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Abstract

This paper addresses the variation generalized fea-
ture learning problem in unsupervised video-based
person re-identification (re-ID). With advanced
tracking and detection algorithms, large-scale intra-
view positive samples can be easily collected by
assuming that the image frames within the track-
ing sequence belong to the same person. Existing
methods either directly use the intra-view positives
to model cross-view variations or simply minimize
the intra-view variations to capture the invariant
component with some discriminative information
loss. In this paper, we propose a Variation Gen-
eralized Feature Learning (VGFL) method to learn
adaptable feature representation with intra-view
positives. The proposed method can learn a dis-
criminative re-ID model without any manually an-
notated cross-view positive sample pairs. It could
address the unseen testing variations with a nov-
el variation generalized feature learning algorith-
m. In addition, an Adaptability-Discriminability
(AD) fusion method is introduced to learn adapt-
able video-level features. Extensive experiments on
different datasets demonstrate the effectiveness of
the proposed method.

1 Introduction
Person re-identification (re-ID), matching persons across
camera views, is playing an important role in large-scale
surveillance camera networks. When the person is represent-
ed by a video sequence, it is termed as video-based re-ID.
Within this field, supervised learning methods [Deng et al.,
2018] [Chen et al., 2018] [Ye et al., 2019a] have achieved
superior performance with large amount of annotated cross-
view video sequences on different benchmarks. With the
growth of robust visual tracking and detection algorithms, un-
labelled video sequences can be easily obtained. The video
sequence provides abundant intra-view positives by assuming
that the image frames within the tracking sequence belong to
the same person. These characteristics motivate us to inves-
tigate an unsupervised solution for video re-ID task, which
does not require any cross-view(camera) annotated labels.

Sensitive to intra-view variations Discriminative for cross-view matching

 Probe 
images 

gallery
images 

Intra-view invariant Less discriminative

Figure 1: Intra-view invariant features (highlighted in red) are less
discriminative than the variation parts (highlighted in green) for
cross-view re-identification.

A popular approach in unsupervised video re-ID is pseudo-
label estimation [Ye et al., 2017; Liu et al., 2017], i.e., it-
eratively estimate pseudo-labels and refine the model learn-
ing process. However, the performance relies heavily on
a reliable model for initialization. To achieve a reliable
initialized video representation, existing unsupervised fea-
ture learning methods usually extract the invariant compo-
nents to intra-view variations [Khan and Bremond, 2016;
Wu et al., 2018]. However, it may lose discriminative in-
formation for cross-view re-identification as demonstrated in
Fig. 1. Some other methods [Khan and Bremond, 2016] also
directly use the intra-view variant representation for cross-
view re-identification with the assumption that the intra-view
and the cross-view variations are close. However, such an as-
sumption is invalid in practical uncontrolled environments. It
raises a issue about how to utilize the intra-view positive sam-
ples to simultaneously address various cross-view variations
and handle the challenging unseen testing variations.

Inspired by pose-aware person re-identification, a possible
solution is to design a variation-aware framework, in which
multiple variation-specific models (model pool) are learned to
extract the frame-level features. For precise variation-specific
models, a huge number of intra-view variations should be
considered and modeled, which is a very time-consuming. In
this paper, we propose to learn the adaptable feature represen-
tation as shown in Fig. 2, which avoids learning a large model
pool. And it can be generalized from the intra-view variation
to cross-view and unseen testing variation. Specifically, we
propose a novel video variation dictionary learning algorithm
for intra-view variation modeling without using any manu-
al labels. The popular variation dictionary learning methods
usually assume that the variation-free images are available for
all the persons in training stage [Yang et al., 2013]. However,
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Figure 2: The variation generalized feature learning strategy, which
only needs one matching model for all adaptable features.

this assumption is invalid in re-ID task due to unseen testing
person identities with various unseen variations. To address
this issue, a video variation dictionary is proposed to mod-
el the intra-view variation without any variation-free images
for training. Secondly, a generalized variation modeling al-
gorithm is proposed to learn frame level adaptable features,
which guarantees that the learned model can be generalized
to unseen variations. And the video level adaptable features
are obtained by an Adaptability-Discriminability (AD) fusion
of frame level adaptable features.

