.66 0.80 1.38 0.35 0.64 1.11 1.16 1.90 0.35 0.74 1.04 1.09 1.77
RM (Ours) 0.31 0.50 0.67 0.74 0.95 0.24 0.36 0.57 0.72 1.18 0.27 0.49 0.92 0.90 1.65 0.31 0.65 0.89 0.96 1.86
RMA (Ours) 0.28 0.45 0.62 0.68 0.79 0.21 0.34 0.53 0.68 1.16 0.26 0.50 0.96 0.93 1.71 0.29 0.64 0.90 0.96 1.72

Directions Greeting Phoning Posing
Zero-velocity 0.39 0.59 0.79 0.89 1.50 0.54 0.89 1.30 1.49 1.80 0.64 1.21 1.65 1.83 2.04 0.28 0.57 1.13 1.37 2.78
RRNN 0.44 0.70 0.84 0.94 1.46 0.55 0.90 1.33 1.51 1.93 0.61 1.15 1.53 1.66 1.73 0.45 0.83 1.50 1.74 2.40
RM (Ours) 0.42 0.65 0.81 0.90 1.45 0.55 0.88 1.30 1.47 1.82 0.58 1.14 1.50 1.64 1.81 0.29 0.60 1.16 1.40 2.59
RMA (Ours) 0.40 0.61 0.77 0.86 1.42 0.52 0.86 1.26 1.43 1.79 0.59 1.11 1.47 1.59 1.73 0.26 0.54 1.14 1.41 2.43

Purchases Sitting Sitting down Taking photo
Zero-velocity 0.62 0.88 1.19 1.27 2.45 0.40 0.63 1.02 1.18 1.63 0.39 0.74 1.07 1.19 1.90 0.25 0.51 0.79 0.92 1.27
RRNN 0.59 0.84 1.25 1.32 2.38 0.48 0.79 1.27 1.48 2.12 0.52 0.98 1.52 1.74 2.57 0.33 0.63 0.98 1.11 1.51
RM (Ours) 0.64 0.86 1.14 1.21 2.37 0.43 0.62 1.01 1.18 1.68 0.43 0.77 1.10 1.22 1.90 0.24 0.50 0.77 0.90 1.21
RMA (Ours) 0.59 0.84 1.14 1.19 2.33 0.40 0.64 1.04 1.22 1.71 0.41 0.77 1.14 1.29 2.07 0.27 0.52 0.80 0.92 1.21

Waiting Walking Dog Walking together Average
Zero-velocity 0.34 0.67 1.22 1.47 2.63 0.60 0.98 1.36 1.50 1.96 0.33 0.66 0.94 0.99 1.52 0.40 0.71 1.07 1.21 1.85
RRNN 0.37 0.70 1.16 1.34 2.33 0.54 0.89 1.22 1.35 1.88 0.30 0.60 0.85 0.88 1.38 0.43 0.76 1.13 1.26 1.85
RM (Ours) 0.34 0.67 1.16 1.37 2.46 0.55 0.89 1.24 1.38 1.91 0.29 0.56 0.77 0.81 1.38 0.39 0.67 1.00 1.12 1.75
RMA (Ours) 0.33 0.65 1.12 1.30 2.28 0.53 0.87 1.16 1.33 2.00 0.28 0.52 0.68 0.71 1.31 0.37 0.66 0.98 1.10 1.71

Table 1: Detailed results for human motion predictions on 15 actions from Human3.6M dataset in terms of mean Euler angle error on 80, 160,
320, 400ms (short-term) and 1000ms (long-term). Top section corresponds to previous RNN-based models. “Zero-velocity” is a baseline that
constantly predicts last observed frame. “RM” stands for retrospection module, “RMA” stands for retrospection module with attention. The
best result in bold. Our model outperforms other baselines in most scenarios.

by seven actors, including both periodic and aperiodic activ-
ities. Each activity trial consists of 3,000 to 5,000 frames.
For each frame, 32 joints with a global translation and ro-
tation are provided to represent the 3D human pose and
each rotation is represented with its exponential map. We
followed the standard data pre-processing for mocap data
[Fragkiadaki et al., 2015; Jain et al., 2015; Li et al., 2018;
Martinez et al., 2017]. Each pose would be normalized and
global translation and rotation are set to zero. Joint angles
dimensions that have constant standard deviation have been
discarded to decrease computations, as they do not contribute
to human dynamics. The final dimension of our input data is
thus 54. We also down-sampled the original data by 2, mak-
ing its sampling rate 25fps. The hyper parameter α in Eq. 7
is set to 0.5. Different from previous works that take activity
labels as supervision information in the format of one-hot en-
coding [Martinez et al., 2017], the proposed algorithm is an
unsupervised method to model human dynamics.

