Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Asynchronous Stochastic Frank-Wolfe Algorithms for
Non-Convex Optimization

Bin Gu!, Wenhan Xian? and Heng Huang?' *

1JD Finance America Corporation
2Department of Electrical & Computer Engineering, University of Pittsburgh, USA

jsgubin@gmail.com, WEX37 @pitt.edu, heng.huang @pitt.edu

Abstract

Asynchronous parallel stochastic optimization for
non-convex problems becomes more and more im-
portant in machine learning especially due to the
popularity of deep learning. The Frank-Wolfe
(ak.a. conditional gradient) algorithms has re-
gained much interest because of its projection-
free property and the ability of handling structured
constraints. However, our understanding of asyn-
chronous stochastic Frank-Wolfe algorithms is ex-
tremely limited especially in the non-convex set-
ting. To address this challenging problem, in this
paper, we propose our asynchronous stochastic
Frank-Wolfe algorithm (AsySFW) and its variance
reduction version (AsySVFW) for solving the con-
strained non-convex optimization problems. More
importantly, we prove the fast convergence rates
of AsySFW and AsySVFW in the non-convex set-
ting. To the best of our knowledge, AsySFW and
AsySVFW are the first asynchronous parallel s-
tochastic algorithms with convergence guarantees
for solving the constrained non-convex optimiza-
tion problems. The experimental results on real
high-dimensional gray-scale images not only con-
firm the fast convergence of our algorithms, but al-
so show a near-linear speedup on a parallel system
with shared memory due to the lock-free imple-
mentation.

1

Asynchronous parallel stochastic optimization algorithms are
popular in the current big data era because of the outstanding
scalability w.r.t. the sample size and the full exploitation of
the computing resources of multi-core machines. For exam-
ple, Hogwild! [Recht et al., 2011] is a famous asynchronous
parallel stochastic gradient descent algorithm for solving s-
mooth finite-sum optimization problems. Non-convex op-
timization is now ubiquitous in machine learning especial-
ly due to the popularity of deep learning. Thus, the re-
search of asynchronous parallel stochastic optimization for

Introduction

*To whom all correspondence should be addressed.

737

non-convex problems becomes more and more important in
machine learning.

In machine learning, a lot of learning problems are for-
mulated as a finite-sum of loss functions with one or more
structured constraints. For example, multi-class classifica-
tion [Dudik et al., 2012] and matrix completion [Hsieh er al.,
2015] consider a finite-sum function with the trace-norm con-
straint. Octagonal shrinkage and clustering algorithm for re-
gression (OSCAR) [Gu er al., 2017] considers a finite-sum
function with ¢; norm and pairwise ¢, norm constraints.
Normally, we use proximal gradient descent algorithms [Gu
et al., 2018b] to solve the above constrained optimization
problems, in which each iteration solves a projection map-
ping. However, it is maybe time-consuming to solve the pro-
jection mapping which is a quadratic problem for a lot of
norms (including the trace norm [Dudik et al., 2012] and the
OSCAR norm [Gu er al., 2017]). Alternatively, [Frank and
Wolfe, 1956] first proposed the Frank-Wolfe (a.k.a. condi-
tional gradient) algorithm where only a less expensive lin-
ear subproblem need to be solved per iteration. Recently, the
Frank-Wolfe algorithms have regained much interest due to
its projection-free property and its ability to handle structured
constraints.

Most of existing Frank-Wolfe algorithms were designed
for the constrained smooth convex optimization problems.
Specifically, several variants of deterministic Frank-Wolfe al-
gorithms [Frank and Wolfe, 1956; Jaggi, 2013; Garber and
Hazan, 2015; Lacoste-Julien et al., 2013; Lacoste-Julien and
Jaggi, 2015] were proposed, and their convergence rates in
the convex setting were provided. To handle large-scale prob-
lems, corresponding stochastic Frank-Wolfe algorithms [Lan,
2013; Hazan and Luo, 2016; Goldfarb et al., 2017] were pro-
posed recently, and their convergence rates were also provid-
ed. In addition to the stochastic Frank-Wolfe algorithms, dis-
tributed parallel Frank-Wolfe algorithms [Wang et al., 2016;
Moharrer and Toannidis, 2017; Zhang et al., 2017] were also
proposed recently and their convergence rates were provid-
ed. As mentioned above, the convergence analysis of most of
existing Frank-Wolfe algorithms were provided only for the
convex setting.

