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Abstract

Localizing natural language phrases in images is a
challenging problem that requires joint understand-
ing of both the textual and visual modalities. In the
unsupervised setting, lack of supervisory signals
exacerbate this difficulty. In this paper, we propose
a novel framework for unsupervised visual ground-
ing which uses concept learning as a proxy task to
obtain self-supervision. The intuition behind this
idea is to encourage the model to localize to regions
which can explain some semantic property in the
data, in our case, the property being the presence of
a concept in a set of images. We present thorough
quantitative and qualitative experiments to demon-
strate the efficacy of our approach and show a 5.6%
improvement over the current state of the art on Vi-
sual Genome dataset, a 5.8% improvement on the
ReferItGame dataset and comparable to state-of-art
performance on the Flickr30k dataset.

1 Introduction
The recent advancements in computer vision have seen the
problem of visual localization evolve from using pre-defined
object vocabularies, to arbitrary nouns and attributes, to the
more general problem of grounding arbitrary length phrases.
Utilizing phrases for visual grounding overcomes the limi-
tation of using a restricted set of categories and provides a
more detailed description of the region of interest as com-
pared to single-word nouns or attributes. Recent works have
used supervised learning for the task of visual grounding
(i.e localizing) [Fukui et al., 2016; Plummer et al., 2017;
Chen et al., 2017; Rohrbach et al., 2016; Deng et al., 2018].
However, these approaches require expensive bounding box
annotations for the phrase, which are difficult to scale since
they are a function of scene context and grow exponentially
with the number of entities present in the scene. Furthermore,
bounding box annotations for phrases are subjective in na-
ture and might contain non-relevant regions with respect to
the phrase. This brings us to our main motivation, which is
to explore new ways in which models can directly harness

∗Work done while at IIIT-Hyderabad

Figure 1: We exploit the presence of semantic commonalities within
a set of image-phrase pairs to generate supervisory signals. We hy-
pothesize that to predict these commonalities, the model must local-
ize them correctly within each image of the set.

unlabelled data and its regularities to learn visual ground-
ing of phrases. Given the lack of supervision, we develop a
self-supervised proxy task which can be used for guiding the
learning. The general idea behind self-supervision is to de-
sign a proxy task which involves explaining some regularity
about the input data. Since there are no ground truth annota-
tions, the model is trained with a surrogate loss which tries to
optimize for a proxy task, instead of directly optimizing for
the final task. A good proxy task improves performance on
the final task when the surrogate loss is minimized. In this
work we propose concept-learning as a substitute task for vi-
sual grounding. During training, we create concept batches of
size k, consisting of k different phrase-image pairs, all con-
taining a common concept (as illustrated in Figure 1). The
proxy task for the model is to decode the common concept
present within each concept batch. We induce a parameteri-
zation which, given the input text and image, can generate an
attention map to localize a region. These localized regions are
then used to predict the common concept. Adopting concept-
learning as our substitute task, we align our proxy and empiri-
cal task, and by introducing concept batches, we constrain the
model to learn concept representations across multiple con-
texts in an unsupervised way.

Previous work on unsupervised visual grounding can also
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be interpreted as having proxy losses to guide the localiza-
tion. [Rohrbach et al., 2016] use reconstruction of the whole
phrase as a substitute task for grounding. However, the ob-
jective of reconstructing the entire phrase can also be opti-
mized by learning co-occurrence statistics of words and may
not always be a result of attending to the correct bounding
box. Moreover, precise reconstruction of certain uninforma-
tive parts of the phrase might not necessarily correlate well
with the correct grounding. This limitation is also evident in
other methods like that of [Xiao et al., 2017] which uses a
discriminative loss on the whole phrase instead of generat-
ing discrimination for the object to be localized. Many other
works like [Ramanishka et al., 2017] and [Zhang et al., 2016]
only allow for word-level grounding, thus making them aver-
age over the heatmaps to get a phrase-level output. In con-
trast, our formulation does not suffer from these limitations.
Our proxy task deals with the full phrase and forces the model
to limit the attention to areas which can explain the concept to
be grounded, thus aligning the objective better with the task
of visual grounding.

To evaluate the generality of our approach, we test our ap-
proach on three diverse datasets. Our ablations and analysis
identify certain trends which highlight the benefits of our ap-
proach. In summary, the main contributions of our work are
as follows:

• We propose a novel framework for visual grounding
of phrases through semantic self-supervision where the
proxy task is formulated as concept learning. We intro-
duce the idea of a concept batch to aid learning.

