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Abstract

Image-text matching is central to visual-semantic
cross-modal retrieval and has been attracting ex-
tensive attention recently. Previous studies have
been devoted to finding the latent correspondence
between image regions and words, e.g., connect-
ing key words to specific regions of salient objects.
However, existing methods are usually commit-
ted to handle concrete objects, rather than abstract
ones, e.g., a description of some action, which in
fact are also ubiquitous in description texts of real-
world. The main challenge in dealing with ab-
stract objects is that there is no explicit connections
between them, unlike their concrete counterparts.
One therefore has to alternatively find the implicit
and intrinsic connections between them. In this pa-
per, we propose a relation-wise dual attention net-
work (RDAN) for image-text matching. Specifi-
cally, we maintain an over-complete set that con-
tains pairs of regions and words. Then built upon
this set, we encode the local correlations and the
global dependencies between regions and words by
training a visual-semantic network. Then a dual
pathway attention network is presented to infer the
visual-semantic alignments and image-text similar-
ity. Extensive experiments validate the efficacy of
our method, by achieving the state-of-the-art per-
formance on several public benchmark datasets.

1

Image and text matching is central to visual-semantic cross-
modal retrieval (e.g., given a sentence query to find matched
images for visual description and given an image query to
retrieve related sentences for semantic description). The piv-
otal challenge of such tasks is to explore a strategy that can
well infer the visual-semantic alignments for measuring the
image-text similarity. However, due to the existing huge
visual-semantic discrepancy of cross-modal data, it is chal-
lenging to infer the accurate visual-semantic alignments.
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Figure 1: Illustration about the difference between current visual-
semantic interaction DNN based methods and our RDAN model,
which shows that our method can explore not only salient objects
and key words, but also the latent relations between abstract objects.

Recently, with the dramatic development of deep learn-
ing, various deep learning based matching methods have
been proposed and achieved promising performance. Many
methods adopt a visual-semantic embedding based strategy
[Frome et al., 2013; Gong et al., 2014], which maps both
images and texts into a common representation space. Thus
the image-text similarity can be directly measured through
this common space. However, using the whole images and
texts information, visual-semantic embedding based strategy
ignores the importance of local visual-semantic similarities of
fine-grained image-text pairs (regions and words) and blends
some redundant information (useless regions).

For further solving the visual-semantic discrepancy, re-
cently studies [Karpathy and Fei-Fei, 2015] utilize a visual-
semantic interaction based strategy to measure image-text
similarity. Visual-semantic interaction based strategy cap-
tures local visual-semantic similarities by comparing fine-
grained image-text pairs (regions and words), and then aggre-
gates these local similarities to obtain global image-text sim-
ilarity. Moreover, considering the contribution of each local
similarity is different in constructing global image-text simi-
larity, attention mechanism [Xu et al., 2015] has been intro-
duced to discriminate the importance of each local similarity
and infer the visual-semantic alignments [Huang ez al., 2017].
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Such interaction-based attention methods can infer more ac-
curate visual-semantic alignments and achieve promising per-
formance.

However, existing methods are usually limited to explore
the alignments between image regions containing concrete
salience and key words, and ignoring the abstract objects,
such as action. Specifically, when matching an image and
a text, one not only focuses on the correspondence between
concrete objects and key words, but also considers the la-
tent relations between abstract objects. As shown in Fig-
ure 1, verbs (e.g., ‘running’) with discriminative informa-
tion in text are often ignored, since it may be unclear which
region in the image it can be matched with. People usu-
ally extract the latent relations between abstract objects when
matching an image and a text. Therefore, it may motivate
multi-level visual-semantic alignments for image-text match-
ing. In reality, images and texts are often more complicated
than the example of Figure 1, which makes it difficult to ac-
curately measure visual-semantic similarity by only using the
fine-grained image-text pairs. Thus, how to capture the la-
tent visual-semantic relations and infer accurate multi-level
visual-semantic alignments are the keys to further breaking
the boundaries between vision and language.