Because non-convex optimization is now ubiquitous in
machine learning as mentioned previously, in this paper,
we mainly consider the constrained non-convex optimization

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Algorithm Reference Function f(z) | Stochastic gradient | Variance reduced | Asynchronous
Frank-Wolfe | [Lacoste-Julien, 2016] | Non-convex No No No
SFW [Reddi et al., 2016] Non-convex Yes No No
SVFW [Reddi et al., 2016] Non-convex Yes Yes (SVRG) No
SAGAFW [Reddi ef al., 2016] Non-convex Yes Yes (SAGA) No
AsySFW Our Non-convex Yes No Yes
AsySVFW Our Non-convex Yes Yes (SVRG) Yes

Table 1: Representative Frank-Wolfe algorithms to solve the constrained non-convex optimization problem (1).

problem as follows.

ey

min f(z

1 n
) = - > filx),
i=1
where f; : R? — R is a non-convex and smooth loss func-
tion, and M is a convex and compact set. To the best of
our knowledge, there are only two works to solve the non-
convex problem (1) by Frank-Wolfe algorithms. Specifical-
ly, [Lacoste-Julien, 2016] proposed the deterministic Frank-
Wolfe algorithm to solve (1) and provide its convergence rate.
[Reddi et al., 2016] proposed vanilla stochastic Frank-Wolfe
algorithm and its variants of SVRG and SAGA to solve (1),
and provided their convergence rates. We also summarize
these representative Frank-Wolfe algorithms to solve (1) in
Table 1. As far as we know, the convergence guarantee of
asynchronous stochastic Frank-Wolfe algorithms for solving
the constrained non-convex optimization problem (1) is still
an open question.

To address this challenging problem, in this paper, we
propose our asynchronous stochastic Frank-Wolfe algorith-
m (AsySFW) and its variance reduction version (AsySVFW)
for solving the constrained non-convex optimization prob-
lem. More importantly, we prove the fast convergence rates
of AsySFW and AsySVFW in the non-convex setting. To
the best of our knowledge, AsySFW and AsySVFW are the
first asynchronous parallel stochastic Frank-Wolfe algorithms
with convergence guarantees for solving the constrained non-
convex optimization problems. The experimental results on
real high-dimensional gray-scale images not only confirm the
fast convergence of our algorithms, but also show a near-
linear speedup on a parallel system with shared memory due
to the lock-free implementation.

The main contributions of this paper are summarized as
follows.

1. We propose vanilla asynchronous stochastic Frank-Wolfe
algorithm (i.e., AsySFW) and prove the ergodic conver-

gence rate of AsySFW in the non-convex setting.

We propose the SVRG version of AsySFW (ie.,
AsySVFW) and prove the ergodic convergence rate of
AsySVFW in the non-convex setting.

We organize the rest of paper as follows. In Section 2,
we propose our AsySFW and AsySVFW algorithms. In Sec-
tion 3, we provide the convergence analysis to AsySFW and
AsySVFW. In Section 4, we show the experimental results.
Finally, in Section 5, we conclude the paper.

738

Algorithm 1 Asynchronous Stochastic Frank-Wolfe Algo-
rithm (AsySFW)

Parameter: The number of iterations 7", the mini-batch size
b and the learning rate .
Initialize: Initialize 20 € M.
1: For each thread, do:

2: fort=0,1,2,--- ;T —1do

3: Randomly sample a mini-batch B of the size of b from
{1, ...,n} with equal probability.

4: Compute Uy < 3> .,.5V/fi(T), and dy =
arg minge ap (d, 0t).

5: Update Tiy1 < Tt + Y (C/l\t — i‘\t)

6: end for

2 Asynchronous Stochastic Frank-Wolfe
Algorithms

In this section, we first propose our asynchronous stochas-
tic Frank-Wolfe algorithm (i.e., AsySFW) to solve the con-
strained non-convex optimization problem (1), and then pro-
pose its SVRG version (i.e., AsySVFW). Finally, we provide
several discussions to AsySFW and AsySVFW.

2.1 AsySFW Algorithm

AsySFW repeats the following three steps concurrently for
each thread without any lock. First, AsySFW reads the vec-
tor x from the shared memory to the local memory which
is denoted as Z. After that, AsySFW randomly chooses a
mini-batch B of the size of b from {1, ..., n} with equal prob-
ability, and locally computes v; < %ZieB V fi(Z:), and
dy = arg minge 4 (d, v¢). Finally, AsySFW updates the vec-
tor x in the shared memory by the following formulation.