In summary, the contributions of this work are as follows.
• A variation generalized feature learning method is pro-

posed by modeling intra-view variations. The learned repre-
sentation could simultaneously handle the cross-view varia-
tions and generalize well on unseen testing variations.
• An Adaptability-Discriminability (AD) fusion method is

proposed to generate video level adaptable feature represen-
tations using the learned frame-level adaptable features.

2 Related Works
2.1 Unsupervised Person Re-identification
Early unsupervised image based re-ID methods mainly fo-
cus on designing hand-crafted descriptors. In these works,
the reliable features across frames are extracted to represent
a video, i.e. the stable color region [Farenzena et al., 2010],
the recurrent structured region [Farenzena et al., 2010], the
motion-invariant local body-action features [Liu et al., 2015],
and the invariant subspace [Zhang et al., 2016]. Above meth-
ods extracting the components invariant to intra-view varia-
tions will lose discriminative information as demonstrated in
Fig 1.

To extract discriminative information in an unsupervised
manner, a dictionary learning algorithm with implicit label
mining is proposed [Kodirov et al., 2016]. Along this di-
rection, a label estimation algorithm using reciprocal near-
est neighbor search and negative mining is presented to up-
date the model iteratively [Liu et al., 2017]. Incorporate with
global matching, Ye et al.proposed a dynamic graph match-
ing method to estimate the labels and learn the classification
model iteratively [Ye et al., 2017]. Since the label-estimation-
based learning methods can extract the discriminative infor-
mation only when such information is preserved in video lev-

el features, the adaptable feature can further improve the per-
formance of label-estimation-based methods.

Some other methods adopt auxiliary labeled data for unsu-
pervised domain adaptation and transfer learning [Lv et al.,
2018; Wang et al., 2018b]. Besides, some methods adop-
t Generative Adversarial Network (GAN) to bridge the gap
between source and target domains [Wei et al., 2018] [Deng
et al., 2018]. In comparison, we do not need additional la-
beled data for unsupervised re-ID model learning.

2.2 Variation Dictionary Learning

Variation dictionary learning is a popular intra-class variation
modeling approach for face recognition [Deng et al., 2012]
[Yang et al., 2013] [Ding et al., 2015]. By introducing an
auxiliary intra-class variation dictionary, the samples are rep-
resented by the sum of a target-appearance component and
an intra-class variation component [Deng et al., 2012]. S-
ince the intra-class variations of training data may not be the
same to those of gallery data, the sparse variation dictionary
is adaptive to the gallery set by learning a variation-model
projection [Yang et al., 2013]. To deal with the pose variation
problem, a patch-based transformation dictionary is learned
to connect corresponding patches across poses under the mul-
titask learning scheme [Ding et al., 2015]. The existing varia-
tion dictionary based methods are mainly designed for image
based recognition problem and require a generic set for train-
ing, which make they suboptimal or even inapplicable in our
video-based re-ID problem.

3 Variation Generalized Feature Learning
This section gives a detailed description of the proposed
method. Suppose we have a collection of person image se-
quences

{
Iai,j
}

and
{
Ibi,j
}

, where Iai,j (Ibi,j) refers to jth
frame of person i captured by camera a (b). xcIDi,j is a Nd-
dimension feature vector extracted from image IcIDi,j , i =

1, 2, ..., NcID , cID = {a, b}. For simplification, camera ID
a and b are skipped when all data are captured by the same
camera. Then the feature of image {Ii,j} is denoted as {xi,j},
where i = 1, 2, ..., N , j = 1, 2, ..., Ni.