To address the issues mentioned above, we introduce a
novel relation-wise dual attention network (RDAN) that can
infer multi-level visual-semantic alignments for measuring
image-text similarity. Specifically, we first maintain an over-
complete set of image-text pairs and calculate the local simi-
larity of all the fine-grained pairs. Based on these local sim-
ilarity, we then use a visual-semantic relation CNN model to
extract the latent relation by capturing the local correlations
and long-term dependencies between regions and words. Fur-
thermore, we infer the visual-semantic alignments and calcu-
late the image-text similarity through the learned information.
Concretely, we propose a dual pathway attention network,
which uses a row-wise attention operation and a column-wise
attention operation to obtain the attended text-level features
and image-level features for measuring the image-text simi-
larity. To summarize, the main contributions of our work are
as follows:

We propose a novel relation-wise dual attention network to
explore not only the local fine-grained similarities, but also
the latent visual-semantic relations, which can provide rich
complementary information for inferring visual-semantic
alignments and measuring image-text similarity.

Detailed visualization of the attention results validates that
our model effectively infers the accurate visual-semantic
alignments.

Experimental results conducted on two publicly available
datasets demonstrate the effectiveness of the proposed
model.

2 Related Work

We first review the visual-semantic embedding based meth-
ods and visual-semantic interaction based methods. Then
we discuss recent advance in combining semantic-enhanced
strategies into image and text matching methods.
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Over the past several years, many matching methods have
been proposed to explore an accurate common embedding
representation. [Frome ef al., 2013] proposed the first deep
visual-semantic embedding method. [Kiros et al., 2014] com-
bined CNN [Krizhevsky et al., 2012] and LSTM [Hochreiter
and Schmidhuber, 1997] to learn a common representation
space. [Wang et al., 2016] utilized cross-view and within-
view constraints to learn structure-preserving representations.
In addition, deep canonical correlation analysis [Klein et al.,
2015; Yan and Mikolajczyk, 2015] is used as the objective
function for representation learning. Under the similar ob-
jective, [Lev et al., 2016] used Fisher Vector to learn more
discriminative representations. Recently, [Niu et al., 2017]
presented a model that maps phrases, regions, sentences and
images into a shared embedding space. [Faghri et al., 2017]
introduced hard negatives into triplet loss function to improve
the embedding learning. [Gu et al., 2018] proposed incorpo-
rating generative objectives for cross-view feature embedding
learning.

Visual-semantic interaction based methods utilize the lo-
cal similarities of fine-grained image-text pairs to aggregate
the global similarity. [Karpathy and Fei-Fei, 2015] proposed
the first visual-semantic interaction based framework. [Plum-
mer et al., 2015] considered the region-to-phrase correspon-
dences for learning the similarity. Since each fine-grained
pair plays a different role in calculating the global similar-
ity score, attention mechanism [Xu er al., 2015] is applied to
image-text matching problem. [Nam ef al., 2017] proposed a
dual attentional network to capture the fine-grained interplay
between regions and words. [Huang et al., 2017] presented a
context-modulated attention scheme to selectively attend to a
pair of instances appearing in the image and sentence. [Lee et
al., 2018] proposed a stacked cross attention network, which
learns all the possible alignments between regions and words.

Recently, some studies explored to utilize semantic-
enhanced strategies to learn the visual-semantic alignments.
[Qi et al., 2018] constructed pairwise combinations between
regions/words to represent the correlations. Then the authors
utilized KNN method to model these correlations for learn-
ing visual-semantic alignments. [Huang ef al., 2018] used a
multi-regional multi-label CNN to extract semantic concepts,
and then used images and semantic concepts to generate sen-
tence representation for measuring image-text similarity. Dif-
ferent from existing approaches, our method aims to directly
discover the latent relations between regions and words, and
to learn more discriminative visual-semantic alignments for
inferring image-text similarity.

3  Our RDAN Approach

In order to capture the latent relations and infer more discrim-
inative visual-semantic alignments, we propose a relation-
wise dual attention network (RDAN). The architecture of
RDAN is shown in Figure 2. Specifically, given an input im-
age and a related text, we first map the image and text into
a set of region features and a set of word features respec-
tively. Then we use a visual-semantic relation CNN model to
capture the latent relations between regions and words. Fi-
nally, we present a dual pathway attention network to infer
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Figure 2: Architecture of the proposed relation-wise dual attention network.

the visual-semantic alignments and to calculate the image-
text similarity. Next, we will introduce RDAN from the fol-
lowing aspects: 1) input representation of images and texts
as an over-complete set, 2) details of visual-semantic rela-
tion CNN model and dual pathway attention network and 3)
model learning and implementation details of RDAN.

3.1 Input Representation

In order to construct an over-complete image-text-pair set and
make image and text comparable, we map both data from
their own spaces to a D-dimensional common space.