Tyl & T+ (C/Z\t - @) (2)
where 7 is the learning rate. We summarize our AsySFW in
Algorithm 1.

2.2 AsySVFW Algorithm

We use the variance reduction technique specifically SVRG
[Gu et al., 2018a; Huo et al., 2018] to accelerate AsySFW
algorithm, which is called as AsySVFW. AsySVFW has two-
layer loops. The outer layer is to parallelly compute the full
gradient V f(2°) = 1 22:1 V fi(x*®), where the superscript
s denotes the s-th outer loop. The inner layer is to parallel-
ly and repeatedly update the vector x in the shared memory.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Algorithm 2 AsySVFW Algorithm

Parameter: The number of outer loop iterations S, the num-
ber of inner loop iterations m where T' = S x m, the
mini-batch size b and the learning rate ~.

Initialize: Initialize z° € M.

1: fors=0,1,2,---,S —1do

2: Set Z° + x*, and parallelly compute the full gradient
V(@) = 5 3 VIi(E).

3: For each thread, do:

4. fort=0,1,2,--- ,m—1do

5: Randomly sample a mini-batch B of the size of b
from {1, ...,n} with equal probability.

6: Compute ;™' «+ 13 L VH@ETT
% > ien VAfi(%S) + V f(z*).

7: Compute d; ™ = arg minge uq <d, ﬁf+1>.

8: Update 2t + ;™' + (CEH - 55?“).

9: end for

O e

11: end for

Specifically, all cores repeat the following steps independent-
ly and concurrently without any lock.

1. Read: Read the vector x from the shared memory to the
local memory without reading lock. We use Z5 to de-
note its value, where the subscript ¢ denotes the ¢-th inner

loop.

. Compute: Randomly choose a mini-batch B of the size of
b from {1, ..., n} with equal probability, and locally com-

pute at‘H_l <_,\% > ien vfi(“%f-’_l) - % >iep V(@) +
Vf(z*), and d;*" = arg minge p (d, ;7).

. Update: Update the vector = in the shared memory as

a:fjr'll — it 4y (df""l — ’ff“) without writing lock.

We summarize our AsySVFW in Algorithm 2. Note that the
expectation of ; ** on Bis equal to V f (Z51), i.e., B T! =
V(@) = V@) + VFE) = V(@) Thus, 57+ is

called an unbiased stochastic gradient of V f(Z{11).

2.3 Discussions

We provide several discussions of AsySFW and AsySVFW
in terms of solving the subproblem and parallel computing
environment respectively as follows.

1. Solving the Subproblem: Different to the proximal gra-
dient descent algorithms [Gu et al., 2018b] which need to
solve a quadratic subproblem in each iteration, AsySFW
and AsySVFW solve a linear subproblem (lines 4 and 7 in
Algorithms 1 and 2 respectively) which can be solved eas-
ier compared to the quadratic subproblem. [Jaggi, 2013]
provides a lot of discussions and examples to solve the
linear subproblems associated to the convex and compact
sets M (including the trace-norm constraint [Dudik et al.,
2012] considered in this paper).

Parallel Computing Environment: AsySFW and
AsySVFW are designed for the parallel environment with

739

shared memory, such as multi-core processors and GPU-
accelerators which can allow for the situation of concur-
rent write-read to happen in the process. Besides, AsyS-
FW and AsySVFW can also work in the parallel environ-
ment with distributed memory.

3 Convergence Analysis

In this section, we first give several basic assumptions and no-
tations, and then discuss three major difficulties for proving
the convergence rates of AsySFW and AsySVFW for con-
strained non-convex problems. Finally, we give the conver-
gence rates of our AsySFW and AsySVFW.

3.1 Basic Assumptions and Notations

We introduce the assumptions of Lipschitz smoothness (i.e.,
Assumption 1) and bounded gradients (i.e., Assumption 2)
for the function f;(z), which are standard for non-convex op-
timization [Lacoste-Julien, 2016; Gu et al., 2018b; Lei et al.,
2017; Allen-Zhu and Li, 2018].

Assumption 1 (Lipschitz smoothness) For smooth function
filz) (vi € {1,...,1}) in (1), fi(z) is called L-Lipschitz
smoothness, if for all x and y, we have that:

fi@) < fily) + (Vfalw)ow = 9) + 5 e — ol

Assumption 2 (Bounded gradients) For smooth function
filz) (vi € {1,...,1}) in (1), the gradient V f;(z) is called
bounded if there exists a parameter G such that |V f;(x)]| <
G forall x € M.

