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Abstract

Asynchronous parallel stochastic optimization for
non-convex problems becomes more and more im-
portant in machine learning especially due to the
popularity of deep learning. The Frank-Wolfe
(ak.a. conditional gradient) algorithms has re-
gained much interest because of its projection-
free property and the ability of handling structured
constraints. However, our understanding of asyn-
chronous stochastic Frank-Wolfe algorithms is ex-
tremely limited especially in the non-convex set-
ting. To address this challenging problem, in this
paper, we propose our asynchronous stochastic
Frank-Wolfe algorithm (AsySFW) and its variance
reduction version (AsySVFW) for solving the con-
strained non-convex optimization problems. More
importantly, we prove the fast convergence rates
of AsySFW and AsySVFW in the non-convex set-
ting. To the best of our knowledge, AsySFW and
AsySVFW are the first asynchronous parallel s-
tochastic algorithms with convergence guarantees
for solving the constrained non-convex optimiza-
tion problems. The experimental results on real
high-dimensional gray-scale images not only con-
firm the fast convergence of our algorithms, but al-
so show a near-linear speedup on a parallel system
with shared memory due to the lock-free imple-
mentation.

1

Asynchronous parallel stochastic optimization algorithms are
popular in the current big data era because of the outstanding
scalability w.r.t. the sample size and the full exploitation of
the computing resources of multi-core machines. For exam-
ple, Hogwild! [Recht et al., 2011] is a famous asynchronous
parallel stochastic gradient descent algorithm for solving s-
mooth finite-sum optimization problems. Non-convex op-
timization is now ubiquitous in machine learning especial-
ly due to the popularity of deep learning. Thus, the re-
search of asynchronous parallel stochastic optimization for
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non-convex problems becomes more and more important in
machine learning.

In machine learning, a lot of learning problems are for-
mulated as a finite-sum of loss functions with one or more
structured constraints. For example, multi-class classifica-
tion [Dudik et al., 2012] and matrix completion [Hsieh er al.,
2015] consider a finite-sum function with the trace-norm con-
straint. Octagonal shrinkage and clustering algorithm for re-
gression (OSCAR) [Gu er al., 2017] considers a finite-sum
function with ¢; norm and pairwise ¢, norm constraints.
Normally, we use proximal gradient descent algorithms [Gu
et al., 2018b] to solve the above constrained optimization
problems, in which each iteration solves a projection map-
ping. However, it is maybe time-consuming to solve the pro-
jection mapping which is a quadratic problem for a lot of
norms (including the trace norm [Dudik et al., 2012] and the
OSCAR norm [Gu er al., 2017]). Alternatively, [Frank and
Wolfe, 1956] first proposed the Frank-Wolfe (a.k.a. condi-
tional gradient) algorithm where only a less expensive lin-
ear subproblem need to be solved per iteration. Recently, the
Frank-Wolfe algorithms have regained much interest due to
its projection-free property and its ability to handle structured
constraints.

Most of existing Frank-Wolfe algorithms were designed
for the constrained smooth convex optimization problems.
Specifically, several variants of deterministic Frank-Wolfe al-
gorithms [Frank and Wolfe, 1956; Jaggi, 2013; Garber and
Hazan, 2015; Lacoste-Julien et al., 2013; Lacoste-Julien and
Jaggi, 2015] were proposed, and their convergence rates in
the convex setting were provided. To handle large-scale prob-
lems, corresponding stochastic Frank-Wolfe algorithms [Lan,
2013; Hazan and Luo, 2016; Goldfarb et al., 2017] were pro-
posed recently, and their convergence rates were also provid-
ed. In addition to the stochastic Frank-Wolfe algorithms, dis-
tributed parallel Frank-Wolfe algorithms [Wang et al., 2016;
Moharrer and Toannidis, 2017; Zhang et al., 2017] were also
proposed recently and their convergence rates were provid-
ed. As mentioned above, the convergence analysis of most of
existing Frank-Wolfe algorithms were provided only for the
convex setting.