• We evaluate our approach on the Visual Genome and
ReferIt dataset and achieve state-of-art performance
with a gain of 5.6% and 5.8% respectively. We also get
performance comparable to the state-of-art on Flickr30k
dataset.

• We analyze the behavior of our surrogate loss and the
concept batch through thorough ablations which gives
an insight into the functioning of our approach. We
also analyze the correlation of performance for visual
grounding with respect to size of the bounding box
and possible bias induced due to the similarity of the
grounded concepts to the ImageNet labels.

2 Related Work
The problem of image-text alignment has received much at-
tention in the vision community in the recent years. Early
work like DeViSE [Frome et al., 2013] focus on learning se-
mantic visual embeddings which have a high similarity score
with single-word labels. Similar to DeViSE, [Ren et al.,
2017] learn a multi-modal alignment by constructing a se-
mantic embedding space, but instead of image-label corre-
spondences, they learn region-label correspondences through
a multiple-instance learning approach. [Kiros et al., 2014]
learn a joint embedding space for a complete sentence and
an image using a CNN-LSTM based encoder and a neu-
ral language model based decoder. Since the release of the
Flickr30k Entities dataset [Plummer et al., 2015] and sub-
sequently the Visual Genome dataset [Krishna et al., 2017],

availability of bounding box annotations of phrases has al-
lowed many new attempts at the problem of visual ground-
ing of phrases. [Plummer et al., 2015] provide a baseline for
Flickr30k Entities dataset using Canonical Correlation Anal-
ysis (CCA) to compute the region-phrase similarity. [Wang et
al., 2016] construct a two-branch architecture that enforces
a structure and bi-directional ranking constraint to improve
upon the CCA baseline. Another recent work from [Chen
et al., 2017] departs from the standard usage of bounding
box proposals and uses the primary entity of the phrase along
with its context to regress localization coordinates. They use
a combination of a regression, a classification and a rein-
forcement learning based loss to train multiple networks in
their framework. Prior to our work, there are two papers
which take up the problem of unsupervised visual grounding
of phrases. [Rohrbach et al., 2016] use reconstruction of the
original phrase as a substitute objective function to improve
visual attention. But the output predictions in their work is in
the form of bounding boxes which, as noted by [Chen et al.,
2017], puts an upper bound on the performance. In a more
recent work, [Xiao et al., 2017] use the parent-child-sibling
structure in the dependency tree of the phrase along with a
discriminative loss to generate weak supervision and produce
heatmap based outputs for localization. Following [Xiao et
al., 2017], we too generate heatmap based localizations, but
use an objective which is better aligned with the grounding
task. Apart from these papers, certain other unsupervised
methods allow modification of their approach to enable eval-
uation on the phrase grounding task. For example, [Zhang et
al., 2016] and [Ramanishka et al., 2017] produce word-level
heatmaps and average them to get a phrase-level output. We
compare with all these works in section 5.

3 Grounding Through Semantic
Self-Supervision

Unsupervised learning can be interpreted as learning an en-
ergy function which assigns lower energy value for data
points similar to the training set while assigning high energy
value to others. In a self-supervised environment, the role of
proxy task is to learn the function that pulls down the energy
at the data manifold. With this in mind, we define our proxy
task for visual grounding.

3.1 Proxy Task Formulation
Our model is trained for the proxy task of concept-learning.
A concept is defined as the entity which is to be grounded
in the image. For example, in the phrase ‘white towel on the
counter’, the highlighted word ‘towel’ is the concept. We ob-
serve that in most phrase-image pairs, the localization refers
to some concept which explicitly occurs in the phrase as a
single word. We hypothesize that if we induce a parameter-
ization for localization of the phrase and use the localized
regions to predict the concept present in an image, the param-
eterization will converge to the ground truth localization of
the phrase. Given this proxy task, we’re faced with two main
challenges: 1) How do we identify the concept in a phrase?
and 2) How do we learn concept representations in an unsu-
pervised setting?
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Figure 2: An overview of our model for unsupervised visual grounding of phrases. The encoder takes in a set of image-phrase pairs, indexed
by i, all sharing a common concept. The encoder embeds the image and the phrase to Vi and ti respectively. These features are used to
induce a parametrization for spatial attention. Next, the decoder uses the visual attention map to predict the common concept. In addition,
the decoder also predicts the common concept independently for each pair (i). For details, see Section 3.2.

