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Abstract

In this work, we propose an entirely learning-based
method to automatically synthesize text sequence
in natural images leveraging conditional adversar-
ial networks. As vanilla GANs are clumsy to
capture structural text patterns, directly employ-
ing GANs for text image synthesis typically re-
sults in illegible images. Therefore, we design a
two-stage architecture to generate repeated charac-
ters in images. Firstly, a character generator at-
tempts to synthesize local character appearance in-
dependently, so that the legible characters in se-
quence can be obtained. To achieve style con-
sistency of characters, we propose a novel style
loss based on variance-minimization. Secondly, we
design a pixel-manipulation word generator con-
strained by self-regularization, which learns to con-
vert local characters to plausible word image. Ex-
periments on SVHN dataset and ICDAR, IIIT5K
datasets demonstrate our method is able to synthe-
size visually appealing text images. Besides, we
also show the high-quality images synthesized by
our method can be used to boost the performance
of a scene text recognition algorithm.

1 Introduction

Drawing text can be considered as a problem of image syn-
thesis that focuses on text rendering. We humans are able to
write or design text, practicing in communication, typogra-
phy, hand-lettering, etc. However, it remains a challenge for
artificial intelligence to manipulate the probability distribu-
tions of text images in uncontrolled conditions. In this work,
we explore an approach to automatically synthesize text se-
quence in natural images given the text labels.

A straightforward way to synthesize text images is apply-
ing the non-learning based method [Jaderberg et al., 2014;
Gupta et al., 2016; Zhan er al., 2018]. By setting several pa-
rameters in advance, such as font, color, distortion, noise, etc.
[Jaderberg et al., 2014], this kind of method has the ability to
semi-automatically render images with diverse text using the
techniques of computer graphics. However, it is tedious for
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a non-learning approach to appropriately select the parame-
ters and realistically simulate natural images (uneven light-
ing, occlusion, degradation, etc.). In addition, it also fails to
synthesize images with unseen font, e.g., hand-writing and
special-effects text.

To better simulate natural scenes and produce realistic
text images, the learning based method can be considered.
Recently, image synthesis has advanced dramatically with
the emergence of generative adversarial networks (GANs)
[Goodfellow et al., 2014]. Though GANs show impres-
sive results in high-quality image generation, it is still an in-
tractable problem to capture geometric or structural scenes
[Zhang et al., 2018; Ledig et al., 2017]. As characters oc-
cur repeatedly in text string, there are strong structural pat-
terns in text images. Therefore, directly employing vanilla
GAN:Ss for text image synthesis typically recovers unreadable
or meaningless images (Figure 7a). Specifically, applying
learning based method for text image synthesis confronts the
following challenges: firstly, the text images should be gen-
erated in arbitrary length. Secondly, compared to the image-
to-image translation task [Isola et al., 2017] that requires an
image as input, synthesizing text images from scratch only
takes character labels, which carry less information than im-
ages. Besides, different from object synthesis that generally
one salient category is placed in the images, characters in text
sequence are of the same importance. Thus, how to keep all
characters readable is the primary issue. In addition, char-
acters possess dependency with each other and tend to share
similar styles in natural images.

Taking the above challenges into consideration, we pro-
pose an entirely learning-based method leveraging condi-
tional adversarial networks, called scene text synthesis GAN
(STS-GAN). Inspired by the learning process that humans
master characters writing first, and then are capable of draw-
ing text freely, we divide the generation procedure into char-
acter synthesis and word synthesis stages. Figure 1 illus-
trates the framework of STS-GAN. In the former stage, a
character generator attempts to capture local character ap-
pearance based on conditional GAN. The character genera-
tor separately synthesizes character images, so that the leg-
ible characters in sequence can be obtained. To resolve the
problem of style discrepancy, we propose a novel style loss
based on variance-minimization. The style loss aims to min-
imize the characters distance in style space, enabling char-
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Figure 1: Overview of our approach. (a) Taking character labels and latent vector as input, character generator synthesizes local character
images, which is trained with adversarial loss and style loss. (b) The synthetic character images are then fed into word generator conditioned
on text labels, and global word image is synthesized through pixel-wise manipulation. The word generator is trained with patch level

adversarial loss and L1 self-regularization loss.