Because non-convex optimization is now ubiquitous in
machine learning as mentioned previously, in this paper,
we mainly consider the constrained non-convex optimization
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Algorithm Reference Function f(z) | Stochastic gradient | Variance reduced | Asynchronous
Frank-Wolfe | [Lacoste-Julien, 2016] | Non-convex No No No
SFW [Reddi et al., 2016] Non-convex Yes No No
SVFW [Reddi et al., 2016] Non-convex Yes Yes (SVRG) No
SAGAFW [Reddi ef al., 2016] Non-convex Yes Yes (SAGA) No
AsySFW Our Non-convex Yes No Yes
AsySVFW Our Non-convex Yes Yes (SVRG) Yes

Table 1: Representative Frank-Wolfe algorithms to solve the constrained non-convex optimization problem (1).

problem as follows.

ey

min f(z

1 n
) = - > filx),
i=1
where f; : R? — R is a non-convex and smooth loss func-
tion, and M is a convex and compact set. To the best of
our knowledge, there are only two works to solve the non-
convex problem (1) by Frank-Wolfe algorithms. Specifical-
ly, [Lacoste-Julien, 2016] proposed the deterministic Frank-
Wolfe algorithm to solve (1) and provide its convergence rate.
[Reddi et al., 2016] proposed vanilla stochastic Frank-Wolfe
algorithm and its variants of SVRG and SAGA to solve (1),
and provided their convergence rates. We also summarize
these representative Frank-Wolfe algorithms to solve (1) in
Table 1. As far as we know, the convergence guarantee of
asynchronous stochastic Frank-Wolfe algorithms for solving
the constrained non-convex optimization problem (1) is still
an open question.

To address this challenging problem, in this paper, we
propose our asynchronous stochastic Frank-Wolfe algorith-
m (AsySFW) and its variance reduction version (AsySVFW)
for solving the constrained non-convex optimization prob-
lem. More importantly, we prove the fast convergence rates
of AsySFW and AsySVFW in the non-convex setting. To
the best of our knowledge, AsySFW and AsySVFW are the
first asynchronous parallel stochastic Frank-Wolfe algorithms
with convergence guarantees for solving the constrained non-
convex optimization problems. The experimental results on
real high-dimensional gray-scale images not only confirm the
fast convergence of our algorithms, but also show a near-
linear speedup on a parallel system with shared memory due
to the lock-free implementation.

The main contributions of this paper are summarized as
follows.

1. We propose vanilla asynchronous stochastic Frank-Wolfe
algorithm (i.e., AsySFW) and prove the ergodic conver-

gence rate of AsySFW in the non-convex setting.

We propose the SVRG version of AsySFW (ie.,
AsySVFW) and prove the ergodic convergence rate of
AsySVFW in the non-convex setting.

We organize the rest of paper as follows. In Section 2,
we propose our AsySFW and AsySVFW algorithms. In Sec-
tion 3, we provide the convergence analysis to AsySFW and
AsySVFW. In Section 4, we show the experimental results.
Finally, in Section 5, we conclude the paper.
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Algorithm 1 Asynchronous Stochastic Frank-Wolfe Algo-
rithm (AsySFW)

Parameter: The number of iterations 7", the mini-batch size
b and the learning rate .
Initialize: Initialize 20 € M.
1: For each thread, do:

2: fort=0,1,2,--- ;T —1do

3:  Randomly sample a mini-batch B of the size of b from
{1, ...,n} with equal probability.

4:  Compute Uy < 3> .,.5V/fi(T), and dy =
arg minge ap (d, 0t).

5: Update Tiy1 < Tt + Y (C/l\t — i‘\t)

6: end for

2 Asynchronous Stochastic Frank-Wolfe
Algorithms

In this section, we first propose our asynchronous stochas-
tic Frank-Wolfe algorithm (i.e., AsySFW) to solve the con-
strained non-convex optimization problem (1), and then pro-
pose its SVRG version (i.e., AsySVFW). Finally, we provide
several discussions to AsySFW and AsySVFW.