For the first part, we note that identifying a concept which
is to be grounded in a phrase, is a problem from the linguistics
domain. We can imagine an external system which takes in
as input the phrase and returns the concept. Assuming the
concept is a single-word entity and exists within the phrase,
a naive system can randomly pick a word from the phrase.
Since most concepts to be localized are nouns, a POS tagger
performs better than random sampling and in this work, we
use it to find all nouns in a phrase and randomly select one of
them as the concept.

For the second problem, we introduce the notion of a con-
cept batch and learn the concept-prediction task with such
batches. A concept batch, as shown in Figure 2, is one train-
ing instance for our model, which itself consists of k phrase-
image pairs, all containing a common concept. The proxy
task is now re-formulated as jointly decoding the common
concept using all k localized feature representations in addi-
tion to independently decoding the same concept. The intu-
ition behind training with a concept batch is that for decoding
the common concept, k phrase-image pairs should encode a
localized representation which is invariant to the difference
in context across the k pairs. On the other hand, the proxy
task of decoding independent concept (for each image in the
batch) ensures two things: a) Individual and common repre-
sentations are consistent b) Model cannot find a shortcut by
using only few inputs from the concept batch to decode the
common concept.

It is important to note that using a concept batch for learn-
ing along with a noun-based concept can be interpreted as
generating weak supervision, albeit noisy in nature. Instead
of an imperfect concept-identifier, if an oracle could gener-
ate a concept which always corresponded to the actual re-
gion to be grounded, then this would convert the unsuper-
vised problem to a weakly supervised one. However in our
setting, since the same image-phrase pair can be chosen with
different sampled concepts during training, it is this random
sampling of concepts which ensures that the model doesn’t

only learn a simple concept-identifier, but also generates in-
formation which can help it discriminate between the same
concept in different contexts.

3.2 Encoder-Decoder Model
We adopt an encoder-decoder architecture for learning to
ground as illustrated in Figure 2. The encoder uses an at-
tention mechanism similar to [Xu et al., 2015] using the
joint features from visual and textual modalities. To main-
tain fair comparison with previous work, the image features
are extracted from the last convolution layer of a VGG16
model [Simonyan and Zisserman, 2014] pre-trained on Ima-
geNet. Similarly, the phrase features are extracted from a lan-
guage model trained on next word prediction on the Google 1
Billion dataset [Chelba et al., 2013] and the MS COCO cap-
tions dataset [Lin et al., 2014]. As done in [Xiao et al., 2017],
both the model weights are frozen during training and aren’t
fine tuned. For the ith index in the concept batch, given visual
features from VGG16, Vi = fV GG(Ii) and textual features
from the language model ti = fLM (P i), the attention over
visual regions is given by:

f iattn = softmax(fjoint(V
i, ti)). (1)

fjoint(V
i, ti) = Φs(Φr(Φq(Φp([Vi, ti])))), (2)

where Vi ∈ Rm×n, ti ∈ Rl×1, fjoint(V
i, ti) ∈ R1×n,

[Vi, ti] is an index-wise concatenation operator (over the first
dimension) between a matrix Vi and a vector ti resulting in
a matrix of size ((m + l)× n). Φ(·) corresponds to a hidden
layer of a neural network and is defined as:

Φp(X) = ReLU(WpX + bp), (3)

where ReLU(x) = max(x, 0), Wp ∈ Rp×d, bp ∈ Rp×1

and X ∈ Rd×n. Here n is the number of regions over which
attention is defined and d is the dimensionality of each region
with respective to X.
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Thus, we use a 4 layered non linear perceptron to calculate
attention for each of the n regions 1. In contrast to [Rohrbach
et al., 2016], we compute attention over the spatial regions
of the last feature maps from VGG16 instead of computing
it over bounding boxes. The four Φ(·) layers gradually de-
crease the dimensionality of the concatenated joint features
from (m + l) → p → q → r → s where s = 1. It is im-
portant to note that the attention module is shared across all
Vi and ti. Thus the encoder is common for all pairs in the
concept batch. Next, we describe a decoding mechanism to
predict the common and independent concept.

Given the attention weights f iattn ∈ R1×n, the visual at-
tention for common concept prediction (fvac) is computed by
taking the weighted sum with the original visual features.

fvac =

k∑
i=1

f iattnV
i (4)

We find that aggregating the visual attention across regions,
which is commonly done in the past attention literature de-
grades performance for our task. Therefore we retain the spa-
tial information and only aggregate the features across the
concept batch.