To make this section easier to follow, we give a summary
of the notations in the following list.

3)

A = {z: g(x) < ¢} is the original constrained set.

) is the expanded constrained set.

D is the diameter of the compact convex set 2.

(x); is the i-th coordinate of the vector x.

By is a diagonal matrix with diagonal entries either 1 or
0 (if the corresponding updating has been received, the
entry is 0, otherwise 1).

3.2 Difficulties of the Convergence Rate Analysis

In this subsection, we discuss the difficulties of convergence
criteria, write-write conflict, inconsistent reading and be-
yonding the feasible set respectively when analyzing the con-
vergence rates of AsySFW and AsySVFW for constrained
non-convex problems.

Convergence Criteria

Because the objective function f(x) is non-convex, our
AsySFW and AsySVFW algoritms cannot guarantee to pro-
duce the global optimum solution. Thus, the closeness to the
optimal solution (i.e., f(z) — f(«*) and ||z — z*||) cannot
be used for the convergence analysis, where x* is the global
optimal solution. For unconstrained problems, the gradien-
t norm ||V f(x)|| is normally used to measure convergence,
because |V f(z)|| translates into convergence to a stationary
point. However, this criterion cannot be used for constrained

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[N
_—
/

() Original constrained set M = {x : ||z]1 < 1}

11

(b) Expanded constrained set

Figure 1: An illustration of expanded constrained set associated for the set M = {z : ||z||1 < 1}.

problems of the form (1). Similar to [Lacoste-Julien, 2016;
Reddi et al., 2016], we use the Frank-Wolfe gap (4) as the
convergence criteria.

= d—z,-V 4
9(z) = max(d — z, -V f(z)) 4)
Specifically, for the constrained non-convex optimization
problem (1), the gap g(x) = 0 if and only if « is a stationary
point.

Write-Write Conflict
Because we do not use any writing lock in AsySFW and
AsySVFW, all cores can update the vector x in the shared
memory, which could lead to write-write conflict and make
the convergence analysis more complicated.

To address this challenge, we first assume that all writes are
atomic, in the sense that they will be successfully recorded in
the shared memory at some point (Assumption 3).

Assumption 3 Each coordinate of vector x in Lines 5 and 8
in Algorithms 1 and 2 respectively will be updated success-
Sfully.
This assumption implies that the order in which these updates
are recorded in the shared memory is irrelevant which is also
called as the commutativity. Because the property of com-
mutativity holds for our updating rules (i.e., Lines 5 and 8 in
Algorithms 1 and 2 respectively), the updating rule with the
write-write conflict can be formalized as follows:

Tip1 < Ty + At7 where At =7 (dt — Et) s

®

where x; denotes the ideal one in the shared memory. Thus,
we can analyze the convergence rates through the ideal z like
[Recht et al., 2011; Mania et al., 2017; Gu and Huo, 2018].
Note that we use Z; for computing A, instead of x; which
reduces the frequency of reading x from the shared memory,
but makes our analysis more difficult.

Inconsistent Read

Because AsySFW and AsySVFW do not use the reading and
writing locks, the vector 7; read into the local memory may
be inconsistent to the vector x; in the shared memory. We call
this as inconsistent read. To address the challenge, we denote
the delay updating iterations for z; by a set K (¢) such that
the relationship between x; and 7; can be builded as follows:

T =Ty + Z By Ay, (6)

tEK(t)

740

where t' < t — 1. It is reasonable to assume there exists
an upper bound 7 to the delay of updating such that 7 >
t —min{t'|t' € K(t)} (i.e., Assumption 4).

Assumption 4 (Bound of delay) There exists an upper
bound T such that T > t — min{t'|t’ € K(t)} for all
iterations t in AsySFW or AsySVFW.

Beyond the Feasible Set
Due to the inconsistent writing and write-write conflict, Ty
read into the local memory could be beyond the original con-
strained set M. To handle this challenge, we define an ex-
panded constrained set) (see Definition 1 and Figure 1)
based on M which is used only for our analysis. It is easy
to verify that §2 is a compact convex set with M C Q and T;
belongs to the expanded constrained set €.

Definition 1 (Extended constrained set) Given a con-
strained set M. Let M™™ = mingea(z); and MR

maxgzem();. We define the expanded constrained set of M
as Q= {x: (z); € [MPP MP>| Vi =1,...,n}.