2.1 AsySFW Algorithm

AsySFW repeats the following three steps concurrently for
each thread without any lock. First, AsySFW reads the vec-
tor x from the shared memory to the local memory which
is denoted as Z. After that, AsySFW randomly chooses a
mini-batch B of the size of b from {1, ..., n} with equal prob-
ability, and locally computes v; < %ZieB V fi(Z:), and
dy = arg minge 4 (d, v¢). Finally, AsySFW updates the vec-
tor x in the shared memory by the following formulation.

Tyl & T+ (C/Z\t - @) (2)
where 7 is the learning rate. We summarize our AsySFW in
Algorithm 1.

2.2 AsySVFW Algorithm

We use the variance reduction technique specifically SVRG
[Gu et al., 2018a; Huo et al., 2018] to accelerate AsySFW
algorithm, which is called as AsySVFW. AsySVFW has two-
layer loops. The outer layer is to parallelly compute the full
gradient V f(2°) = 1 22:1 V fi(x*®), where the superscript
s denotes the s-th outer loop. The inner layer is to parallel-
ly and repeatedly update the vector x in the shared memory.
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Algorithm 2 AsySVFW Algorithm

Parameter: The number of outer loop iterations S, the num-
ber of inner loop iterations m where T' = S x m, the
mini-batch size b and the learning rate ~.

Initialize: Initialize z° € M.

1: fors=0,1,2,---,S —1do

2:  Set Z° + x*, and parallelly compute the full gradient
V(@) = 5 3 VIi(E).

3:  For each thread, do:

4. fort=0,1,2,--- ,m—1do

5: Randomly sample a mini-batch B of the size of b
from {1, ...,n} with equal probability.

6: Compute ;™' «+ 13 L VH@ETT
% > ien VAfi(%S) + V f(z*).

7: Compute d; ™ = arg minge uq <d, ﬁf+1>.

8: Update 2t + ;™' + (CEH - 55?“).

9:  end for

O e

11: end for

Specifically, all cores repeat the following steps independent-
ly and concurrently without any lock.

1. Read: Read the vector x from the shared memory to the
local memory without reading lock. We use Z5 to de-
note its value, where the subscript ¢ denotes the ¢-th inner

loop.

. Compute: Randomly choose a mini-batch B of the size of
b from {1, ..., n} with equal probability, and locally com-

pute at‘H_l <_,\% > ien vfi(“%f-’_l) - % >iep V(@) +
Vf(z*), and d;*" = arg minge p (d, ;7).

. Update: Update the vector = in the shared memory as

a:fjr'll — it 4y (df""l — ’ff“) without writing lock.

We summarize our AsySVFW in Algorithm 2. Note that the
expectation of ; ** on Bis equal to V f (Z51), i.e., B T! =
V(@) = V@) + VFE) = V(@) Thus, 57+ is

called an unbiased stochastic gradient of V f(Z{11).

2.3 Discussions

We provide several discussions of AsySFW and AsySVFW
in terms of solving the subproblem and parallel computing
environment respectively as follows.

1. Solving the Subproblem: Different to the proximal gra-
dient descent algorithms [Gu et al., 2018b] which need to
solve a quadratic subproblem in each iteration, AsySFW
and AsySVFW solve a linear subproblem (lines 4 and 7 in
Algorithms 1 and 2 respectively) which can be solved eas-
ier compared to the quadratic subproblem. [Jaggi, 2013]
provides a lot of discussions and examples to solve the
linear subproblems associated to the convex and compact
sets M (including the trace-norm constraint [Dudik et al.,
2012] considered in this paper).

Parallel Computing Environment: AsySFW and
AsySVFW are designed for the parallel environment with
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shared memory, such as multi-core processors and GPU-
accelerators which can allow for the situation of concur-
rent write-read to happen in the process. Besides, AsyS-
FW and AsySVFW can also work in the parallel environ-
ment with distributed memory.

3 Convergence Analysis

In this section, we first give several basic assumptions and no-
tations, and then discuss three major difficulties for proving
the convergence rates of AsySFW and AsySVFW for con-
strained non-convex problems. Finally, we give the conver-
gence rates of our AsySFW and AsySVFW.

