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Abstract

Scene flow estimation in the dynamic scene re-
mains a challenging task. Computing scene flow
by a combination of 2D optical flow and depth
has shown to be considerably faster with accept-
able performance. In this work, we present a uni-
fied framework for joint unsupervised learning of
stereo depth and optical flow with explicit local
rigidity to estimate scene flow. We estimate camera
motion directly by a Perspective-n-Point method
from the optical flow and depth predictions, with
RANSAC outlier rejection scheme. In order to dis-
ambiguate the object motion and the camera mo-
tion in the scene, we distinguish the rigid region by
the re-project error and the photometric similarity.
By joint learning with the local rigidity, both depth
and optical networks can be refined. This frame-
work boosts all four tasks: depth, optical flow,
camera motion estimation, and object motion seg-
mentation. Through the evaluation on the KITTI
benchmark, we show that the proposed framework
achieves state-of-the-art results amongst unsuper-
vised methods. Our models and code are available
at https://github.com/lliuz/unrigidflow.

1

Scene flow, as well as the dense 3D motion filed, is a fun-
damental description of a dynamic scene, which can be ap-
plied in numerous potential applications, such as autonomous
navigation [Jaimez et al., 2017], dynamic scene reconstruc-
tion [Newcombe er al., 2015], and video analysis [Lv et al.,
2018]. However, traditional methods for directly estimating
scene flow are typically computationally expensive due to the
complexity of the optimization, which limits practical usage.

To improve the efficiency, Many works are proposed to
compute scene flow by a combination of 2D optical flow and
depth [Quiroga ef al., 2014; Lv et al., 2018]. Benefiting from
the development of deep learning, many learning-based meth-
ods to estimate depth [Eigen er al., 2014; Chang and Chen,
2018] and optical flow [Sun et al., 2018; Ilg et al., 2017]
achieve impressive results, whereas those methods heavily
depend on the ground truth. Starting with [Zhou er al., 2017]
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(a) Disparity map (b) Optical flow
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Figure 1: Predictions by our method on KITTI 2015. We compared
two method to segment non-rigidity (moving) region in the scene.
(e) is obtained by thresholding on the non-rigid residual, and (f) is
obtained by a novel method which compare the optical flow and rigid
flow from the image similarity.

proposed a novel approach for unsupervised learning of both
depth and ego-motion, various unsupervised methods for vi-
sual geometric estimation emerged, which using view synthe-
sis as supervision by the underlying geometric relations [Go-
dard et al., 2017; Meister et al., 2018].

Although unsupervised methods are able to estimate opti-
cal flow or stereo depth separately, there are still some chal-
lenges. One of the most critical issues in unsupervised ge-
ometric learning is that the correspondences in vision syn-
thesis are ambiguous. There are more than one points in the
source image that match with the same point in target image
which can all minimize the photometric loss, especially in
the texture-less region or area with repeating patterns. To re-
duce the ambiguity, a smooth regularization term like the one
used in [Zhou er al., 2017] is necessary. However, the smooth
regularization yields inconsistent results on the boundary
of objects. Though the later works [Yin and Shi, 2018;
Wang et al., 2018b] used edge-aware smooth loss, the prob-
lem still exists. In addition, there might be no point corre-
spondence in the occlusion or non-rigid region, which affects
the accuracy and stability of training. Therefore, distinguish-
ing static areas is crucial for unsupervised geometric learning.

In this paper, we focus on scene flow estimation by decou-
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pling into two tasks: depth and optical flow estimation. A
brief example of our results is shown in Figure 1. Following
the methods of unsupervised depth [Godard er al., 2017] and
unsupervised optical flow [Wang et al., 2018b], we further to-
wards exploiting the characteristics of unsupervised geomet-
ric learning and fusing with the intrinsic relationship between
depth and optical flow to obtain a more accurate estimation.
More specifically, we first estimate the camera motion in
a dynamic scene from the optical flow and depth predictions
through an interpretable optimization method. In contrast to
many prior works which assumes the pose is known [Basha
et al., 2013], or estimate an initial pose followed by refine-
ment with optimization [Lv er al., 2018], or estimated by a
traditional feature-based method [Jaimez et al., 2017], our
method is more concise and compact which leads to a much
improved pose estimation with insignificant runtime. Then,
we introduce a novel method to fuse depth and optical flow to
obtain the rigidity segmentation which we represent as a bi-
nary mask with the static scene masked as rigid. Unlike other
methods estimated the rigidity by thresholding on the resid-
ual of optical flow and rigid flow, which is suffering from the
inconsistent in the boundary as the smooth regularization, as
shown in Figure 1 (e). our method infers per-pixel rigidity by
image produce a more precise segmentation, as shown in Fig-
ure 1 (f). Finally, we incorporate the rigidity mask into joint
training of depth and optical flow leading a state-of-the-art
performance in unsupervised scene flow estimation.