acters in the same text patch to share similar styles (e.g.,
font and background). In the latter stage, we design a pixel-
manipulation word generator conditioned on text labels to
produce variable-length text images. Training with adversar-
ial learning and self-regularization, the word generator is able
to learn the characters dependency in natural scenes, and it
can consequently map the synthetic character images to per-
ceptually convincing word image. To the best of our knowl-
edge, our method is the first one to synthesize text images
from scratch entirely based on learning. The experiments
conducted on SVHN dataset and ICDAR, IIIT5K datasets
show that STS-GAN has the ability to synthesize high-quality
text images within a complex environment. In addition, com-
pared to the non-learning methods, our STS-GAN can bet-
ter fit the desired data distribution in natural scene images.
Specifically, the main contributions of this paper include:
(1) we construct STS-GAN to synthesize text in natural im-
ages, which is an entirely learning-based model using well-
designed conditional GANs. The STS-GAN is designed as a
novel two-stage architecture aiming to capture structural pat-
terns in text images. (2) A novel style loss based on feature
variance minimization is proposed to generate character im-
ages in harmonious patterns. (3) Experiments on challeng-
ing scene text datasets show STS-GAN is able to synthesize
highly deceptive text images. In addition, the synthetic im-
ages can be used to boost the performance of a text recogni-
tion algorithm.

2 Background

The generative adversarial networks (GANs) aim to learn
a mapping function G from random noise vector z to im-
age « [Goodfellow et al., 2014]. The mapping function
G : z — x, named generator, is adversarially trained with
a discriminator D through the following objective function:

Laan(G, D) = Eq[log D(2')] + E;[log(1 — D(G(2))], (1)
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where x’ is the real image. G tries to minimize this
objective while D tries to maximize it, i.e., G*
argnganaXEGAN(G, D). Based on Equation 1, condi-

tional GANs are proposed to control the generation by in-
jecting supervised information y into both G and D. The
formulas below are a hinge based method [Tran et al., 2017]
to train G and D iteratively:

L.can(D) = Eg [max(0, 1 — D(z',y))] +
E. y[max(0, 1+ D(G(z,y), 2)
Legan(G) = —Ezy[D(G(z,y), y)], 3)

where y typically could be labels in class-conditional image
synthesis.

Showing promising performance in image synthesis,
GANSs have been further improved to impart stable training
and high-quality images by many recent works. For example,
to stabilize the training, Miyato et al. [2018] introduce spec-
tral normalization (SN) that constrains the Lipschitz constant
of the discriminator. Further, projection discriminator [Miy-
ato and Koyama, 2018] is proposed taking an inner product
between the embedded class vector and the feature vector,
which improves class-conditional performance greatly. Other
works attempt to explore helpful tricks for GANs, such as
BigGANSs [Brock er al., 2019] which trains networks with
larger scale (network channels and training batch), achieving
impressive results on ImageNet.

The powerful capability makes GANs competent for many
specific tasks. Ledig et al. [2017] train a GAN model
combining with traditional content loss for image super-
resolution. In [Isola er al, 2017], an image-conditional
model, called Pix2Pix, is proposed for image-to-image trans-
lation problems. Also based on conditional GANSs, Reed et al.
[2016] develop GAN-CLS to synthesize images given text de-
scriptions. These methods above mainly focus on generating
images with few structural scenes. MC-GAN [Azadi et al.,

¥l



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2018] pays attention to designing glyphs, which first gener-
ates glyph then transfers color and ornamentation. Neverthe-
less, MC-GAN synthesizes each character images indepen-
dently without sequence information. In [Liu et al., 2018],
canonical rendering process is applied to synthesize text im-
ages and the adversarial loss is introduced for feature learn-
ing, which is also deviated from our method that synthesizes
text images from scratch.

3 Scene Text Synthesis GAN

Mathematically, we denote the characters collection as C =
{y:}¥.|, where N is the number of characters. Given a text
vector y € CM, where M is text length, our goal is to
generate corresponding image collection A, that each image
x € X is a readable representation of y in natural image.
Figure 1 depicts the pipeline of our approach. To generate
an image that contains characters sequence y, we divide this
procedure into two stages: character synthesis and word syn-
thesis. In the following sections, we will detail our approach
from the aspects of character synthesis and word synthesis.