Similar to previous works, we tested on subject 5 while
the rest six subjects were used for training. During the train-
ing, we fed the network 50 frames (2 seconds in total), and
predicted the subsequent 25 frames (1 second in total). We
also trained a general model, where the input seed sequences
are randomly selected from all the activities. Although er-
ror is minimized over 1 second, we let the network predict
2 seconds for qualitative comparison since RMA is able to
capture long-term dependencies. Our RNN architecture was
designed according to the suggestions in RRNN [Martinez et
al., 2017]. We adopted a single gated recurrent unit with 1024
units. Momentum method was used to optimize the proposed
algorithm and the learning rate is set to 0.005. The batch size
is set to 16, and gradient clipping to maximum L2-norm of
5. Our network was implemented using TensorFlow, and it

takes 92ms per step on an NVIDIA Titan GPU.

3.2 Evaluation on Human3.6M Dataset
For a fair comparison, we evaluated the performance using
the mean angle error for the 15 actions on subject 5 in Human
3.6M dataset and reported the error at 80ms, 160ms, 320ms
and 400ms for short-term prediction as in [Martinez et al.,
2017], as well as 1000ms for long-term prediction as in [Li et
al., 2018]. Following [Martinez et al., 2017], we also visual-
ized the generated poses for qualitative analysis. State-of-the-
art deep RNNs based approaches are included in comparison
experiments, including ERD and LSTM-3LR [Fragkiadaki et
al., 2015], SRNN [Jain et al., 2015], DAE-LSTM [Ghosh
et al., 2017] and RRNN and zero-velocity [Martinez et al.,
2017]. We used the official implementation to re-produce re-
sults of RRNN, and slightly better results were achieved than
those reported in [Li et al., 2018].

Quantitative Comparison
Table 1 shows our quantitative comparison with a set of base-
lines of human pose generation on 15 actions from Human
3.6m Dataset. Compared with ERD, LSTM-3LR, SRNN and
DAE-LSTM, our model outperforms them in all the scenar-
ios. To evaluate the effect of our retrospection module and
spatial attention module, we mainly focused on comparisons
with RRNN method and a strong zero-velocity baseline.

Compared with RRNN, our model outperforms it in almost
all the scenarios. We can see that our retrospection module
assists to produce more precise human poses in most cases,
especially for long-term prediction (1000ms), comparing the
second and third rows from the bottom (RRNN and RM),
which highlights of difficulties for RNN to maintain compli-
cated correlations on longer horizon. Thus, our retrospection
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Figure 2: Qualitative motion generations for 2 seconds on different actions from Human3.6M dataset. The top sequence corresponds to ground
truth, the second one to residual RNN, the third one to retrospection module and the bottom one to retrospection module with attention. The
first four frames are the last four frames of observed seed sequence fed to the network. Our final model, retrospection module with attention
on RNN (RMA-RNN), produces more realistic, continuous human motion predictions. Best viewed in color with zoom.

module enables it to keep track of information from distant
past by keeping recalling previous subsequences. Meanwhile,
our spatial attention module assists to further explore these
complicated spatial dynamics and correlations by paying dif-
ferent attention on joints, comparing the last two rows (RM
and RMA). With the combination of them, our model can pro-
duce more precise predictions (see the “Average” section).

Compared with zero-velocity baseline, our model still out-
performs it in most scenarios. Although zero-velocity base-
line generate static predictions, it outperforms most exist-
ing RNN-based methods especially in short-term prediction
and aperiodic actions. For periodic actions(e.g. walking), our
model consistently outperform it. For aperiodic actions which
involve small movements in upper-body(e.g. smoking, pur-
chases), our model still outperform it. For these highly aperi-
odic actions with high acceleration(e.g. posing, sitting down),
it’s difficult for existing deep learning methods to capture its
dynamics, however, our model still gain better quantitative
results than other baselines.

Qualitative Comparison
Figure 2 shows our qualitative comparison with RRNN and
ground truth on 4 actions. The sequences from top to bottom
correspond to ground truth, RRNN, RM and RMA. Since our
model can learn long-term dependencies during training, we
expect the model to make predictions over longer horizons.
Thus, though the model is trained to minimize the error over
1 second, we visualize 2 seconds prediction for 4 different
types of actions to evaluate the performance of our model.

For periodic action(e.g. walking), both RRNN and our
model generate predictions close to ground truth for the first
second because the correlations of joints can be easily cap-
tured due to its periodic, mild dynamics. However, our RMA
model can further explore the key joints which have more dy-
namics. With more attention to legs, our model produces con-
tinuous, dynamic predictions, whereas the others coverage to
mean pose during the last several frames, which suggests that
spatial attention module assists to further explore spatial cor-
relations and generates human poses close to ground truth.

For aperiodic action with small movements(e.g. smoking),
RRNN generates implausible human poses where both arms
and legs move in the wrong directions after several frames,
however, our models RM and RMA can both generate realis-
tic poses which maintain the smoking gesture as the ground
truth. Furthermore, for a combined action phoning where up-
per body involves small movements while lower body involve
periodic movements, RRNN converges to mean pose and can-
not maintain phoning gesture after 1 second, whereas RM and
RMA continue generating realistic human poses.