Similarly, the visual attention for independent concept pre-
diction, f ivai is given by the element-wise product of the at-
tention weights and visual features.

f ivai = f iattnV
i (5)

Finally, both the attended features are flattened and separately
connected to a fully connected layer, leading to a softmax
over the concepts. In practice, we also down-sample the di-
mensionality of f ivai using 1 ∗ 1 convolutions before we ag-
gregate and flatten the features.

ycommon = softmax(Wvacfvac + bvac). (6)

yi
independent = softmax(Wvaif

i
vai + bvai), (7)

where ycommon is the network prediction for the common
concept and yi

independent is the independent concept predic-
tion for the ith index in the concept batch.

3.3 Surrogate Loss
Our surrogate loss consists of two different terms, one cor-
responding to the common concept prediction whereas the
other for the independent concept prediction. Since we de-
code the visually attended features to a softmax over the con-
cept vocabulary, we use the cross-entropy loss to train our
model. Given the target common concept vector yt for a con-
cept batch of size k, the proxy objective function is defined
as:

Ltotal = L(ycommon,yt) +
1

k

k∑
i=1

L(yi
independent,yt) (8)

where L(·) is the standard cross-entropy loss.

4 Experimental Setup
In this section, we elaborate upon the implementation details,
employed datasets, evaluation metric and baselines.

1Since we compute attention over VGG feature maps, n = 7 × 7

Dataset Statistics Value
Visual Genome ReferIt Flickr30k

No of phrases per image 50.0 5.0 8.7
No of objects per image 35.0 - 8.9
Word count per phrase 5.0 3.4 2.3
Noun count per phrase 2.2 1.8 1.2

Table 1: Phrase-region related statistics for datasets used in evalua-
tion. The numbers reflect the relative complexity of these datasets.

Method Accuracy
Visual Genome ReferIt ReferIt Flickr30k

(Mask) (Bbox)

Random baseline 11.15 16.48 24.30 27.24
Center baseline 20.55 17.04 30.40 49.20
VGG baseline 18.04 15.64 29.88 35.37

[Fang et al., 2015] 14.03 23.93 33.52 29.03
[Zhang et al., 2016] 19.31 21.94 31.97 42.40

[Ramanishka et al., 2017] - - - 50.10
[Xiao et al., 2017] 24.40 - - -

Ours 30.03 29.72 39.98 49.10

Table 2: Phrase grounding evaluation on 3 datasets using the point-
ing game metric. See Section 5 for explanation for ReferIt.

4.1 Implementation Details
A ImageNet pre-trained VGG16 and a Google 1 Billion
trained language model are used for encoding the image and
the phrase respectively. Both the visual and textual fea-
ture extractors are fixed during training. Before the atten-
tion module, both the features are normalized using a batch-
normalization layer [Ioffe and Szegedy, 2015]. The concept
vocabulary used for the softmax based loss is taken from the
most frequently occurring nouns. Since the frequency dis-
tribution follows the Zipf’s Law, around 95% of the phrases
are accounted for by the top 2000 concepts, which is used as
the softmax size. In the encoder, the values of p, q, r, s from
Equation 2 are taken as 512, 128, 32, 1 respectively.

4.2 Evaluation
Dataset
We test our method on the Visual Genome [Krishna et al.,
2017], the ReferItGame [Kazemzadeh et al., 2014] and the
Flickr30k Entities [Plummer et al., 2015] datasets and there
exist few important qualitative and quantitative differences
between them. Table 1 shows some important dataset statis-
tics which hint towards the complexity of the datasets. For
example, notice that in Flickr30k, the average phrase length
is just 2.3 words and average noun count is 1.2 which would
mean that the region to be localized in most cases is directly
present as a single word, thus changing the problem to an
almost weakly supervised setting. To ensure fair compari-
son with the previous work of [Xiao et al., 2017], we use the
images from the validation set of MS-COCO which have an-
notations in the Visual Genome dataset as our test set. We
use remaining images of the Visual Genome for training. For
ReferIt and Flickr30k, we use the test sets for evaluation.