For an image, we aim to represent it with a set of region
features V' = (v1,---,vi) € RP** where k is the num-
ber of regions. Following [Anderson et al., 2018], we detect
the region features for each image with a Faster R-CNN [Ren
et al., 2015] model. We adopt the Faster R-CNN model in
conjunction with a 101-layers ResNet. For each obtained re-
gion feature vector r; € R%, we use a fully-connect layer to
transform r; into a D-dimensional vector

vi = Wyr; + by, (D

where W, is a parameter matrix, b, € R is a bias vector.
Thus, we can represent an image with a set of region vectors
V = {vy, -+, vi}. All extracted image regions are ordered
by their confidence score. In our experiments, we set D =
1024 and k = 36.

For a text, we extract the same D-dimensional word fea-
tures £ = (e, ...,e,) € RPX" where n denotes the number
of words. For i-th word in the text, we first encode it to a one-
hot vector o;, and then map it into a 300-dimensional vector
as follows

x; = W,0; + b, 2)
Next, we use a bi-directional GRU [Bahdanau et al., 2014] to
learn the word representation. The bi-directional GRU con-
tains a forward GRU, which scans the text from the first word
to the last word, and a backward GRU, which scans the text

by a reverse order
= = — ﬁ

P
We finally represent the word feature by averaging h; and h;,

-
h; +h;
%, ie{l,..,n}.

Thus, we can obtain a set of word vectors F.

“

e;, =

791

3.2 Visual-Semantic Relation CNN Model

Based on the region features V' and word features F/, we in-
tend to capture the latent visual-semantic relations. Inspired
by the convolution neural network, which can effectively ex-
tract the relationships between pixels and construct the ex-
pressive representation hierarchically. Therefore, we aim to
use a multi-layer CNN to capture the local correlations and
long-term dependencies between regions and words.
Considering the particularity of the visual-semantic in-
teraction, we design a novel visual-semantic relation CNN
model. Specifically, we first compute the cosine similarity
matrix S for all region-word pairs,
v

i ©j

——— e {l,...k},je{l,...,n}.
allley ¢ € Wb € {Lm)

(&)

Sij =

Here, s;; represents the similarity between the i-th region and
the j-th word. k denotes the number of regions and n denotes
the number of words. We use this similarity matrix as the in-
put of visual-semantic relation CNN model. Unlike existing
methods that applying CNN to image processing [Krizhevsky
et al., 2012] or text processing [Pang er al., 2016], each ele-
ment of the input denotes a pixel or a correlation between
words, each element in our model means the interaction in-
formation of each region-word pair. Then we introduce three
different convolution kernels to expand the perceptual field
for the regions and words. Concretely, we adopt a 3 1 convo-
lution kernel to capture the latent relationships for uni-gram
word and tri-gram regions, a 1 X 3 convolution kernel for
uni-gram region and tri-gram words, and a 3 X 3 convolution
kernel for tri-gram regions and tri-gram words.

The first convolutional layer filters the &£ x n input with 32
kernels of size 3 x 1. The second convolutional layer has 32
kernels of size 1 X 3 connected to the outputs of the first con-
volutional layer. The third convolutional layer has 32 kernels
of size 3 x 3. The ReLU non-linearity is applied to the output
of each convolutional layer. The operation of each layer is
shown as follows,

Sy = ReLU(Conv(S;_1)). (6)

Then we filter the output of third convolutional layer with 2
kernel of size 1 x 1 to obtain the matrices S' and S2. Note that
we remove the down-sampling operations (e.g., max-pooling)
to avoid the information loss and keep the dimension of the
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similarity matrix. Through the hierarchical convolution op-
erations, we can capture the latent visual-semantic relations
from local to global. Finally, we merge the learned matrices
and the original similarity matrix .S

St=S5'as, S2=582@¢S§, @)

where & is an element-wise plus operation. We regard the
similarity matrix S as a residual term to preserve the fine-
grained interaction information. Thus, the visual-semantic re-
lation CNN model can capture not only the local fine-grained
similarities, but also the latent relations, which can provide
rich complementary information for inferring visual-semantic
alignments.

3.3 Dual Pathway Attention Network

Armed by the learned visual-semantic relations, we can mea-
sure more accurate image-text similarity. To this end, we pro-
pose a dual pathway attention network, which can infer the
importance of all the words to each region and infer the im-
portance of all the regions to each word. Then we construct
attended image-level feature to each word and construct at-
tended text-level feature to each region for measuring image-
text similarity.