3.3 Convergence Rate Analysis

After addressing the above challenges, we provide the con-

vergence rates to our AsySFW (Theorem 1) and AsySVFW

(Theorem 2). All the detailed proofs are provided in our Ap-

pendix'.

AsySFW

We first give the convergence rate of AsySFW in Theorem 1.
f(zo)—f(z*)

T((2r+3)LD2+7GD)

Under Assumptions 1, 2, 3 and 4, for AsySFW algorithm, we

have that

=
T Z; Eg(z;) <
t=

Theorem 1 Let v = 3 and b = T.

1
T

3

(26D + Vi) = (&)
1

.\/<QT+ ;) LD? +7GD (\/B+ \/B>> @)

Remark 1 To achieve 1 — € accuracy, AsySFW al-
gorithm requires O(E%) stochastic gradient evaluation-

s and 0(6%) linear optimizations. If the bound

!"The Appendix is available at https://drive.google.com/open?id=
1FeXGqQBr6sqmO1zmeHaPx80imvOr Y fXH.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

T of delay is equal to 0, the convergence rate is

% <2G + 14/ M (\/B + \/15)> which matches

the convergence rate of sequential SFW algorithm [Reddi et
al.,, 2016].

AsySVFW
We also give the convergence rate of AsySVFW in Theorem
2.

Theorem 2 Let v = \/

f(xo)—f(z*)
T (2rLD2+-GD+2LP2) 5

and b =

m2, where T = m x S. Under Assumptions 1, 2, 3 and
4, for AsySVFW algorithm, we have that

S—1m-—1

=303 Egleit)

s=0 t=0

77 (\/(f(IO) —f@@*))a (\/BJr \/13)>

where a = 27LD? + 7GD + %~
Remark 2 To achieve 1 — € accuracy, AsySVFW algorith-

®

1

<

1
2
m?2

2
m requires O () exact gradient evaluations, O("%y) s-

tochastic gradient evaluations and O(E%) linear optimiza-
tions. If the bound T of delay is equal to 0, the convergence

< SLU (o) /(")) (\/B + jg)) which match-

es the convergence rate of sequential SVFW algorithm [Reddi
etal, 2016].

D

rate is

4 Experiments

In this section, we first give the experimental setup, and then
present our experimental results with discussions.

4.1 Experimental Setup

Design of Experiments
We consider the robust matrix completion problem [Yang ef
al., 2018] in the experiments. Given an incomplete matrix
Y, the robust matrix completion is to recover the incom-
plete matrix Y based on the correntropy-induced loss [Feng
etal., 2015; Chen and Wang, 2018] and trace-norm constraint
[Dudik er al., 2012]. Specifically, the robust matrix comple-
tion problem considers the objective function and the trace-
norm constraint as follows.

2

V.2
f(xX) = 9 Z <1—€XP<—(X”2Y”)>)(9)
(i,9)EA g
M = {XeR"*% . |X| <c} (10)

where dy X ds is the size of the matrix, ¢ > 0 is a scale
parameter and A is the set of all observed entries.

In the experiments, we test the suboptimality (difference
between the objective function and its closest minimum
value) of AsySFW and AsySVFW with different number-
s of threads to verify the fast convergence of AsySFW and
AsySVFW. We also observe the speedup of AsySFW and
AsySVFW on a parallel system with shared memory.

741

- - -Ideal e
- AsySFW -
- AsySVFW|

- -Ideal -
- AsySFW .7
- AsySVFW .7

Speedup
Speedup

15 15

5 10
Number of Threads Number of Threads

(a) Barbara (b) Pepper
15 271 15 JPis
- -Ideal e - -Ideal e
- AsySFW - - AsySFW e
107 |- AsySVEW 10} |- AsySVFW| .

Speedup
Speedup

15 15

5 10
Number of Threads Number of Threads

(c) Lenna (d) Boats
15 271 15 JPis
— Tdeal Pt ~ Ideal et
o AsySFW -~ AsySFW
107 | AsySVFW| 101 o AsySVEW

Speedup
Speedup

10
Number of Threads

(e) Baboon

15 10

Number of Threads

(f) Airplane

15

Figure 2: The speedup of our AsyFW and AsySVFW algorithms on
the six real gray-scale images.