3.1 Character Synthesis

Character synthesis stage describes the skeleton for a text im-
age. Taking character label y € C and latent vector z as input,
this stage samples character image . by directly applying the
conditional GAN. The scale of x.. is set to 32 x 32 pixels.

Variance-Minimization Style Loss

Even though the conditional GAN is able to generate legible
characters as expected, it is impractical to integrate all the
character images into text patch due to the high diversity of
styles between each character (Figure 4a). Therefore, we try
to explore a method to unify the style of each character in
the same image. Within our framework, for a fixed latent
vector z, the output images of different y € C should visually
be consistent in font, color, background, etc. However, the
conditional GANs are powerless for this and the style of . €
{Gc(z,y)|y € C} is out of control.

Suppose & € R"™ is a style space that closer points in
S have similar styles. Given a mapping function (-) that
projects x. to corresponding representation in S, we can ap-
ply ¥(-) to guide the training of G. by restricting the dis-
tances of synthetic images in S, so that GG, can generate char-
acter images with consistent style. For all the synthetic im-
ages . € {G.(z,y)ly € C}, minimizing the variance of
corresponding representations in S means reducing the style
discrepancy. Based on this observation, we propose the fol-
lowing objective:

Estyle(Gc) =E, [VCLTy [w(GC(z’y))H 4)

The style function ¢(-) can be parametrized as a neural net-
work. We share the network of ¢ (-) with discriminator D, as
it adds negligible computation to GAN training. Thus, Equa-
tion 4 can be rewritten as:

Latyic(Ge, DL) = E.[Vary[DL(G.(z,y))]]- 5)

We note that Equation 5 can be easily approximated with
Monte Carlo simulation. For the estimation of Var,, we sam-
ple 8 labels for each latent vector z. Then the mean value of
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z € R ~ N(0,1) image x € R32x32x3

fc, 4 x 4 x chy ResBlock down chy
ResBlock up che ResBlock down chg
ResBlock up chg ResBlock cho
ResBlock up chy ResBlock chq, ReLU
BN, ReLLU, 3x3 conv 3 Global sum pooling
Tanh Embed(y)-h + (fc — 1)

(a) Character generator (b) Character discriminator

Table 1: Network architectures for character model. ch; is the chan-
nel width of ResBlock.

each feature dimension in S is calculated after variance es-
timation. Therefore, Equation 5 can be optimized by tradi-
tional stochastic gradient descent together with GAN loss.

In summary, combining conditional adversarial loss and
style loss, our training objectives for D, and G, are con-
cluded as follows:

Lp.p, =Leaan(De) + AsLstyie(Dy), 6)
LGC :LCGAN(GC) + )\sﬁstyle(Gc)a (7)

where )\ is a balance parameter between the GAN loss and
style loss.

Our style loss is related to perceptual loss [Dosovitskiy and
Brox, 2016; Gatys et al., 2016] as both of us employ an ad-
ditional network for feature space projection. However, our
method differs from perceptual loss as we attempt to reduce
feature variance between synthetic images from the same la-
tent vector z, rather than minimizing the norm of feature vec-
tors between real and fake images.

Network Architecture

Our network architectures are designed mainly following
[Miyato er al., 2018; Miyato and Koyama, 2018], and the
details are given in Table 1. Overall, we employ ResBlock
defined in [Miyato and Koyama, 2018] as the backbone of
both generator and discriminator. Spectral normalization is
applied to each parameter layer both in generator and discrim-
inator. For generator G, class label y is injected using class-
conditional batch normalization [Dumoulin et al., 2017]. For
discriminator D, y is provided to D, based on projection
[Miyato and Koyama, 2018]. In addition, the style function
in Equation 5 shares the network with discriminator D,.. We
extract the output of global sum pooling in Table 1b as the
style representation, so that D’,(G.(z,y)) € R°", where chy
is the channel width of the last ResBlock in discriminator net-
work.