The proposed framework is shown in Fig. 3. At the train-
ing stage, three main blocks, i.e. variation model, structural
bottleneck and AD estimator, are learned by minimizing the
corresponding three losses. The adaptable component flow
(red part) extracts a frame level adaptable feature, while the
confidence of adaptable flow mines reliability of the frame
level adaptable feature. The outputs of the two flows are then
combined to generate video-level adaptable feature. Note that
the frame level feature extractor is fixed for simplicity. At the
testing stage, the three main blocks are fixed to extract the
feature representations of the input image sequence.

The organization of this section is as follows. Section 3.1
introduces the variation modeling method via video variation
dictionary learning. Section 3.2 introduces the generalized
variation modeling. Section 3.3 introduces the frame level
adaptable feature learning method. And the AD fusion for
video level feature representation is shown in Section 3.4.
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Figure 3: Framework of proposed variation generalized feature
learning, where ⊗ denotes kronecker product, � denotes element-
wise Hadamard product, ⊕ denotes weighted mean,→ denotes the
(frame level) adaptable component flow and → denotes the confi-
dence of adaptable flow. Three training losses in dash line are mini-
mized at training stage.

3.1 Video Variation Dictionary Learning
For the variation dictionary learning, we first introduce the
variation component decomposition of frame level feature
vectors. Following [Deng et al., 2012], the feature vector
of a frame xi,j can be represented by the sum of the person-
specific component xpi , representation of Variation Dictionary
Dv and small dense noise z, i.e.

xi,j = xpi +Dvωvi,j + z (1)

where D̂v =
[
D̂v

1 , D̂
v
2 , ..., D̂

v
ND

]
, each column ofDv models

one particular variation and ω̂vi,j denotes the responses of xi,j
to the variations w.r.t the dictionary.

To learn a sparse variation dictionary D̂v∗, the noise term
z is minimized over all frames, i.e.

arg min
ω̂v

i,j ,D̂
v

∑
i,j

1

2
||xi,j − xpi − D̂

vω̂vi,j ||22 + λ||ω̂vi,j ||1

s.t. ||Dv
k||2 = 1, ∀k

(2)

where || · ||1 denotes `1 norm and λ is the weight of sparsity
regularization term.

Since the person-specific component is usually unknown,
we also estimate it in (2), i.e.

arg min
ω̂v

i,j ,D̂
v,x̂p

i

∑
i,j

1

2
||xi,j − x̂pi − D̂

vω̂vi,j ||22 + λ||ω̂vi,j ||1

s.t. ||Dv
k||2 = 1, ∀k

(3)

The inconsistent components in neighboring frames are
considered as unadaptable features, which should be removed
to handle the random noise. Following [Wang et al., 2014],
we introduce the temporal consistency of variation modelings
across frames to remove the inconsistent components, i.e.

||ω̂v∗i,j1 − ω̂
v∗
i,j2 ||2 < µ2 = (||Ωvi,j1 ||2 + ||Ωvi,j2 ||2)/2

∀j1 ∈ Si,m, j2 ∈ Si,m,m = 1, 2, ...,Mi, ∀i
(4)

where Si,m denotes the set of frames in the mth view-
consistent subsequence. To obtain such subsequences Si,m,

we divide each sequence by employing an off-line change
point detection algorithm [Basseville and Nikiforov, 1993],
which can be solved via expectation-maximization (EM).

Combining constraint (4) with (3), we can estimate the
person-specific component simultaneously, i.e.

min
ωv

i,j ,D
v,xp

i

λ
∑
i,j

||ωvi,j ||1

+
∑
i,j

1

2
||xi,j −

(
xpi +Dvωvi,j

)
||22

s.t. ||Dv
k||2 = 1, ∀k

||ωvi,j1 − ω
v
i,j2 ||2 < µ2, ∀j1, j2 ∈ Si,m, ∀i

(5)

Optimization method to solve (5) can be solved as searching
for minimal reconstruction error with fixed sparsity follow-
ing [Aharon et al., 2006].