3.1 Basic Assumptions and Notations

We introduce the assumptions of Lipschitz smoothness (i.e.,
Assumption 1) and bounded gradients (i.e., Assumption 2)
for the function f;(z), which are standard for non-convex op-
timization [Lacoste-Julien, 2016; Gu et al., 2018b; Lei et al.,
2017; Allen-Zhu and Li, 2018].

Assumption 1 (Lipschitz smoothness) For smooth function
filz) (vi € {1,...,1}) in (1), fi(z) is called L-Lipschitz
smoothness, if for all x and y, we have that:

fi@) < fily) + (Vfalw)ow = 9) + 5 e — ol

Assumption 2 (Bounded gradients) For smooth function
filz) (vi € {1,...,1}) in (1), the gradient V f;(z) is called
bounded if there exists a parameter G such that |V f;(x)]| <
G forall x € M.

To make this section easier to follow, we give a summary
of the notations in the following list.

3)

A = {z: g(x) < ¢} is the original constrained set.

) is the expanded constrained set.

D is the diameter of the compact convex set 2.

(x); is the i-th coordinate of the vector x.

By is a diagonal matrix with diagonal entries either 1 or
0 (if the corresponding updating has been received, the
entry is 0, otherwise 1).

3.2 Difficulties of the Convergence Rate Analysis

In this subsection, we discuss the difficulties of convergence
criteria, write-write conflict, inconsistent reading and be-
yonding the feasible set respectively when analyzing the con-
vergence rates of AsySFW and AsySVFW for constrained
non-convex problems.

Convergence Criteria

Because the objective function f(x) is non-convex, our
AsySFW and AsySVFW algoritms cannot guarantee to pro-
duce the global optimum solution. Thus, the closeness to the
optimal solution (i.e., f(z) — f(«*) and ||z — z*||) cannot
be used for the convergence analysis, where x* is the global
optimal solution. For unconstrained problems, the gradien-
t norm ||V f(x)|| is normally used to measure convergence,
because |V f(z)|| translates into convergence to a stationary
point. However, this criterion cannot be used for constrained
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() Original constrained set M = {x : ||z]1 < 1}

11

(b) Expanded constrained set

Figure 1: An illustration of expanded constrained set associated for the set M = {z : ||z||1 < 1}.

problems of the form (1). Similar to [Lacoste-Julien, 2016;
Reddi et al., 2016], we use the Frank-Wolfe gap (4) as the
convergence criteria.

= d—z,-V 4
9(z) = max(d — z, -V f(z)) 4)
Specifically, for the constrained non-convex optimization
problem (1), the gap g(x) = 0 if and only if « is a stationary
point.

Write-Write Conflict
Because we do not use any writing lock in AsySFW and
AsySVFW, all cores can update the vector x in the shared
memory, which could lead to write-write conflict and make
the convergence analysis more complicated.

To address this challenge, we first assume that all writes are
atomic, in the sense that they will be successfully recorded in
the shared memory at some point (Assumption 3).

Assumption 3 Each coordinate of vector x in Lines 5 and 8
in Algorithms 1 and 2 respectively will be updated success-
Sfully.
This assumption implies that the order in which these updates
are recorded in the shared memory is irrelevant which is also
called as the commutativity. Because the property of com-
mutativity holds for our updating rules (i.e., Lines 5 and 8 in
Algorithms 1 and 2 respectively), the updating rule with the
write-write conflict can be formalized as follows:

Tip1 < Ty + At7 where At =7 (dt — Et) s

®

where x; denotes the ideal one in the shared memory. Thus,
we can analyze the convergence rates through the ideal z like
[Recht et al., 2011; Mania et al., 2017; Gu and Huo, 2018].
Note that we use Z; for computing A, instead of x; which
reduces the frequency of reading x from the shared memory,
but makes our analysis more difficult.