Implementation Details

Our experiments are performed on a 32-core two-socket Intel
Xeon E5-2699 machine where each socket has 16 cores. We
implement our AsySFW and AsySVFW using C++, where
the shared memory parallel computation is handled via Open-
MP. We focus on the convergence of AsySFW and AsySVFW
so that the tuning of the parameters ¢ and c is less important.
Thus, the parameters ¢ and c are fixed at 0.15 and 500 respec-
tively. In addition, we set the learning rate v = 0.0001, the
mini-batch size b = 500, the inner loop size of AsySVFW
m = 50. We choose X = %QY as the initial solution for
AsySFW and AsySVFW, where « is the smallest value in
{1,2,...,10} such that || X, < ec.

Datasets

[Yang et al., 2018] conducted an image recovery experimen-
t based on real gray-scale images®. In our experiments, we
used the robust matrix completion problem defined in (9)-
(10) to achieve image recovery. Specifically, we select six
images, i.e., Airplane, Baboon, Barbara, Boats, Lenna and
Pepper from the same image source. These images are origi-
nally with pixels of the size of 728 x 642, which means that
dy; = 728 and dy = 642. We miss 30% pixels randomly and
let it be the incomplete matrix Y. Thus, the size of the set

The real gray-scale images are available at https://homepages.
cae.wisc.edu/~ece533/images/

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

<10 <107
8 1073 107 15
= 6 = =) £10
g4 E E . E
= |[—AsySFW #threads=1 é — AsySFW #threads=1 é — AsySFW #threads=1 2 — AsySFW #threads=1
? — AsySFW #threads=2 S — AsySFW #threads=2 o — AsySFW #threads=2 g 5| _ AsySFW #threads=2
:5 2| AsySFW #threads=4 E AsySFW #threads=4 % AsySFW #threads=4 :5 AsySFW #threads=4
| —AsySFW #threads=8 — AsySFW #threads=8 — AsySFW #threads=8 D | —AsySFW #threads=8
— AsySFW #threads=16 4|~ AsySFW #threads=16| 107" | —AsySFW #threads=16 — AsySFW #threads=16
0 50 100 150 200 10 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time Time Time Time
(a) AsyFW on Barbara (b) AsyFW on Pepper (c) AsyFW on Lenna (d) AsyFW on Boats
-3 %103 x10°
10 32
D NS 23 222
E E 10 g = 3.1
§ — AsySFW #threads=1 .a — AsySFW #threads=1 g 3 — AsySVFW #threads=1 E 3|—AsySVFW #threads=1
S |—AsySFW #threads=2 S — AsySFW #threads=2 &') o|—AsySVEW #threads=2 5 7| —AsySVFW #threads=2
E AsySFW #threads=4 3 AsySFW #threads=4 =" AsySVFW #threads=4 = 2.9 AsySVFW gthreads=4
104 — AsySFW #threads=8 \ — AsySFW #threads=8 » 2.8|—AsySVFW stthreads=8 @ — AsySVFW #threads=8
— AsySFW #threads=16) 4 |- AsySFW #threads=16, — AsySVFW #threads=16 2.8| _AsySVFW #threads=16
0 50 100 150 200 10 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time Time Time Time
(e) AsyFW on Baboon (f) AsyFW on Airplane (g) AsySVFW on Barbara (h) AsySVFW on Pepper
x103 %103 x10° x10°
37 y
- .45 s 5,345
= 36 = =
£ E 9 £ 34
= 3.5|—AsySVFW #threads=1 = 4.4—AsySVFW #threads=1 — AsySVFW #threads=1 3 — AsySVEFW #threads=1
g — AsySVFW #threads=2 g — AsySVFW #threads=2 8| _AsySVFW #threads=2 53.35|—AsySVFW #threads=2
= 34 AsySVFW #threads=4 = AsySVFW #threads=4 7| AsySVFW #threads=4 % AsySVFW #threads=4
a 3.3[—AsySVFW #threads=8 9 4.3|—AsySVFW #threads=8 5 — AsySVFW #threads=8 A 3 3|—AsySVFW #threads=8
— AsySVFW #threads=16| — AsySVEFW #threads=16| 7 |—AsySVFW #threads=16 — AsySVFW #threads=16|
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time Time Time Time
(i) AsySVFW on Lenna (j) AsySVFW on Boats (k) AsySVFW on Baboon (1) AsySVFW on Airplane

Figure 3: The convergence of the suboptimality vs. running time of our AsyFW and AsySVFW algorithms on the six real gray-scale images.