3.2 Generalized Variation Modeling
Given the variation modeling in (5), a straightforward method
is to represent the video by an ”invariant” component x̂pi ,
which is also widely used technique in existing methods
[Wang et al., 2014] [McLaughlin et al., 2016]. However, the
person-specific component x̂pi is not ”variation-free” feature
for the cross-view variations and hence may not be discrimi-
native for recognition across different camera views.

Alternatively, we use a set of aligned features
{
xli,j |∀j

}
to

represent a video, which is obtained by sum of the person-
specific component xpi and the variation component repre-
sented by the dictionary Dv∗ learned in (5), i.e.

xli,j = Dv∗ωv∗i,j + xp∗i{
ωv∗i,j , x

p∗
i

}
= arg min

ωv
i,j ,D

v,xp
i

λ
∑
i,j

||ωvi,j ||1

+
∑
i,j

1

2
||xi,j −

(
xpi +Dvωvi,j

)
||22

s.t. ||ωvi,j1 − ω
v
i,j2 ||2 < µ2, ∀j1, j2 ∈ Si,m, ∀i(

ωvi,j
)
k
≥ 0, ∀k

(6)

In (6), the components w.r.t. unseen variations are removed
from the aligned feature as the reconstruction error.

To generalize the feature representation to unseen varia-
tions, we formulate it as a variation-specific domain gener-
alization problem, where a variation-specific domain means
a particular variation. In this manner, the learned model in
training domains can be generalized to testing domains with
unseen variations. In the following part, we will propose an
adaptable matching method, in which the variation modeling
is employed to construct the domains.

To deal with the large intra-view variations, we de-
fine variation feature sets using aligned feature vectors
under the same variation condition, i.e. feature vectors
xli1,j1 and xli2,j2 belong to the same variation feature set

when ωv∗i1,j1 = ωv∗i2,j2 . Let Ω =
(
ωa,v∗i,j , ωb,v∗i′,j′

)
denote

the variation condition of a image pair
(
xa,li,j , x

b,l
i′,j′

)
, and
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∆Ω =
{(
xa,li,j , x

b,l
i′,j′

)
|
(
ωa,v∗i,j , ωb,v∗i′,j′

)
= Ω

}
denotes a do-

main w.r.t. Ω. When the domain adaptable model fΩ is
learned, matching score of the pair

(
xa,li,j , x

b,l
i′,j′

)
is given by

fΩ

(
xa,li,j , x

b,l
i′,j′

)
. Our goal is to learn domain adaptable mod-

els {fΩ} for different variation domains.
Due to the huge number of potential adaptable matching

models, it is impossible to learn all the matching models one
by one. To estimate such a large number of matching mod-
els efficiently, we assume that similar domains share similar
matching models i.e.,

λΩ1,Ω2 ||fΩ1 − fΩ2 || < Cf (7)
where fΩi , i = 1, 2 denotes the matching models on varia-
tion domains ∆Ω1

and ∆Ω2
. λΩ1,Ω2

denotes the similarity
between domains ∆Ω1

and ∆Ω2
, and Cf is a positive number

measuring the cross-domain recognition model dependency.
For simplicity, the average correlation between two pairs of
variation factors is employed to measure the domain similar-
ity, i.e.

λΩ1,Ω2 =
(
ωa,v∗i1,j1

)T
ωa,v∗i2,j2

+
(
ωb,v∗i′1,j

′
1

)T
ωb,v∗i′2,j

′
2

s.t. Ω1 =
(
ωa,v∗i1,j1

, ωb,v∗i′1,j
′
1

)
,Ω2 =

(
ωa,v∗i2,j2

, ωb,v∗i′2,j
′
2

)
,

(8)