Inconsistent Read

Because AsySFW and AsySVFW do not use the reading and
writing locks, the vector 7; read into the local memory may
be inconsistent to the vector x; in the shared memory. We call
this as inconsistent read. To address the challenge, we denote
the delay updating iterations for z; by a set K (¢) such that
the relationship between x; and 7; can be builded as follows:

T =Ty + Z By Ay, (6)

tEK(t)
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where t' < t — 1. It is reasonable to assume there exists
an upper bound 7 to the delay of updating such that 7 >
t —min{t'|t' € K(t)} (i.e., Assumption 4).

Assumption 4 (Bound of delay) There exists an upper
bound T such that T > t — min{t'|t’ € K(t)} for all
iterations t in AsySFW or AsySVFW.

Beyond the Feasible Set
Due to the inconsistent writing and write-write conflict, Ty
read into the local memory could be beyond the original con-
strained set M. To handle this challenge, we define an ex-
panded constrained set ) (see Definition 1 and Figure 1)
based on M which is used only for our analysis. It is easy
to verify that §2 is a compact convex set with M C Q and T;
belongs to the expanded constrained set €.

Definition 1 (Extended constrained set) Given a con-
strained set M. Let M™™ = mingea(z); and MR

maxgzem();. We define the expanded constrained set of M
as Q= {x: (z); € [ MPP MP>| Vi =1,...,n}.

3.3 Convergence Rate Analysis

After addressing the above challenges, we provide the con-

vergence rates to our AsySFW (Theorem 1) and AsySVFW

(Theorem 2). All the detailed proofs are provided in our Ap-

pendix'.

AsySFW

We first give the convergence rate of AsySFW in Theorem 1.
f(zo)—f(z*)

T((2r+3)LD2+7GD)

Under Assumptions 1, 2, 3 and 4, for AsySFW algorithm, we

have that

=
T Z; Eg(z;) <
t=

Theorem 1 Let v = 3 and b = T.

1
T

3

(26D + Vi) = (&)
1

.\/<QT+ ;) LD? +7GD (\/B+ \/B>> @)

Remark 1 To achieve 1 — € accuracy, AsySFW al-
gorithm requires O(E%) stochastic gradient evaluation-

s and 0(6%) linear optimizations. If the bound

!"The Appendix is available at https://drive.google.com/open?id=
1FeXGqQBr6sqmO1zmeHaPx80imvOr Y fXH.
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T of delay is equal to 0, the convergence rate is

% <2G + 14/ M (\/B + \/15)> which matches

the convergence rate of sequential SFW algorithm [Reddi et
al.,, 2016].

AsySVFW
We also give the convergence rate of AsySVFW in Theorem
2.

Theorem 2 Let v = \/

f(xo)—f(z*)
T (2rLD2+-GD+2LP2) 5

and b =

m2, where T = m x S. Under Assumptions 1, 2, 3 and
4, for AsySVFW algorithm, we have that

S—1m-—1

=303 Egleit)

s=0 t=0

77 (\/(f(IO) —f@@*))a (\/BJr \/13)>

where a = 27LD? + 7GD + %~
Remark 2 To achieve 1 — € accuracy, AsySVFW algorith-

®

1

<

1
2
m?2

2
m requires O ( ) exact gradient evaluations, O("%y) s-

tochastic gradient evaluations and O(E%) linear optimiza-
tions. If the bound T of delay is equal to 0, the convergence

< SLU (o) /(")) (\/B + jg)) which match-

es the convergence rate of sequential SVFW algorithm [Reddi
etal, 2016].

D

rate is

4 Experiments

In this section, we first give the experimental setup, and then
present our experimental results with discussions.

4.1 Experimental Setup

Design of Experiments
We consider the robust matrix completion problem [Yang ef
al., 2018] in the experiments. Given an incomplete matrix
Y, the robust matrix completion is to recover the incom-
plete matrix Y based on the correntropy-induced loss [Feng
etal., 2015; Chen and Wang, 2018] and trace-norm constraint
[Dudik er al., 2012]. Specifically, the robust matrix comple-
tion problem considers the objective function and the trace-
norm constraint as follows.