Evaluation Metric
Since our model generates localization in the form of a
heatmap, we evaluate our model with the pointing game met-
ric [Zhang et al., 2016], similar to the previous work of [Xiao
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Loss Type Concept Batch Size (k)
k = 3 k = 5 k = 7 k = 9

Independent concept only 27.15 27.27 28.01 28.05
Common concept only 27.52 28.94 29.18 27.90

Independent and common concept 28.25 28.91 29.89 30.03

Table 3: Analysis of different surrogate losses while varying the
concept batch size.

et al., 2017; Ramanishka et al., 2017]. Pointing game mea-
sures how accurate the most confident region in the predicted
heatmap is with respect to the ground truth bounding box.
For a given input, the predicted localization heatmap is con-
sidered a Hit if the pixel with the maximum value in the
heatmap lies within the bounding box, else it’s considered
a Miss. The pointing game accuracy is defined as the fraction
of correct localizations out of the total testing instances, i.e.

#Hit
#Hit+#Miss . For an image of size 224×224, the 7×7 atten-
tion map is projected back using a stride of 224/7. Thus each
of the 49 grids correspond to a 32× 32 region in the original
image space and the center point of the highest activated grid
is chosen as the maximum value for the pointing game.

Baselines
We compare the performance of our approach with mul-
tiple baselines and previous methods. The first is a ran-
dom baseline which mimics the attention-based localization
of our setup, but chooses the region randomly out of the
49 image regions. The second baseline is taken from [Ra-
manishka et al., 2017; Zhang et al., 2016] where the cen-
ter point of the image is taken as the max for the pointing
game. Note that this baseline can produce skewed results
in datasets where the phrase to be localized has a center-
bias, which is what we observe with Flickr30k (as previ-
ously noted in [Ramanishka et al., 2017]). We also use a
visual-only baseline which selects the maximum pixel for
the pointing game based on the pre-trained visual features.
We use the feature maps from the last convolution layer of
an ImageNet-trained VGG16 and average the channel acti-
vations to get a 7 × 7 map. We then choose the maximum
activated grid for the pointing game. Apart from these three
baselines, we also compare against weakly supervised works
of [Fang et al., 2015] and [Zhang et al., 2016] who use an
MIL based approach and an excitation backprop scheme re-
spectively for single-word labels. As done in [Zhang et al.,
2016; Ramanishka et al., 2017], we average the heatmaps
generated for tokens present in their dictionary for obtain-
ing the final heatmap. Finally, we also compare against
the more recent unsupervised works of [Xiao et al., 2017;
Ramanishka et al., 2017].

5 Results
We report the comparison of our method with the baselines
and previous methods in this section. Table 2 summarizes the
performance of our best model on the three datasets. To high-
light our generalization ability, we train the proposed model
on Visual Genome since it’s the largest, more complex and
diverse dataset out of the three and directly evaluate on the
test set of all three datasets without fine tuning.

Figure 3: Variation of performance with respect to bounding box
area and similarity of concept with ImageNet classes.

Visual Genome
We see that the random baseline yields the least performance
as expected. Surprisingly, the VGG16 baseline fares decently
well given that it does not take any phrase-related information
into account. We believe this is due to the phrases often refer-
ring to some object in the image which the VGG16 features
are already trained for recognizing. Our model outperforms
all the baselines and improves upon the previous state-of-art
work by [Xiao et al., 2017] by 5.63%.

ReferItGame
[Hu et al., 2016] provide segmentation mask for each phrase-
region pair and use them to obtain a bounding box (bbox)
which envelopes the mask completely. They then use this
for their evaluation on ReferIt. Though we provide evalu-
ation for both bbox (B) and mask (M) settings, we believe
that the mask based annotations are more precise and accu-
rate for measuring localization performance. Since both Vi-
sual Genome and ReferIt contain phrases which: a) refer to
very specific regions like ‘red car on corner’ and b) refer to
non-salient objects like ‘white crack in the sidewalk’, both
datasets have low performance with baselines like center and
VGG. Our model outperforms all baselines on ReferIt too,
improving upon the MIL based approach by 5.79%.

Flickr30k Entities
Flickr30k dataset has higher performance across methods as
compared to the other two datasets due to the two points
mentioned in the previous subsection along with the fact that
Flickr30k annotates all bboxes referring to a phrase as op-
posed to the other datasets which only have a one-to-one
phrase-bbox mapping for an image. Our model outperforms
most baselines and is just 1% less than the state-of-art work
of [Ramanishka et al., 2017].