For ¢-th region, we fitst use a row-wise attention operation
on 2 to calculate the weight of each word to i-th region.
Then we extract a corresponding attended text-level vector
through a weighted combination of word representations,

exp(A83;)

n
a; = Zaijej» Qij = n 2
= > ()‘Sij)

j=1€XP

®)

where A is the inversed temperature of the softmax function
[Chorowski et al., 2015]. Similarly, we can obtain a corre-
sponding attended image-level vector for j-th word through a

column-wise attention operation on St as follows,
exp(A8];)

k NEN
> iz1€XP(AS;))
Through the above dual pathway attention operations, we can
obtain an image-level vector as context for each word and

obtain a text-level vector as context for each region. Then we
calculate the region relevance and word relevance as follows,

€))

k
bj = ZBz‘jVi, 51’]’ =
1=1

vTaZ-

R, Vi,a;) = 1771 (S ].,...,k s
o) T gt € et
Ruleyby) =~ Ge 1 n)
w €5, D) = 5] sy Mg
703) = e oy

Here, region relevance denotes the similarity between ¢-th re-
gion and corresponding text-level vector, word relevance de-
notes the similarity between the j-th word and corresponding
image-level vector. Finally, the visual-semantic similarity be-
tween image [ and text T is calculated as follows:

k
F(1LT) = (1) 2 Vi)
(1)

where p is a hyper-parameter, which controls the balance be-
tween region relevance and word relevance.
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3.4 Model Learning

We utilize the hinge-based triplet loss as the objective func-
tion, which is widely used in image-text matching field.
Given a positive image-text pair (I, T'), the objective func-
tion is as follows,

L(I,T) =Y max(0,m — F(I,T) + F(I,T))

T (12)

+> max(0,m — F(I,T) + F(I,T))
I

where m is a tuning margin, F'(I,T) denotes the similarity
score of matched image I and text T', F'(1, T) is the score of
mismatched image I and text 7', and vice-versa with F'(1, T').
The above function considers all negative text T and all neg-
ative image I.

However, using all the negative samples will lead to ex-
pensive computation. A common approach is to select a
fixed number of mismatched pairs. Following [Faghri et
al., 20171, we focus on the hardest negatives. For a posi-
tive image-text pair (I,T"), the hardest negative is given by
I, = argmaxg#F(g, T) and Tj, argmax ;. F'(1, d).
Thus, the objective function for optimizing our model is de-
fined as follows,

Li(I,T) =max(0,m — F(I,T) + F(I,T}))
+ max(0,m — F(I,T) + F(Iy,T))

13)

All modules of our proposed RDAN excepting for the im-
age regions extraction can constitute a whole deep network,
which can be trained in an end-to-end manner.

3.5 Implementation Details

Our RDAN approach is implemented by Pytorch. For images,
we adopt a Faster R-CNN model to extract region features.
We set the intersection over union (IOU) threshold as 0.7.
We extract the top k vectors of the last pooling layer for each
image, and then use a fully-connect layer to transform the
region vectors into 1024-dimensional vectors. For texts, we
use the bidirectional GRU to encode a text into a set of word
features. The word feature can be obtained by averaging the
first 1024-dimensional output of forward GRU and backward
GRU. Other parameters are empirically set as follows: k& =
36, u=0.1,A\=4and m =0.2.