3.2 Word Synthesis

By now we can synthesize character sequence in images by
simply applying image stitching based on the fruit of Sec-
tion 3.1. However, in this case there exist seams and dis-
continuities between characters, causing pool visual effects
(top rows in Figure 6). In the word synthesis stage, we aim
to fine-tune the stitched image &,, to more visually appeal-
ing image x,,. The stitched image &,,, whose aspect ratio is



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Encoder Decoder
1 conv 64, SN, ReLU 6  deconv 512, SN, IN, ReLU
2 conv 128, SN, IN,ReLU 7 deconv 256, SN, IN, ReLU
3 conv 256, SN, IN, ReLU 8 deconv 128, SN, IN, ReLU
4  conv 512, SN, IN,ReLU 9 deconv 64, SN, IN, ReLU
5 conv 512, SN, IN,ReLU 10 deconv 3, SN, Tanh

Table 2: U-Net word generator.

kept invariant, i.e. the size is 32 x (M - 32), is fed into word
model together with its character labels y € C*. We also de-
sign the word model following the idea of conditional GANS,
in which the word generator is a U-Net [Ronneberger et al.,
2015] implementing pixel-wise manipulation.

Training Objective

To refine &,, to x,,, two aspects should be taken into ac-
count. The first is how to retain text structure in &,,. The
second is how to remove noise and achieve realism, i.e., re-
moving discontinuities and rearranging the characters layout.
To preserve local appearance, we introduce L1 loss [Isola et
al., 2017, Shrivastava et al., 2017] for self-regularization:

®)

To generate realistic images, we turn to a variant of condi-
tional GAN. Different from character synthesis that applies
character label y to Equation 2,3, we use word label y to
control the content instead. Therefore, D,, and GG,, can be
optimized by minimizing the following objectives:

Lp, = Eg, y[max(0, 1 — Dy (x,,y))] +
Emw,y[max(ov 1 + Dw(ww’ y))]’
Lg - Emw,y[Dw(wway)] + NLra,

where ©,, = Gy (£,y) and ); is a balance parameter be-
tween the GAN loss and L1 loss.

As GANS tend to disrupt the text structure obtained from
&, the L1 self-regularization is crucial to preserve character
appearance. Compared to generating text image from scratch,
pixel-wise manipulation with self-regularization substantially
reduces the underlying sample space, which eases the burden
on GAN synthesis. Different from the L1 loss in [Isola ef al.,
2017] applied between real and fake images, we restrict the
output of the generator to its input. Our method also deviates
from [Shrivastava et al., 2017], as we explicitly consider word
label y both in generator and discriminator.

L1 =|ew — Twl|i-

®
(10)

w

Pixel-wise Manipulation and Patch Adversarial Learning
A basic demand of word model is to deal with variable-length
images as the size of &,, is 32 x (M - 32). Therefore, we
implement both generator G, and discriminator D,, as fully
convolutional networks. For the generator G,,,, we design the
network architecture following U-Net, allowing G,, to ma-
nipulate images from pixels to pixels. Table 2 details the ar-
chitecture, where conv and deconv are convolution and trans-
posed convolution both with kernel 4 x 4 and stride 2; IN
is instance normalization [Vedaldi, 2016] conditioned on y.
The feature maps from layer ¢ and n — 4 are concatenated,
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and then fed to layer n — ¢ + 1, where n = 10 is the total
number of layers.

As a strong discriminator is substantially important for pro-
viding correct gradient to generator training, we exploit sev-
eral schemes to build D,,. First, D,, adopts the backbone of
D, (Table 1b) as its network, thus D,, can be initialized with
well-trained D, which enables D,, to distinguish text patch
initially. More concretely, we drop global sum pooling in Ta-
ble 1b, resulting in an output response r € R8*(M8) ‘and the
fully-connected (fc) layer is replaced by a 1 x 1 convolution
layer. Note that fc layer can be viewed as 1 x 1 convolution
operated on feature maps with shape 1 x 1, so that the 1 x 1
convolution layer in D,, can be initialized with fc layer in
D,.. Then, we employ adversarial loss to local image patches
[Li and Wand, 2016] rather than the full image, as it helps to
keep local character structure. In our method, the local im-
age patches are at the scale of 48 x 48 (if available), which is
the size of receptive field in . We apply Equation 9 to each
element in 7, and average the results to get the final discrimi-
nator response.