Let {ek} denotes the ND-dimensional standard basis vec-
tor set. According to (7), fen1

and fen2
are uncorrelated while

all the matching models are correlated to the basis models
{fen}. So we use the basis domains {∆ek} as source domains
and represent matching models for all the other domains us-
ing the basis models. A matching model f∗Ω for domain ∆Ω

can be estimated by minimizing the average matching model
differences in (7) to the source domains, i.e.

f∗Ω = arg min
fΩ

∑
λΩ,en ||fΩ − fen || (9)

According to (9), the adaptable model set {fΩ} can be esti-
mated when the basis models {fen} are obtained. Note that
the number of basis models depend on the type of variations.
When multiple types of variations occur simultaneously, the
variation dictionary can contain over 100 atoms [Yang et al.,
2013]. So it is still difficult to learn all the basis models espe-
cially when multiple types of variations occur. Therefore, op-
timizing (9) is impractical for complicated environment with
various variations.

3.3 Frame Level Adaptable Feature Learning
To address above issue, a frame level adaptable feature learn-
ing method will be proposed in the section as an efficient so-
lution for generalized variation modeling rather than multiple
matching models under a mild assumption. We transfer the
complicated adaptable matching model learning problem to
be an adaptable feature learning problem. Let ŝli,j,i′,j′ denote

the matching score of a feature vector pair
(
xa,li,j , x

b,l
i′,j′

)
given

by domain adaptable model fΩ. When we estimate the adapt-
able feature representation of xa,li,j , xb,li′,j′ is skipped for sim-
ple denotation of the matching score, i.e. the matching score
ŝli,j,i′,j′ = fΩ

(
xa,li,j , x

b,l
i′,j′

)
is simplified as ŝli,j = fΩ

(
xa,li,j

)
.

When {fΩ} are linear model and ||fΩ − fen || = ||fΩ −
fen ||22, we obtain fΩ =

∑
k λΩ,enfen/||Ω||1 by solving (9).

The domain specific matching score ŝli,j,i′,j′ for an aligned
feature pair

(
xli,j , x

l
i′,j′

)
is given by the weighted linear com-

bination of the scores from basis models, i.e.

ŝli,j =
∑
n

(
ωvi,j
)
n
fTenx

l
i,j/||ω||1

=Tr
(
F · ωvi,j

(
xli,j
)T)

/||ωvi,j ||1
(10)

where F =
[
fe1 , fe2 , ..., feDn

]
is the summarized recogni-

tion model matrix and Tr (·) denotes the trace of input matrix.
The multiple adaptable classification problem is trans-

ferred to be a single domain classification problem on high di-
mensional feature space xli,j

(
ωvi,j
)T

in (10). However, such
a high dimensional classifier F is usually noisy and unreli-
able when the labeled training data are limited. Therefore, we
reduce the dimension of feature ωvi,j

(
xli,j
)T

to reduce com-
putational cost of recognition model F .

It is reasonable to assume that there exists invariant struc-
ture in person re-ID. Therefore, we propose to utilize the sim-
ilarity between models

{
fTen
}

to improve model learning. So

feature ωvi,j
(
xli,j
)T

cannot be directly vectorized for dimen-
sion reduction until common part between

{
fTen
}

is removed.
To maintain the common part after dimension reduction, we
decompose the basis model fen into a universal component
f0 and a domain specific component fδen , i.e. fn = f0 + fδn.
Dimension reduction will be conducted only on the domain
specific component. The recognition score ŝli,j in (10) can be
represented by the sum of score from the universal compo-
nent and the domain specific components, i.e.

ŝli,j = fT0 x
l
i,j + Tr

(
F δ · ωvi,j

(
xli,j
)T)

/||ωvi,j ||1 (11)

where F δ =
[
fδe1 , f

δ
e2 , ..., f

δ
eDn

]
is the summarized domain

specific model matrix.
According to (11), F is decomposed into a low-

dimensional common part f0 and a domain specific part F δ .
So the dimension of feature ωvi,j

(
xli,j
)T

can be reduced af-
ter vectorization. Here we employ 1D Principal Component
Analysis (PCA) on the vectorization of xli,j

(
ωvi,j
)T

for its
simplicity.