For highly aperiodic action with complicated dynam-
ics(e.g. taking photo), we visualize a challenging subse-
quence where the actor rises while holding the camera.
RRNN quickly converges to mean pose where it sticks to
squat gesture. RM and RMA, on the other hand, maintain
the similar velocity with ground truth. However, for the next
second, where the ground truth is transferred to walking, all
the models fail to predict it due to its high uncertainty.

Finally, we compare RM with RMA to evaluate the per-
formance of spatial attention module. For all the actions we
visualize, we can see that our RMA-RNN model produces
more realistic human poses while maintaining the similar ve-
locity with ground truth, especially for long-term prediction,
which suggests the combination of retrospection module and
spatial attention modules generates better predictions.

User Studies
Following [Gui et al., 2018], we generate 90 short term and
long term motion sequences and ask judges to do pair-wise
evaluation. Results are given in Table 2. We can outperform
RRNN and be comparable with ground truth.

Short-term Long-term
Pair Ours GT RRNN Ours GT RRNN
Ours n/a 47.6% 75.6% n/a 42.9% 95.1%
GT 52.4% n/a 76.2% 57.1% n/a 97.6%

Table 2: Each number represents the percentage that our generated
sequence or ground truth is selected from a pair comparison.
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Figure 3: Ablation study for retrospection module. The left chart corresponds to the quantitative comparison of different location selections
for anchor points and the one which sets anchor points on both encoder and decoder networks achieves the best performance. The middle
chart corresponds to different interval sizes of anchor points, which shows both small and large interval sizes increase the error. The right
chart corresponds to different size of subsequence to retrospect for each anchor point, which shows similar results with interval sizes.

Figure 4: Visualization of spatial attention responses using heat map.
For each joint, the size and color of circle represents the learned
degree of importance, where small size with yellow indicates the low
attention whereas large size with red indicates the high attention.

3.3 Ablation Study
The Role of Spatial Attention
We propose a spatial attention module in order to assist our
model to learn spatial dependencies by paying more attention
to key joints. To evaluate the performance of it, we apply heat
map to the input sequence and visualize the key joints it finds.
Figure 4 visualizes the effectiveness of it. For periodic action
walking, more attention is paid to legs which contribute most
movement. In addition, both legs receive more attention al-
ternately, which indicates the spatial attention captures the
periodic propriety of walking. For aperiodic action smoking,
although it’s nearly a static sequence except for small move-
ment on one arm, spatial attention captures it successfully. As
a result, with learned spatial attention on key joints, the model
can generate more precise human poses, and with variation of
attention distributions over time, spatial attention captures the
tendency of human motion so that the model can further ex-
plore spatio-temporal correlations for different actions.

Ablation Study for Retrospection Module
In our retrospection module, we set anchor points over the
whole sequence including encoder and decoder to retrospect
previous frames. To further explore the effectiveness of an-
chor points on different locations, we design 3 scenarios: (a)
anchor points are set only on encoder (b) set only on decoder
(c) set on both of them. The results are shown in the left
chart in Figure 3. Results suggest that the anchor points on

encoder network contribute more to minimize the errors in
long-term prediction. Meanwhile, those on decoder network
contribute more to short-term prediction. With anchor points
set on both encoder and decoder, the model achieves comple-
mentary quantitative results and better performance.

In addition, we set anchor points on RNN every fixed num-
ber of frames C to show the influence of interval size of an-
chor points, shown in the middle chart in Figure 3. We further
explore the influence of the size of subsequence S to retro-
spect for each anchor point, shown in the right chart of Figure
3. We find C = 4 is the best choice to minimize the errors
over the whole horizon. Smaller size S indicates RM module
retrospects only a part of the subsequence and may lose some
key information. However, larger length to look back results
in redundant information, which makes it difficult to learn
spatio-temporal correlations. Thus, with retrospection size
corresponding to interval size, retrospection module exactly
covers the entire sequence and gains the best performance.

4 Conclusions
In this paper, we propose a retrospection module with atten-
tion to address the challenges in human motion prediction.
We demonstrate that the current RNN-based approach cannot
produce plausible human poses for aperiodic actions and con-
verges to mean pose quickly, whereas our model eliminates
these limitations and outperforms it by setting anchor points
to retrospect previous frames and applying spatial attention
upon joints. Based on quantitative and qualitative evalua-
tions, we show the effectiveness of retrospection module and
spatial attention module, which together capture complicated
spatio-temporal correlations, invariant and dynamical infor-
mation. Our proposed model RMA-RNN, focusing on learn-
ing long-term dependencies, can be trained on large mocap
datasets in unsupervised manner with less parameter tuning
and generates longer, more realistic and coherent predictions.
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