(a)-(f) The results of AsyFW. (g)-(1) The results of AsySVFW.

A of all observed entries is 327, 163. In the experiments, all
results are the average of 10 trials.

4.2 Results and Discussions

Figure 3 illustrates the lines of the suboptimality vs. running
time of our AsyFW and AsySVFW algorithms with 1, 2, 4,
8 and 16 cores on the six real gray-scale images. The results
show that our AsyFW and AsySVFW algorithms with dif-
ferent numbers of threads can always converge to a station-
ary (empirically local) solution. More importantly, the results
verify that AsyFW and AsySVFW with more threads con-
verge faster than the ones with less threads. To sum up, the
results in Figure 3 confirm that our AsyFW and AsySVFW
algorithms converge to a stationary solution with fast conver-
gence.

Figure 2 presents the speedup results of AsyFW and
AsySVFW with 1, 2, 4, 8 and 16 cores on the six real gray-
scale images. The results show that AsyFW and AsySVFW
can have a near-linear speedup on a parallel system with
shared memory. This is because we do not use any lock in
the implementations of AsyFW and AsySVFW which keeps
all computational resources busy all the time.

5 Conclusion

The convergence guarantee of asynchronous stochastic
Frank-Wolfe algorithms for solving the constrained non-
convex optimization problem (1) is still an open question.

742

To address this challenging problem, in this paper, we
propose an asynchronous stochastic Frank-Wolfe algorith-
m (i.e., AsySFW) and its variance reduction version (i.e.,
AsySVFW) for solving the constrained non-convex opti-
mization problems. We prove the fast convergence rates
of AsySFW and AsySVFW in the non-convex setting. To
the best of our knowledge, AsySFW and AsySVFW are the
first asynchronous parallel stochastic algorithms with con-
vergence guarantees for solving the constrained non-convex
optimization problems. The experimental results on real
high-dimensional gray-scale images not only confirm the fast
convergence of our algorithms, but also show a near-linear
speedup on a parallel system with shared memory due to the
lock-free implementation.

Acknowledgments

H.H. was partially supported by U.S. NSF IIS 1836945, I-
IS 1836938, DBI 1836866, IIS 1845666, IIS 1852606, I-
IS 1838627, IIS 1837956. B.G. was partially support-
ed by the National Natural Science Foundation of China
(No: 61573191), and the Natural Science Foundation (No.
BK20161534), Six talent peaks project (No. XYDXX-042)
in Jiangsu Province.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Allen-Zhu and Li, 2018] Zeyuan Allen-Zhu and Yuanzhi
Li. Neon2: Finding local minima via first-order oracles.
In Advances in Neural Information Processing Systems,
pages 3720-3730, 2018.

[Chen and Wang, 2018] Hong Chen and Yulong Wang.
Kernel-based sparse regression with the correntropy-
induced loss. Applied and Computational Harmonic Anal-
ysis, 44(1):144-164, 2018.

[Dudik et al., 2012] Miroslav Dudik, Zaid Harchaoui, and
Jérdme Malick. Lifted coordinate descent for learning
with trace-norm regularization. In Artificial Intelligence
and Statistics, pages 327-336, 2012.

[Feng et al., 2015] Yunlong Feng, Xiaolin Huang, Lei Shi,
Yuning Yang, and Johan AK Suykens. Learning with the
maximum correntropy criterion induced losses for regres-
sion. Journal of Machine Learning Research, 16:993—
1034, 2015.

[Frank and Wolfe, 1956] Marguerite Frank and Philip Wolfe.
An algorithm for quadratic programming. Naval Research
Logistics (NRL), 3(1-2):95-110, 1956.

[Garber and Hazan, 2015] Dan Garber and Elad Hazan.
Faster rates for the frank-wolfe method over strongly-
convex sets. In ICML, volume 15, pages 541-549, 2015.

[Goldfarb et al., 2017] Donald Goldfarb, Garud Iyengar, and
Chaoxu Zhou. Linear convergence of stochastic frank
wolfe variants. arXiv preprint arXiv:1703.07269, 2017.

[Gu and Huo, 2018] Bin Gu and Zhouyuan Huo. Asyn-
chronous doubly stochastic group regularized learning. In
International Conference on Artificial Intelligence and S-
tatistics (AISTATS 2018), 2018.

[Gu et al., 2017] Bin Gu, Guodong Liu, and Heng Huang.
Groups-keeping solution path algorithm for sparse regres-
sion with automatic feature grouping. In KDD, pages 185—
193. ACM, 2017.