2 Related Work

Scene flow describes dense 3D motion in dynamic scenes.
Since [Vedula et al., 1999] proposed a method to compute
3D motion fields from multi-view image sequences as a vari-
ational problem. The task of scene flow estimation has
often been formulated as a single variational problem and
solved using optimization methods [Valgaerts et al., 2010;
Basha et al., 2013]. These methods are computationally ex-
pensive which are inappropriate for application. Recent work
computing scene flow from a combination of depth and 2D
optical flow have shown to be considerably faster with com-
parable performance. [Quiroga et al., 2014] exploits the local
and piece-wise rigidity to estimate scene flow with an RGB-
D sensor and 6-DoF transforms. All these methods require
off-the-shelf depth map with rigidity as a prior. We show that
the depth and flow can be estimated from images by learning
models to reconstruct the scene flow.

Learning based methods have shown the capability of es-
timating the necessary scene geometry for scene flow esti-
mation. Typical supervised learning approaches have made
great progress in various tasks such as stereo depth [Chang
and Chen, 2018], monocular depth [Eigen et al., 20141, opti-
cal flow [Sun er al., 2018; Ilg et al., 20171, camera ego-motion
estimation [Wang er al., 2018al.

While supervised learning can reach excellent perfor-
mance, the ground truth is hard to acquire in real-world set-
tings, which limits its applicability. To alleviates the diffi-
culty of collecting data for training, an alternative solution
is unsupervised learning. [Zhou et al., 2017] proposed a
novel approach for learning of depth and ego-motion by self-
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supervised a photometric loss on the reconstructed image by
view synthesis, several unsupervised methods for visual geo-
metric estimation have been proposed. [Godard et al., 2017]
introduced a left-right consistency loss for training stereo
depth from a single image. [Meister et al., 2018] first intro-
duced an unsupervised optical flow estimation method with a
bidirectional census loss, and [Wang er al., 2018b] improved
the accuracy by handling the occlusions with a process simi-
lar to bilinear interpolation.

Most of the above methods rely on a rigid scene assump-
tion, which will be corrupted by moving objects in the scene.
Especially for the scene flow estimation task, it is crucial to
distinguish the region in a scene into rigid and non-rigid. The
framework we introduced can explicitly deal with the object
motion by fusing the local rigidity with unsupervised learn-
ing. A similar strategy is used in previous works. [Jaimez
et al., 2017] segment the piecewise-rigid scene by geometric
clusters with an RGB-D odometry algorithm. [Wulff et al.,
2017] segment scene and refine the optical flow in the static
region with a plane+parallax method. [Lv et al., 2018] su-
pervised train a network to predict the rigidity segments for
scene flow estimation. However these methods unable to gen-
eralization to unsupervised learning.

Our work is inspired from some recent works in terms
of unsupervised learning of scene flow and rigidity reason-
ing [Yin and Shi, 2018; Lee and Fowlkes, 2018; Wang et
al., 2018c], but mainly differs in several ways: (1) Instead
of training an additional pose network, we explicitly estimate
the camera motion from the predictions of depth and opti-
cal flow through an interpretable optimization method, which
is more compact for scene flow estimation. (2) We digging
into the characteristics of unsupervised geometric learning
and fusing with the intrinsic relationship between depth and
optical flow to estimate a more accurate rigidity masks (3)
The joint training framework integration with local rigidity
can consistently improve the results of all subtasks.