To inject labels into G,, and D,,, a straightforward way
is assigning the label of each pixel in input image to its cor-
responding location in the feature map. More formally, p; ;
is a pixel in fake image x,, or real image x/,, and s is the
stride from image to feature map f € RC*(32/5)x(32:W/s)
where C'is the number of channels. Thus, p/ Jsij/s in f has

the same label y with p; ;. Besides, the labels in x,, and x/,
are easily obtained according to the image stitching and anno-
tations, respectively. After determining the labels for feature
maps, class-conditional instance normalization in generator
and projection in discriminator can be conducted.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets

We evaluate the proposed STS-GAN on two scene text
datasets. The first is Street View House Number (SVHN)
[Netzer et al., 2011], which contains 10 classes from digit
1 to 10. There are 73257 training and 26032 test character
images, and 33402 training and 13068 test word images in
SVHN dataset. The second is an alphanumeric (62 charac-
ters) dataset composed of data from ICDAR 2003 [Lucas er
al., 2003] and IIIT 5K-word [Mishra et al., 2012] datasets.
This dataset (ICO3+IIIT) has 15791 training and 20648 test
character images. We keep the images with no more than
twenty characters, thus the number of training and test word
images are 3096 and 4056, respectively.

Evaluation Metrics

We primarily apply Inception score (IS) [Salimans er al.,
2016] to quantitatively evaluate the synthetic text images, as a
high score generally indicates better visual appearance. In ad-
dition, Fréchet Inception distance (FID) [Heusel et al., 2017]
is used as an assistant tool to assess the realism and variation.
Different from IS, lower FID means better. Rather than em-
ploying Inception network [Szegedy et al., 2016] trained on
ImageNet, we use ResNet classifiers [He et al., 2016] trained
on SVHN or ICO3+IIIT datasets for IS and FID. Specifically,
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Figure 2: Samples from SVHN dataset. The top rows are synthetic images, and the bottom row is the real images.
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Figure 3: Training curves on SVHN for character and word models.

the ResNet classifiers are originally designed for CIFAR-10
with 56 layers. For character classifier, the size of input im-
age is 32 x 32, and the feature vector before the last fully-
connected layer is adopted to calculate the FID. For word
classifier, the size of input image is 32 x 128. We share the
backbone of character classifier with word classifier, which
is equipped with an LSTM layer trained with CTC loss. The
feature vector used for FID is the output of the last residual
block. In all experiments, 50k samples are randomly sampled
to compute the IS and FID scores for each evaluation.

Implementation Details

We employ Adam optimizer as solver with momentum 3; =
0 and B2 = 0.999 for all the networks. The learning rates are
2-10~* for D, and 5-10~° for G, and 2 - 10~* for both D,,
and GG,,. For character model, batch size is set to 512. For
word model, we sample 8 images with the same word length
each batch. All the latent vector z is sampled from standard
Gaussian distribution.

4.2 Evaluation on SVHN

To validate the effectiveness of STS-GAN, we first conduct
experiments on a digit dataset. The margins of both character
and word images are removed, thus the text is center-cropped
in the images. Figure 2 presents some synthetic text images
(top rows). Compared to the real images (bottom row), the
fake images with arbitrary text length are highly deceptive.
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Batch  chy,chg,chs,chy Param (M) I FID
512 256,128,64,32 1.879 39.14(£0.29)  9.05
512 128,128,128,128 2.212 38.71(£0.33)  6.98
512 512,256,128,64 6.252 39.70(+0.37)  8.56
512 256,256,256,256 8.095 41.96(+0.32)  9.06
512 1024,512,256,128 22.482 41.50(+0.40)  9.46
128 256,256,256,256 8.095 44.06(£0.33)  10.31
256 256,256,256,256 8.095 43.53(+0.29) 9.78
1024 256,256,256,256 8.095 40.06(+0.33)  8.38
2048  256,256,256,256 8.095 42.09(+0.45) 891

Table 3: Evaluation of character model at different channel width
and batch size. ch; represents the number of channels in Table 1.
Results are computed across 5 different random initializations.

Figure 3 plots the IS and FID training curves for char-
acter model (top) and word model (bottom). On one hand,
the converged curves indicate STS-GAN is able to synthesize
better images with increasing iterations. On the other hand,
they also prove that by directly transferring IS and FID to
our tasks, IS and FID can be effective metrics to evaluate the
generation of text images, even though the character classifier
and word classifier are newly trained on text image datasets.