Let xdri,j denote the reduced feature of ωvi,j
(
xli,j
)T

and Fdr
denote the counterpart of Fδ , the summarized score sli,j can
be estimated as follows.

sli,j =
(
FTdr fT0

)( xdri,j/||ωvi,j ||1
xli,j

)
+ δdr (12)

where δdr is a small number, denoting the error derived from
dimension reduction. From (12), the adaptable feature xai,j is
given by the concatenation of the weighted reduced feature
xdri,j/||ωvi,j ||1 and the aligned feature xli,j , i.e.

xai,j =

(
xdri,j/||ωvi,j ||1

xli,j

)
s.t. xdri,j = PPCA

(
ωvi,j ⊗ xli,j

)T (13)
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where ⊗ denotes the Kronecker product and PPCA denotes
the projection matrix of PCA.

Note that above adaptable feature estimation method is giv-
en under the linear classifier assumption. It can be easily fur-
ther extended to the non-linear cases by utilizing Taylor series
of classification model and introducing higher order statistics
in (10).

3.4 Adapatability-Discriminative Fusion
Following weighted sum-rule fusion scheme, we estimate the
Adapatability-Discriminative (AD) index and propose a fea-
ture level fusion method to combine adaptable frame-level
features for video representation. The video based adaptable
feature vector savi is given by the weighted sum of the frame
level adaptable feature vectors

{
xai,j
}

, i.e.

xavi =
∑
j

ρi,jx
a
i,j (14)

where ρi,j is the AD index to be optimized in the following.
Since the reconstruction error of the dictionary measures

the magnitude of unadaptable features and the variation com-
ponent measures the magnitude of adaptable features, they
both indicate the reliability of the adaptable feature. Thus, we
introduce the adaptability feature vector εi,j as the concatena-
tion of the reconstruction error and the variation component,
i.e.

εi,j =
(
(xi,j − xp∗i −D

v∗ωv∗i,j)
T (Dv∗ωv∗i,j)

T
)

(15)

It is reasonable to assume that the elements of the adapt-
ability component may not be equally discriminative. There-
fore, we learn discriminative weights to approximate a dis-
criminability measure for the AD index. Inspired by Fisher’s
linear discriminant, we define the discriminability measure by
the ratio ρd,cIDi,j of standard deviation between false matching
images (inter-class) and correct matching images (intra-class)
to represent the discriminability, i.e.

ρd,cIDi,j =
N
c′ID
i

∑
i′ 6=i,j′ d

(
xcIDi,j , x

c′ID
i′,j′

)
{∑

i′ 6=iN
c′ID
i′

}{∑
j′ d
(
xcIDi,j , x

c′ID
i,j′

)} (16)

where c′ID 6= cID and d (·, ·) denotes a distance function
between the two input vectors. The false matching and the
correct matching image pairs are estimated by a pre-learned
matching model [Ye et al., 2017]. To approximate the dis-
criminability measure ρdi,j , we formulate the learning prob-
lem by linear regression on the adaptability component, i.e.

α∗ = arg min
α
||αT εi,j − ρdi,j ||22 + λα||α||1 (17)

where λα is the weight of regularization term and it is set to
be 1 in our experiments.

With the learned weight vector α∗, the AD index is deter-
mined as the linear combination of elements in xpi,j and εi,j
using weight α∗ learned in (17), i.e.

ρi,j = εTi,jα
∗ (18)

Dataset iLIDS-VID PRID-2011
Rank R=1 R=5 R=10 R=1 R=5 R=10

FAF+AD 50.33 78.50 87.83 82.02 96.07 98.88
FAF+Min 48.17 76.00 85.17 79.78 97.19 98.88
FAF+Avg 47.50 75.67 85.17 79.21 97.19 98.88
B + Min 47.17 73.83 84.00 76.40 93.82 97.19
B + Avg 44.83 73.00 82.67 79.21 94.94 98.88

Table 1: Top r ranked matching rate (%) with/without Frame level
Adaptable Feature learning (FAF) and AD fusion (AD). B: Baseline.
Red indicates the best performance while blue for second best.