3 Method

We focus on solving for the scene flow in the physical
scene observed from a moving camera. Figure 2 presents an
overview of our unsupervised joint learning pipeline. In the
following, we will describe specific components in details.

3.1 Unsupervised Depth and Optical Flow

The key idea of most unsupervised depth or flow estimation
methods are designed to implicitly minimize the differences
between the reconstructed image I and the original image I.
The objective can be formulated by

L£(©)~p (i(@),I)

where p (.) is a measure of similarity between pixels, and the

image I is reconstructed by view synthesis with the learnable
parameters of the model ©.

Given a source image, view synthesis uses the scene geom-
etry to synthesize a new image in a different point of view. In
terms of unsupervised optical flow, the image icanbe synthe-
sized by predicted flow field F}, _,;,. The frame it is inverse

(D
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Figure 2: Flowchart of our proposed method. There are two feed-forward networks to predict the depth and optical flow in our approach. The
ego-motion is subsequently estimated by an optimization method. Then we compute the rigid flow from the depth prediction and ego-motion,
and the rigidity segmentation is estimated from rigid flow and optical with the raw image. Finally, we incorporate the rigidity mask into the

joint training of depth and optical flow.

warping from the frame I, by

L(p) =L1(p+ Fiy e (P)) (2

where p is the pixel coordinates. Note that the projected im-
age coordinates are continuous values, bilinear interpolation
is required for warping operation [Jaderberg er al., 2015].

In terms of unsupervised stereo depth, the network is
trained to predict the disparity of a stereo image pair. The
estimated disparity map can be used to synthesize one view
of the stereo image pair from another view, which is similar
to the optical flow scenario, except that the correspondences
are horizontally aligned by the epipolar constraint. The dis-
parity map can be converted into scaled metric depth D with
known focal length and the baseline between cameras.

Supervision with view synthesis suffers from the illumina-
tion changes, correspondences ambiguity in the texture-less
or homogeneous region. To handle these issue, robust similar-
ity measurement and auxiliary regularization terms are neces-
sary. The overall loss function and the network architecture
are described in Section 3.4.

3.2 Pose Estimation from Depth and Optical Flow

Let p; € R? be the coordinates of a pixel in the image I; from
a moving camera, and K denote the known camera intrinsics.
Given the estimated depth D;(p;), we can back-project p;
into 3D camera coordinates by perspective project model':

x; = Dy(p) K~ 'py 3)

The corresponding 2D projection of the point x; on the
image I, can be induced by the optical flow

Pi+1 = Pt + Fiy 1, (Pt) )

Let Ty 411 = [R[t] € R3** be the 6-DOF pose of the
camera at time ¢ 4+ 1 with respect to time ¢ in the form of its
rotation and translation. The projection of the 3D point x; on
the image plane of I;; can be formulated as

Pitr1 =K1 1%
=KT; +11D; (pt) K™'p, 5)

!"The conversions between Homogeneous and Cartesian coordi-
nates in this paper are omitted for notation brevity.
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We know the projection of 3D points in the scene pP;i1
by the depth D,, and the corresponding 2D projections p;41
by the optical flow Fi,_,;,. The goal is to estimate the
camera motion. We solve this problem by a Perspective-
n-Point (PnP) with random sample consensus (RANSAC)
method [Fischler and Bolles, 1981]. The objective is the sum
of euclidean distances between the projection of 3D points
and the image points obtained by the optical flow.

E :Zsz ||f’t+1 - pt+1H
:ZQ ||KTt%t+1Xt - (6)

where () is the set of inlier correspondences in which the
points should lie in the rigid region. Though segment the rigid
region from a dynamic scene is a challenging task, thanks to
the redundancy from dense predictions, RANSAC performs
well to screen out enough inlier correspondences by a thresh-
old 6; of re-project distance.

Since there are a large number of 2D-3D correspondences
provides this estimation with redundancy, we sample the
depth and flow before the optimization. We first remove all
the points with uncertain depth value follow the crop scheme
in [Eigen et al., 2014]. Then we uniformly sample the cor-
respondences with a stride of 16 in the image plane, which
helps to solve the optimization more efficiently and numer-
ically stable. We adopt the Direct Linear Transform with
Levenberg-Marquardt optimization to find such a pose that
minimizes the re-projection error.