4.3 Evaluation on ICDAR and IIIT5K

To have a deep insight into STS-GAN, we further conduct
experiments on a more challenging ICO3+IIIT dataset. Com-
pared to SVHN, this dataset has more character classes, more
flexible styles, longer text and less training images.

Analysis of Character Synthesis

Network architecture. [Brock et al., 2019] reports GANs
benefit from wider network and larger batch size. We also
conduct similar experiments (Table 3) on character model.
To test the impact of network parameters, we gradually in-
crease the number of channels (rows 1 — 5). However, we
do not notice wider networks obviously improve the perfor-
mance, even the largest model (row 5) is slightly worse than
a small one (row 4). Further, the batch size is doubled from
128 to 2048 (row 4,6 —9) !. Also, this trick does not improve
the performance simultaneously in IS and FID. We conjecture
that the scaling trick explored in ImageNet suffers from sat-
uration due to the limited training data in ICO3+IIIT dataset.
Therefore, we adopt the configuration in row 4 considering
the trade-off between image quality and training efficiency.

"We implement batch size 1024, 2048 by accumulating gradi-
ents, thus the statistics of BatchNorm is computed at batch size 512.
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Figure 4: Character samples from G trained with different \s;. Each
column uses the same latent vector z.

L1 patch pretrained Dy(-,y) Gu(-y) IS FID
X X X X X 5.8(+£0.1) 203
v X X X X 7.5(£0.1) 18.1
v v X X X 26.3(+0.6) 3.1
v v 4 X X 28.5(+0.6) 2.7
oo v v X 31.5(£0.6) 24
4 v 4 v 4 32.4(+0.8) 24

Table 4: Ablation study for word model.
across 3 different random initializations.

Results are computed

Style loss. Further, we investigate the effectiveness of pro-
posed style loss by adjusting A, in Equation 6,7. As shown
in Figure 4, A, is set to 0,0.5, 1, 2, respectively. Note that
As = 0 equals to training G, without style loss. By compar-
ing Figure 4a with 4c,4d, we can obviously observe that the
style loss essentially unifies the font, color, background, etc.
of the characters. However, a small A4 (Figure 4b) is too weak
to control the style. Though a big A4 (Figure 4d) achieves sat-
isfactory style appearance, we find it slowing down the con-
vergence slightly. Thus, A; = 1 is adopted in our further ex-
periments. Besides, the style loss does not harm performance
according the IS and FID scores.

Analysis of Word Synthesis

Ablation study. Applying vanilla GAN with U-Net as the
generator and removing the latent vector, we build a simple
baseline. Based on this baseline, we illustrate the effective-
ness of each component of the proposed method. Table 4
summarizes the comparison results, where L1 is the loss de-
fined in Equation 8 (\; = 1); patch represents the patch
discriminator; pretrained indicates initializing D,, using D.;
D, (-,y) and G4 (-, y) are imposing condition y on discrimi-
nator and generator respectively. As can be seen from Table 4,
without L1 and patch (rows 1,2), the models fail to generate
plausible images. The configuration of 3rd row is quite simi-
lar to [Shrivastava er al., 2017] as L1 and patch are the princi-
pal components of [Shrivastava et al., 2017]. Further, we gain
benefit from using pretrained D,, (4th row). Lastly, injecting
y to D,, substantially improves the IS and FID scores, and
G, conditioned on y also boosts the IS score.

L1 loss. Based on the results of ablation study, we further
analyze the impact of L1 self-regularization, which is impor-
tant to retain character appearance from the character model.
As reported in Table 5, a big A; typically reduces the image
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A 01 0.2 0.5 1 2 5 10 20
s 266 201 311 324 328 333 329 323
(£0.6) (£0.6) (£0.4) (+0.8) (£0.5) (+0.5) (£0.5) (+0.7)
FID 29 26 25 24 2.5 25 27 3.1

Table 5: Impact of L1 coefficient. Results are computed across 3
different random initializations.
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Figure 5: Recognition accuracy of word classifiers trained with
ICO3+IIIT datasets and additionally nk synthetic images.

diversity and a small one is hard to keep the character skele-
ton. Therefore, we choose \; = 5 as it performs the best
performance both in realism and variation.