4 Experiments

To demonstrate the effectiveness of the proposed RDAN
model, we conduct extensive experiments on the visual-
semantic cross-modal retrieval task. We use the Flickr30k
[Plummer et al., 2015] and MS-COCO [Lin et al., 2014]
datasets. These datasets contain 31,000 and 123,287 images
respectively and each image has 5 captions. For Flickr30K,
we follow [Karpathy and Fei-Fei, 2015] to use 1,000 images
for validation, 1,000 images for testing and the rest for train-
ing. For MS-COCO, we follow [Lee er al., 2018] to use 5,000
images for validation, 5,000 images for testing and the rest
for training. We report the results by averaging over 5 folds
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Sentence Retrieval Image Retrieval
Method RGT  R@5 R@0 | R@T  R@5  R@o] 5"
DVSA [Karpathy and Fei-Fei, 2015] 222 48.2 614 15.2 37.7 50.5 235.2
HM-LSTM [Niu er al., 2017] 38.1 - 76.5 27.7 - 68.8 -
DSPE [Wang et al., 2016] 40.3 68.9 79.9 29.7 60.1 72.1 351.0
SM-LSTM [Huang et al., 2017] 42.5 71.9 81.5 30.2 60.4 72.3 358.8
CRAN [Qi et al., 2018] 38.1 70.8 82.8 38.1 71.1 82.6 383.5
2WayNet [Eisenschtat and Wolf, 2017] 49.8 67.5 - 36.0 55.6 - -
DAN [Nam et al., 2017] 55.0 81.8 89.0 394 69.2 79.1 413.5
VSE++ [Faghri er al., 2017] 529 - 87.2 39.6 - 79.5 -
DPC [Zheng et al., 2017] 55.6 81.9 89.5 39.1 69.2 80.9 416.2
SCO [Huang er al., 2018] 55.5 82.0 89.3 41.1 70.5 80.1 418.5
SCAN [Lee ez al., 2018] 67.4 90.3 95.8 48.6 77.7 85.2 465.0
RDAN 68.1 91.0 95.9 54.1 80.9 87.2 477.2
Table 1: Comparison results of sentence retrieval and image retrieval on the Flickr30k dataset.
Sentence Retrieval Image Retrieval
Method RGT  R@5 R0 | ReT  R@s  R@m | SUm
DVSA [Karpathy and Fei-Fei, 2015] 384 69.9 80.5 27.4 60.2 74.8 351.2
HM-LSTM [Niu et al., 2017] 43.9 - 87.8 36.1 - 86.7 -
DSPE [Wang et al., 2016] 50.1 79.7 89.2 39.6 75.2 86.9 420.7
SM-LSTM [Huang et al., 2017] 53.2 83.1 91.5 40.7 75.8 87.4 431.7
2WayNet [Eisenschtat and Wolf, 2017] 55.8 75.2 - 39.7 63.3 - -
VSE++ [Faghri et al., 2017] 64.6 - 95.7 52.0 - 92.0 -
DPC [Zheng er al., 2017] 65.6 89.8 95.5 47.1 79.9 90.0 467.9
GXN [Gu et al., 2018] 68.5 - 97.9 56.6 - 94.5 -
SCO [Huang er al., 2018] 69.9 92.9 97.5 56.7 87.5 94.8 499.3
SCAN [Lee ez al., 2018] 72.7 94.8 98.4 58.8 88.4 94.8 507.9
RDAN 74.6 96.2 98.7 61.6 89.2 94.7 515.0

Table 2: Comparison results of sentence retrieval and image retrieval on the MS-COCO dataset.

of 1K test images. We use Recall@ K as the metric for eval-
uation, which means the correct image (sentence) is ranked
within the Top- K retrieved results to the sentence query (im-
age query). We calculate another criterion ‘Sum’ to evaluate
the overall performance for both sentence retrieval and image
retrieval.

4.1 Comparison with State-of-the-art Methods

We compare our model with several state-of-the-art models
on Flickr30k and MS-COCO datasets in Table 1 and Table
2. We can observe that our proposed model outperforms all
baselines on both datasets. Especially for R@ 1, which is cru-
cial to measure accuracy, our model achieves the best per-
formance. For example, our best results at R@1 are 74.6
and 61.6 for sentence retrieval and image retrieval on MS-
COCO dataset, which improves 2.6% on sentence retrieval
and 4.7% on image retrieval comparing to current state-of-
the-art. Similar observations can be obtained from other met-
rics (e.g., R@5 and R@10). In addition, we notice that our
models have significant improvements in the overall perfor-
mance. The results demonstrate that our RDAN model can
effectively infer visual-semantic alignments and accurately
measure the image-text similarity.

4.2 Ablation Studies

We aim to validate the contribution of each component of our
model by carrying out some ablation experiments. Specif-
ically, we intend to answer the following questions: 1) Is
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the dual pathway attention structure effective? 2) Whether
the visual-semantic relation CNN model is helpful to learn
visual-semantic alignments? 3) Is the residual term (similar-
ity matrix .S) useful? 4) Does the hard negatives technique is
effective?