Pt+1||

3.3 Exploiting Rigidity for Joint Leaning
When a point p in a scene remains stationary, the optical flow
is purely induced by the camera motion and is referred as the
rigid flow

Ft1_>t2 (Pt) = Pe41 — Pt (7
which describes the motion of a rigid scene projected onto
the image plane. On the contrary, the non-rigid residual that
describes the motion of the object onto the image plane can
be computed by
Frzg

t1—to

Fnon

t1—ta T

(®)

From another perspective, the non-rigid residual is the re-
projection distance mentioned in Equation (6). It can be used

Ft1*>t2
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to obtain the rigidity region in a dynamic scene, as the value
of the re-projection distance should be small in the static area
and vice versa. This strategy has been used to segment the
rigidity region by a threshold [Yin and Shi, 2018]. When the
optical flow and rigid flow are obtained from the ground truth,
it even can be used as a measurement for supervised motion
segmentation task [Lv ef al., 2018]. We denote the rigid re-
gion segmented by thresholding as

=W (8%l <9

t1—1t2
where [1] is an Iverson bracket, e is the threshold.

However, we argue that the predictions in the unsuper-
vised scenario are not accurate enough to directly compute
the rigidity. As demonstrated in Figure 3, optical flow around
the boundary of moving objects are affected by the flow in the
background due to the smooth regularization term. A larger
threshold tends to miss the motion area and smaller leads to
more False Positive.

We propose to estimate the rigidity region by converting
flow into the image space, in which we measure the optical
flow and rigid flow by inverse warping in Equation (2) to ob-
tain the reconstructed image Iort and Iri9 respectively, and
measure the pixel-wise similarity with a weighted sum be-
tween SSIM-based loss and /; loss to form the corresponding
error maps E°P* and E"%

. 1—ssmm(1,1
p(L1) = a%
where « is set to 0.85 and the rigidity segmentation can be
obtained by

R = [1] (g(E™) — g(E*") < 65) (11)

where ¢(.) is Gaussian blur with radius 5 to reduce the noise.
We follow a basic assumption that most areas of scene are
static, so s is set to the 80-th percentile of E°P¢,

In addition, optical flow in the occlusion area is meaning-
less, where the correspondence point in the next frame does
not exist. We follow the occlusion estimation method pro-
posed in [Wang et al., 2018b], which estimate the occlusion
map R°¢¢ from the backward flow, by counting the contri-
butions of each pixel in the bilinear interpretation of inverse
warp. The final local rigidity R™% is a union of RP" and R°°°.

()]

+ﬂ—a”ﬁ—w1 (10)

3.4 Network Architecture and Loss Functions

The first stage to infer scene layout is made up of two sub-
networks, i.e. the flow network and the depth network. The
former is based on the PWC-Net [Sun ez al., 2018], a recently
proposed network that achieves excellent performance in su-
pervised learning of optical flow tasks. Especially, we replace
all deconvolutional layers by bilinear upsampling.

As for the depth network, we implement both monocular
and stereo networks. For the monocular scenario, we follow
the structure introduced in [Godard et al., 2017], which adopt
ResNet as the backbone with an encoder-decoder architec-
ture. For the stereo scenario, we half the output channel of
the flow network to predict the offset of a single channel.

The unsupervised loss in our framework is a combination
of depth and optical flow. Here we briefly describe the loss
functions that we used in our framework for unsupervised
training.
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Figure 3: A failure case of motion segmentation by non-rigid resid-
uals. (a) and (c) are segmented by R'" with different threshold, and
(e) is segmented by RP". The second column is the error maps of
fused optical flow respectively. (a) fails to segment the moving ob-
ject with a proper threshold, which leads to a huge error in (b). With
a smaller threshold, (c) can find the moving region while brings more
False Positives. Although the error of False Positive is slight, it will
accumulate seriously. (e) performs well to segment the moving ob-
jects and brings a small number of false positive.