Scene text recognition. Finally, we apply the proposed
STS-GAN to scene text recognition [Fang et al., 2018;
Xie et al., 2019]. To obtain high-quality images, we only keep
the synthetic images which are classified correctly by the
word classifier with each character confidence greater than
0.9. Therefore, we build a synthetic dataset, used for train-
ing the word classifier together with ICO3+IIIT dataset. From
the accuracy comparisons in Figure 5 we can see, training
with additional synthetic images can boost the performance
for word classifiers (up to 3.1% for 10k), which also demon-
strates the verisimilitude of synthetic images as unreadable
images will result in turbulent training. However, more syn-
thetic images do not help to improve accuracy linearly. We
speculate training with limited data, the image diversity of
our method is unable to support the accuracy growth in large
scale, which remains further study. In total, starting from only
3096 training word images, our STS-GAN is able to synthe-
size readable images and boost the recognition performance
for a mainstream algorithm.

4.4 Comparison with Other Models

Finally, we compare the performance of the proposed model
with non-learning based methods and traditional GAN mod-

Type Method IS FID
Jaderberg et al. [2014] 29.4(+0.4) 4.5
non-learning Gupta et al. [2016] 28.1(£0.6) 3.8
Zhan et al. [2018] 30.1(+0.6) 3.7
GAN-CLS [Reed et al., 2016] 7.2(£0.3) 17.5

. Character model
leaning | piiopix [Isolaeral., 2017)  SO(F04) 154
STS-GAN 32.4(+0.8) 24

Table 6: Comparison with other methods using IS and FID metrics.
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Figure 7: Samples from traditional GAN models.

els, and the IS and FID scores are recorded in Table 6. The
non-learning methods [Jaderberg et al., 2014; Gupta et al.,
2016; Zhan er al., 2018] achieve impressive IS and FID
scores as they are effective to generate readable text im-
ages. Note that our method synthesizes text images from
scratch without complicated rendering process. Compared
to the non-learning methods, our STS-GAN obtains better
IS and FID scores, which denotes that STS-GAN not only
generates high-quality images, but also captures an approxi-
mately correct distribution as the desired image distribution
(i.e., ICO3+IIIT dataset in this case).

In addition, two learning-based methods are prepared to
adapt our task. The first is GAN-CLS [Reed et al., 2016],
which is a conditional GAN designed for description text to
image synthesis. Sentence embedding in GAN-CLS is re-
placed with the embedding of text label y to make it sup-
port our task, and y is embedded using ELMo [Peters er
al., 2018]. The second is a two-stage method using Pix2Pix
[Isola et al., 2017] to replace our word synthesis. Fig-
ure 7 displays some samples and Table 6 gives correspond-
ing IS, FID scores for the above two models. The GAN-CLS
(Figure 7a) merely generates confusing and meaningless im-
ages, as vanilla GANs are hard to recover character structure.
Also, for the popular image-to-image framework (Figure 7b),
it is difficult to retain clear text appearance obtained from
the character model. Compared to these models, our well-
designed STS-GAN can successfully synthesize images with
clear and readable text.

4.5 Discussion

Drawing text in natural images is a challenging problem.
Though STS-GAN is demonstrated to be effective, we still
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Figure 8: Example failure cases. The odd rows are stitched images,
and the even rows are synthetic images.

observe some failure cases in ICO3+IIIT dataset, which rarely
occur in easier SVHN dataset. Generally, with a stitched
image &,, in which text is legible comes a well-drawn x,,.
In some cases, we have noticed successful images converted
from poor &,, (Figure 6). Nevertheless, failure conversion
will cause a clear &,, to an unsatisfactory x,,, and a blurring
&, typically leads to failure synthesis (Figure 8). Besides,
we note that in character synthesis stage, due to the limited
training samples, classes with low character frequency ("Q’,
’q’, ’j’, etc.) encounter mode collapse, which may also harm
the final performance.

5 Conclusion

In this paper, we propose scene text synthesis GAN (STS-
GAN) for generating text images. To cope with the prob-
lem that vanilla GANSs are difficult to model structural pat-
terns, we first generate local character structure which is con-
strained by style loss to unify text style. Then local characters
are converted into plausible word image through pixel-wise
manipulation. We conduct experiments on SVHN and IC-
DAR, IIIT5K datasets, showing STS-GAN can synthesize vi-
sually pleasing text images. In the future, we will extend this
method to full scene text images rather than cropped images.
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