2

V.2
f(xX) = 9 Z <1—€XP<—(X”2Y”)>)(9)
(i,9)EA g
M = {XeR"*% . |X| <c} (10)

where dy X ds is the size of the matrix, ¢ > 0 is a scale
parameter and A is the set of all observed entries.

In the experiments, we test the suboptimality (difference
between the objective function and its closest minimum
value) of AsySFW and AsySVFW with different number-
s of threads to verify the fast convergence of AsySFW and
AsySVFW. We also observe the speedup of AsySFW and
AsySVFW on a parallel system with shared memory.
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Figure 2: The speedup of our AsyFW and AsySVFW algorithms on
the six real gray-scale images.

Implementation Details

Our experiments are performed on a 32-core two-socket Intel
Xeon E5-2699 machine where each socket has 16 cores. We
implement our AsySFW and AsySVFW using C++, where
the shared memory parallel computation is handled via Open-
MP. We focus on the convergence of AsySFW and AsySVFW
so that the tuning of the parameters ¢ and c is less important.
Thus, the parameters ¢ and c are fixed at 0.15 and 500 respec-
tively. In addition, we set the learning rate v = 0.0001, the
mini-batch size b = 500, the inner loop size of AsySVFW
m = 50. We choose X = %QY as the initial solution for
AsySFW and AsySVFW, where « is the smallest value in
{1,2,...,10} such that || X, < ec.

Datasets

[Yang et al., 2018] conducted an image recovery experimen-
t based on real gray-scale images®. In our experiments, we
used the robust matrix completion problem defined in (9)-
(10) to achieve image recovery. Specifically, we select six
images, i.e., Airplane, Baboon, Barbara, Boats, Lenna and
Pepper from the same image source. These images are origi-
nally with pixels of the size of 728 x 642, which means that
dy; = 728 and dy = 642. We miss 30% pixels randomly and
let it be the incomplete matrix Y. Thus, the size of the set

The real gray-scale images are available at https://homepages.
cae.wisc.edu/~ece533/images/
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Figure 3: The convergence of the suboptimality vs. running time of our AsyFW and AsySVFW algorithms on the six real gray-scale images.

(a)-(f) The results of AsyFW. (g)-(1) The results of AsySVFW.

A of all observed entries is 327, 163. In the experiments, all
results are the average of 10 trials.

4.2 Results and Discussions

Figure 3 illustrates the lines of the suboptimality vs. running
time of our AsyFW and AsySVFW algorithms with 1, 2, 4,
8 and 16 cores on the six real gray-scale images. The results
show that our AsyFW and AsySVFW algorithms with dif-
ferent numbers of threads can always converge to a station-
ary (empirically local) solution. More importantly, the results
verify that AsyFW and AsySVFW with more threads con-
verge faster than the ones with less threads. To sum up, the
results in Figure 3 confirm that our AsyFW and AsySVFW
algorithms converge to a stationary solution with fast conver-
gence.

Figure 2 presents the speedup results of AsyFW and
AsySVFW with 1, 2, 4, 8 and 16 cores on the six real gray-
scale images. The results show that AsyFW and AsySVFW
can have a near-linear speedup on a parallel system with
shared memory. This is because we do not use any lock in
the implementations of AsyFW and AsySVFW which keeps
all computational resources busy all the time.

5 Conclusion

The convergence guarantee of asynchronous stochastic
Frank-Wolfe algorithms for solving the constrained non-
convex optimization problem (1) is still an open question.
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To address this challenging problem, in this paper, we
propose an asynchronous stochastic Frank-Wolfe algorith-
m (i.e., AsySFW) and its variance reduction version (i.e.,
AsySVFW) for solving the constrained non-convex opti-
mization problems. We prove the fast convergence rates
of AsySFW and AsySVFW in the non-convex setting. To
the best of our knowledge, AsySFW and AsySVFW are the
first asynchronous parallel stochastic algorithms with con-
vergence guarantees for solving the constrained non-convex
optimization problems. The experimental results on real
high-dimensional gray-scale images not only confirm the fast
convergence of our algorithms, but also show a near-linear
speedup on a parallel system with shared memory due to the
lock-free implementation.
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