Dataset iLIDS-VID PRID-2011
Rank R=1 R=5 R=10 R=1 R=5 R=10
Iter 0 44.83 73.00 82.67 79.21 94.94 98.88
Iter 1 50.67 78.33 87.33 81.46 96.07 98.88

Iter 10 50.33 78.83 87.67 81.46 96.07 98.88
Mean 50.62 78.67 87.75 81.52 96.07 98.88
Min 50.33 78.50 87.83 82.02 96.07 98.88

Table 2: Top r ranked accuracy (%) at different iterations. ”Mean”
represents the mean accuracy over 10 iterations. ”Min” represents
the accuracy with the minimum training loss over 10 iterations.

4 Experiment
4.1 Datasets and Settings
Datasets. We evaluate our method on three datasets, i.e.,
the iLIDS-VID dataset [Wang et al., 2014], the PRID 2011
dataset [Hirzer et al., 2011], the MARS dataset [Zheng et al.,
2016]. iLIDS-VID was captured by a multi-camera surveil-
lance camera network at an airport arrival hall. It contains
300 person image sequences under each of the two camer-
a views. The PRID-2011 dataset consists of person image
sequences recorded from two static surveillance cameras out-
door. Following [Wang et al., 2014], person video pairs with
more than 27 frames are employed in the experiment. MARS
dataset is a large-scale dataset captured by six cameras. It
contains 20,715 different image sequences of 1261 persons.

Feature extraction. We employ a hand-crafted Local Max-
imal Occurrence (LOMO) feature [Liao et al., 2015] fo t-
wo small datasets (PRID-2011 and iLIDS-VID) and a deep
Multiple Granularities Network (MGN) feature [Wang et al.,
2018a] for the large-scale MARS dataset for evaluation. The
LOMO feature analyzes the horizontal occurrence of local
feature, while the MGN feature is extracted from a multi-
branch deep network architecture with both global and local
feature branches. In our proposed method, pseudo-labels are
estimated following [Ye et al., 2017] for training MGN.

Classifier. For the hand-crafted feature, a state-of-the-art
unsupervised re-ID learning method, i.e. DGM [Ye et al.,
2017], is employed to learn the classification model in the
scheme of unsupervised learning. For deep feature, we em-
ploy Euclidean distance following [Wang et al., 2018a].

Evaluation protocol. For iLIDS-VID and PRID-2011
datasets, the sequence pairs are randomly separated into half
for training and the other half for testing. For MARS dataset,
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Dataset iLIDS-VID PRID2011 MARS
Rank R=1 R=5 R=10 R=1 R=5 R=10 R=1 R=5 R=10 mAP

GRDL [Kodirov et al., 2016] 25.7 49.9 63.2 41.6 76.4 84.6 19.3 33.2 41.6 9.6
UnKISS [Khan and Bremond, 2016] 35.9 63.3 74.9 58.1 81.9 89.6 22.3 37.4 47.2 10.6
SMP [Liu et al., 2017] 41.7 66.3 74.1 80.9 93.3 97.8 23.6 35.8 44.9 10.5
DGM [Ye et al., 2017] 44.8 73.0 82.7 79.2 94.9 98.9 24.6 42.6 50.4 11.8
TAUDL [Li et al., 2018] 26.7 51.3 82.0 49.4 78.7 98.9 43.8 59.9 - 29.1
DGM+ + IDE [Ye et al., 2019b] 38.6 64.2 74.6 62.7 90.8 96.0 48.1 64.7 71.1 29.2
VGFL 50.3 78.5 87.8 82.0 96.1 98.9 51.7 68.2 75.3 32.6