6 Analysis of the Approach
In this section, we examine the effects of changing the hyper-
parameter k (concept batch size), the significance of the two
surrogate losses and the effect of the concepts with which our
model is trained, followed by some qualitative outputs of our
model. All the analysis in the following sections is done on
the Visual Genome dataset.

6.1 Concept Batch Size and Surrogate Loss
We perform ablative studies on the two loss terms and the
concept batch size k and observe certain patterns. For the dis-
cussion in this section, we use the shorthand IC (independent
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Figure 4: Qualitative results of our approach with different image and phrase pairs as input. More results and visual error analysis shown in
the supplementary material on the arxiv version.

concept only), CC (common concept only) and ICC (inde-
pendent and common concept) for the three loss types from
Table 3. We train our model with the IC and CC loss sep-
arately, keeping everything else in the pipeline fixed. For all
three settings, we vary the concept batch size k and observe
some interesting trends. As shown in Table 3, for a fixed loss
type, the performance increases as we increase k, the CC loss
being the exception to this trend. The performance for CC
loss increases up to k = 7, but goes down with k = 9. This
points to a common problem with self-supervised techniques
where the model finds a shortcut to reduce the loss value with-
out improving on the performance. With only the common
concept loss, the network can learn a majority voting mech-
anism such that not all k concept representations need to be
consistent with the common concept. Thus, the network can
easily optimize the proxy objective, but is not forced to learn
a robust grounding for all instances in the concept batch. This
is corroborated with the fact that during training, we also ob-
serve a faster convergence of CC loss for k = 9 than the
other values. This empirically highlights the importance of
the IC loss term. It also highlights the usefulness of the con-
cept batch formulation since it improves performance in gen-
eral. For a fixed k, we also observe an expected pattern. IC
loss usually achieves the least performance out of the three,
with CC loss coming in next. The best performance is ob-
tained with both the losses together.

6.2 Performance Variation Across Concepts
To better understand the variation in performance across the
chosen concepts, we also compute the performance across
each of the 2000 concept classes. We observe a trend in
the performance with concepts like ‘suitcase’, ‘airplanes’
and ‘breakfast’ getting close to 70% accuracy while con-
cepts like ‘screw’, ‘socket’ and ‘doorknob’ getting less than
5%. We investigate two possible causes for this variability.
The first is the average bounding box size associated with
each of these concepts. The second is the existing knowl-
edge of concept labels present in the ImageNet classes which
our model obtains through the VGG16 based visual encoder.
Figure 3 (left) shows the variation of performance with re-
spect to the average bounding box area for each concept. We
observe a strong positive correlation between the two vari-
ables, explaining the lower performance for concepts with

small sizes. For computing the correlation of concept perfor-
mance with the knowledge from ImageNet classes, we use a
trained word2vec model [Mikolov et al., 2013] and compute
the maximum similarity of a particular concept across all the
ImageNet classes. We plot this in Figure 3 (right) which il-
lustrates no noticeable correlation between the two variables.
This further strengthens the case for our approach since we
observe that our concept performance isn’t biased towards the
labels present in ImageNet.

6.3 Improvement Over a Noun-Based Concept
Detector

We also conduct a small experiment to verify that the model
isn’t simply working as a noun-based concept detector instead
of modeling the complete phrase. For this, we replace the full
phrase with a single noun, randomly sampled from the phrase,
as the input to the textual encoder. We note a 4.7% drop in
performance on the Visual Genome dataset for k = 5. Since
training of the original model enforces only concept-level dis-
crimination, it’s interesting to see that the presence of com-
plete phrases is useful for model performance. This shows
that our model is much more than a word-level concept-
detector and utilizes the full phrase for grounding.

6.4 Qualitative Analysis
We show some of our qualitative results on the Visual
Genome dataset in Figure 4 in the form of localization
heatmap from the attention weights for two different phrases
per image. We also show the VGG16 baseline activation
heatmaps. We find that our model does not simply gener-
ate a phrase-independent saliency map, but focuses even on
non-salient regions if the phrase refers to it.

7 Conclusion
We propose a novel approach for visual grounding of phrases
through a self-supervising proxy task formulation. Our qual-
itative and quantitative results point to the fact that many se-
mantic regularities exist in the data which can be exploited
to learn unsupervised representations for a variety of tasks.
Thorough analysis of our model reveals interesting insights
which may be useful for future research efforts in the area.
Using our approach, we achieve state-of-art performance on
multiple datasets.
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