We first train RDAN with 4 = 0 or ¢ = 1, which means
that RDAN only uses row-wise/column-wise attention opera-
tion to infer similarity score. We also train RDAN with one
pathway attention structure (RDANgpe-pah). This model gen-
erates one learned matrix, which is used to infer similarity
score by using column-wise and row-wise attention opera-
tions. We then train RDAN without the visual-semantic rela-
tion CNN model (RDANo.cnn), Which denotes RDAN only
uses the original similarity matrix. Next, we train RDAN
without the residual term S in the visual-semantic relation
CNN model (RDAN,o.res). Finally, we train RDAN without
using the hard negatives technique (RDAN o hard)-

The experimental results are shown in Table 3. We ob-
serve that the dual pathway attention structure is effective to
learn more accurate visual-semantic alignments for inferring
similarity score. The performance will degrade dramatically
when only using row-wise/column-wise attention operation.
In addition, one pathway attention structure is also difficult to
achieve satisfactory results. Besides, we can see the residual
term S is useful, since it contains the interaction information
of fine-grained image-text pairs, which is important for infer-
ring visual-semantic alignments. Further more, the hard neg-
atives technique can significantly improve the performance.
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Figure 3: Visualization of the image regions with respect to each word in the sentence description.
Flickr30K dataset MS-COCQO dataset
Method Sentence Retrieval Image Retrieval Sum Sentence Retrieval Image Retrieval Sum
R@I R@5 R@I0| R@l R@5 R@Iio| ~Y R@I R@5 R@I0| R@l R@5 R@io| °Y

RDAN,-o 63.5 904 948 | 51.7 79.0 86.7 | 466.1| 71.0 956 984 | 582 87.0 923 | 502.5
RDAN - 626 87.6 946 | 46.6 760 827 | 450.1| 62.7 919 96.1 514 845 92.1 | 478.7
RDANonepan | 62.8  89.6 954 | 49.7 781 85.8 | 461.4| 57.8 90.6 97.0 | 554 874 939 | 482.1
RDAN6-con 659 89.1 946 | 445 747 84.8 | 453.6| 684 945 98.1 505 849 927 | 489.1
RDANpo.-res 645 900 950 | 493 784 853 | 462.5| 594 91.6 97.1 56.1 87.0 939 | 485.1
RDAN6-hard 63.7 882 946 | 487 769 843 | 4564 68.9 941 98.0 | 55.8 86.6 933 | 496.7
RDAN 68.1 910 959 | 541 809 872 | 477.2| 746 962 987 | 61.6 89.2 947 | 515.0

Table 3: Ablation experiment result on Flick30K and MS-COCO dataset

4.3 Analysis of Visualizing Attention Results

In order to show the discriminative ability and interpretability
of our learned visual-semantic alignments, we visualize the
learned most important region corresponding to each word.
Specifically, we first calculate attention weights among each
word and all regions on the learned information matrix. Then
we visualize the most important region with respect to each
word based on the weights.

In Figure 3, we first show the learned information matrix
for the selected image with a sentence ‘A young boy wear-
ing a blue jersey and yellow shorts is playing soccer’. We
then display the original image and the image with extracted
region bounding box. We match the most important region
for each word in the rest sub-figures. We can observe that
the words ‘a’, ‘young’ and ‘boy’ are mapped to the same
image region and the words ‘wearing’, ‘a’, ‘blue’ and ‘jer-
sey’ are mapped to another same image region. These ob-
servations prove that our model can effectively explore not
only concrete objects and key words, but also the latent re-
lations between abstract objects. Such multi-level visual-
semantic alignments are more in line with human behavior
when matching images and texts. In this way, we can learn
the more expressive image-level/text-level representation for
each word/region, which is useful for measuring image-text
similarity.

5 Conclusion

This paper aims to deal with abstract objects in image-text
matching. Unlike the concrete objects, abstract ones lack the
explicit connection between text and image region, requiring
alternative ways to explore the intrinsic connection. There-
fore, we propose a relation-wise dual attention network to
capture the latent relations and infer visual-semantic align-
ments. We first use a visual-semantic relation network to
learn latent correlations over a over-complete set of image-
text pairs. We then present a dual pathway attention network
to obtain more expressive region/word representations and to
measure image-text similarity. In addition, we provide vi-
sualization analysis to show how RDAN can give more dis-
criminative and interpretability to such vison-language mod-
els. We perform experiments on cross-modal retrieval tasks
and the results demonstrate the effectiveness of the proposed
model by achieving significant performance improvements.
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