Table 3: Top r rank matching rate (%) and mAP (%)comparing with state-of-the-art unsupervised video-based person re-ID methods on
three datasets.

the training and the testing separation follows the protocol
suggested in [Zheng et al., 2016]. The results are shown in
Cumulated Matching Characteristics (CMC) curves. For e-
valuation in MARS dataset, mAP (mean average precision)
value are also reported following [Zheng et al., 2016]. For
stable statistical results, the experiments was repeated 10
times and the mean accuracy is reported.
Implementation. 10 iterations are conducted with λ = 0.5
in DGM for all three datasets following [Ye et al., 2017]. We
set tmax,1 = 1 for efficiency. λ = 1, λα = 1. The dimension
of xdri,j is set to be the same as xi,j . For iLIDS-VID and PRID-
2011 datasets, the subsequences {Si,m} are estimated follow
[Basseville and Nikiforov, 1993]. For MARS, each tracking
sequence is considered as a subsequence.

4.2 Self Evaluation
Effectiveness of each component. This part evaluates the
effectiveness of frame level adaptable feature representation
and the AD fusion, as shown Table 1. To evaluate the frame
level adaptable feature (FAF, xdri,j), we compare it with the
original feature vectors (Baseline, xi,j ) with min/mean pool-
ing. We observe that it achieves much better and stable per-
formance than baseline feature representation. In addition,
we also compare with the set-based distance by calculating
the minimum (Min) and mean (Avg) of the frame-to-frame
distances. The consistent improvements on two datasets
demonstrate the effectiveness of the proposed AD fusion.
Iterative updating. We also report the performance at d-
ifferent iterations on PRID-2011 and iLIDS-VID datasets in
Table 2. We observe that the iterative updating process im-
proves the performance significantly on both datasets. And
the performance is converged with less than 10 iterations.
Dictionary size. We also plot the rank-1 accuracy with d-
ifferent dictionary sizes on the PRID-2011 and iLIDS-VID
datasets as shown in Fig. 4. According to the experimental
results on two datasets, we find that the larger dictionary usu-
ally produces higher performance, especially on challenging
iLIDS-VID dataset. However, larger dictionary size means
higher computational cost in both training and test stage. For
the efficiency considerations and avoid over-fitting, the dic-
tionary size is set to 100 in all the experiments.

4.3 Comparison with the State-of-the-arts
Six state-of-the-art unsupervised multi-shot/video based per-
son re-identification methods namely GRDL [Kodirov et al.,
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Figure 4: Rank-1 accuracy (%) of the proposed method with differ-
ent dictionary sizes on PRID-2011 and iLIDS-VID datasets.

2016], UnKISS [Khan and Bremond, 2016], SMP [Liu et al.,
2017], DGM [Ye et al., 2017], DGM+ [Ye et al., 2019b] and
TAUDL [Li et al., 2018], are used for comparison. LOMO
feature and MGN feature are employed on small-scale and
large-scale datasets, respectively. The top-r matching accu-
racies and mAP on three datasets are shown in Table 3.

For the results on iLIDS-VID dataset, we can see that
the proposed method achieves the best rank-1 accuracy and
5.5% improvement is achieved compare to the state-of-the-
art methods. Similar trends can be observed in experimen-
tal results in PRID-2011 and MARS datasets. Note that the
adaptable feature learning and AD fusion can be conducted
on more advanced features to achieve better performance.

5 Conclusion
In this paper, we propose a variation generalized feature
learning method for unsupervised video based person re-
identification. Rather than minimizing the intra-view varia-
tions in existing methods, we propose to adapt the intra-view
variations to unseen testing variations. Specifically, frame
level adaptable feature is learned via domain adaptation and
video variation dictionary learning. The video level adaptable
feature is then estimated using AD fusion, which achieves
much better performance than the widely used mean/min
pooling strategy. Experimental results on three public per-
son re-identification datasets show that the proposed method
achieve better performance than existing methods.
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