[Gu er al., 2018a] Bin Gu, Zhouyuan Huo, Cheng Deng, and
Heng Huang. Faster derivative-free stochastic algorithm
for shared memory machines. In International Conference
on Machine Learning, pages 1807-1816, 2018.

[Gu et al., 2018b] Bin Gu, De Wang, Zhouyuan Huo, and
Heng Huang. Inexact proximal gradient methods for non-
convex and non-smooth optimization. In AAAI, pages
3093-3100, 2018.

[Hazan and Luo, 2016] Elad Hazan and Haipeng Luo.
Variance-reduced and projection-free stochastic optimiza-
tion. In International Conference on Machine Learning,
pages 1263-1271, 2016.

[Hsieh er al., 2015] Cho-Jui Hsieh, Nagarajan Natarajan,
and Inderjit S Dhillon. Pu learning for matrix completion.
In ICML, pages 2445-2453, 2015.

[Huo et al., 2018] Zhouyuan Huo, Bin Gu, Ji Liu, and Heng
Huang. Accelerated method for stochastic composition
optimization with nonsmooth regularization. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

743

[Jaggi, 2013] Martin Jaggi. Revisiting frank-wolfe:
Projection-free sparse convex optimization. In ICML (1),
pages 427435, 2013.

[Lacoste-Julien and Jaggi, 2015] Simon Lacoste-Julien and
Martin Jaggi. On the global linear convergence of frank-
wolfe optimization variants. In Advances in Neural Infor-
mation Processing Systems, pages 496-504, 2015.

[Lacoste-Julien et al., 2013] Simon Lacoste-Julien, Martin
Jaggi, Mark Schmidt, and Patrick Pletscher. Block-
coordinate frank-wolfe optimization for structural svm-
s. In ICML 2013 International Conference on Machine
Learning, pages 53-61, 2013.

[Lacoste-Julien, 2016] Simon Lacoste-Julien. Convergence
rate of frank-wolfe for non-convex objectives. arXiv
preprint arXiv:1607.00345, 2016.

[Lan, 2013] Guanghui Lan. The complexity of large-scale
convex programming under a linear optimization oracle.
arXiv preprint arXiv:1309.5550, 2013.

[Lei et al., 2017] Lihua Lei, Cheng Ju, Jianbo Chen, and
Michael I Jordan. Non-convex finite-sum optimization via
scsg methods. In Advances in Neural Information Process-
ing Systems, pages 2348-2358, 2017.

[Mania ef al., 2017] Horia Mania, Xinghao Pan, Dimitris Pa-
pailiopoulos, Benjamin Recht, Kannan Ramchandran, and
Michael I Jordan. Perturbed iterate analysis for asyn-
chronous stochastic optimization. SIAM Journal on Op-
timization, 27(4):2202-2229, 2017.

[Moharrer and Ioannidis, 2017] Armin Moharrer and Stratis
Ioannidis. Distributing frank-wolfe via map-reduce. In
2017 IEEE International Conference on Data Mining,
ICDM 2017, New Orleans, LA, USA, November 18-21,
2017, pages 317-326, 2017.

[Recht er al., 2011] Benjamin Recht, Christopher Re,
Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In

Advances in neural information processing systems, pages
693-701, 2011.

[Reddi et al., 2016] Sashank J Reddi, Suvrit Sra, Barnabds
Poczos, and Alex Smola. Stochastic frank-wolfe meth-
ods for nonconvex optimization. In Communication, Con-
trol, and Computing (Allerton), 2016 54th Annual Allerton
Conference on, pages 1244—-1251. IEEE, 2016.

[Wang et al., 2016] Yu-Xiang Wang, Veeranjaneyulu Sad-
hanala, Wei Dai, Willie Neiswanger, Suvrit Sra, and Er-
ic Xing. Parallel and distributed block-coordinate frank-
wolfe algorithms. In International Conference on Machine
Learning, pages 1548-1557, 2016.

[Yang er al., 2018] Yuning Yang, Yunlong Feng, and Jo-
han AK Suykens. Correntropy based matrix completion.
Entropy, 20(3):171, 2018.

[Zhang er al., 2017] Wenpeng Zhang, Peilin Zhao, Wenwu
Zhu, Steven CH Hoi, and Tong Zhang. Projection-free dis-
tributed online learning in networks. In International Con-
ference on Machine Learning, pages 4054-4062, 2017.