Flow Photometric Loss. The photometric loss is computed
in the non-occlusion region only. We adopt the same mea-
surement in Equation (10) to compute the loss

1 Z(l — R°°%)p (iopt’ I)

Z 1 — Rocc
Flow Smooth Loss. In order to alleviate the effect of
smooth regularization, the smooth loss is computed in the
moving region only. We follow the previous works that use
an edge-aware 2nd smooth loss

L =357 (1= R79) [|VAF, gy ||, e Vel

Pt dex,y

Stereo Depth Loss.
[Godard et al., 2017].

Rigid Consistency Loss. In the static region, the rigid flow
that considered both 3D-2D and 2D-2D correspondences is
more accurate than the optical flow predictions. The rigid
consistency loss to guide optical flow is formed as follow

L opt _

The stereo loss L, is the same as in

LCZE:HWHE_W-JﬁﬂQl
Pt
Note that the gradient for F}"%,, should be blocked.

Rigid Photometric Loss. The rigid flow is computed by the
depth prediction which can accurately describe the 2D motion
in the static region. The photometric loss on rigid flow can
provide another point of view for depth estimation.

1 Tig Jrig
Z Rrig Z R p (I ’ I)
Final Loss. In summary, the final loss function becomes a

weighted sum of the above terms at multiple scales
Lan =D LT+ X LP 4 XaLa + ALy + AL

rig __
L=

where A\ denotes the weight for each part and 7 indexes the
layer of output pyramid.
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Figure 4: Qualitative visualization. Examples of predicted stereo disparity, optical flow and motion masks by our method on KITTI 2015.

Black pixels in error maps indicate missing ground truth.
4 Experiments

4.1 Data

We evaluate our method on the KITTI benchmark suite. More
specifically, scene flow is evaluated on the KITTI 2015 scene
flow benchmark, which contains disparity, optical flow and
motion segmentation. In addition, we evaluate the optical
flow on the KITTI 2012 stereo flow benchmark [Geiger et al.,
2012] as well, in which the camera keeps stationary [Menze
and Geiger, 2015]. We adopt the images from the KITTI raw
dataset [Geiger et al., 2013] for unsupervised training depth
and flow models without using any ground truth of depth and
optical flow. Since the KITTI raw dataset contains some sam-
ples from the validation set, we filtered all the scenes that ap-
peared in the validation before training. Especially, Camera
motion task is trained and evaluated on the KITTI odometry
benchmark which is a subset of raw data.

4.2 Implementation Details

We implemented all learnable parts in PyTorch [Paszke et
al., 2017].  All models are trained with the Adam opti-
mizer [Kingma and Ba, 2015] with 8; = 0.9, S = 0.99,
batch size of 4. We resize the images to 256 x 832 and data
augmentation including random flip and time swap is used.
Unlike most optical flow estimation learning methods that
require pre-training on multiple datasets, our approach can
be trained from scratch. The training in our method contains
two stages. In the first stage, we train the depth model and
flow model with the loss weights A; = 80, \y = 1, A\, = 0,
Ac = 0. The initial learning rate is 10~%, and divided by 2 ev-
ery 100k iterations, finishing at 300k iterations. In this stage,
L, and L7 are discarded as the rigid mask is not accurate
enough to guide the training. By discarding these two losses,
the optimizations of the depth model and flow are completely
independent, so these two models can be trained separately.
In the second stage, we fine-tune the models with the best
validation accuracy in the first stage. The loss weights are
change to A, = 1, A, = 0.1. The learning rate is 10> and
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Method EPE Static  EPE Move EPE All  F1 (%)
Separate 6.44 5.08 6.45 20.44
Rigid 2.85 36.58 10.65 22.31
Joint Training 5.31 4.94 543 16.12
Fusing with R*" 4.57 8.00 577 15.81
Fusing with RP" 3.85 7.92 5.19 14.68

Table 1: Ablation experiment results of optical flow on KITTI 2015.
We evaluate the different stages and different variants of our method.

finishing at 30k iterations. In addition, we train a monocu-
lar model following the setting in [Godard et al., 2017] with
Resnet18 as the backbone and a stereo model with the same
procedure. The visualization results of our stereo model are
shown in Figure 4.

4.3 Quantitative Results

In the following, we report the results of our method on opti-
cal flow, depth, camera motion and object motion segmenta-
tion tasks.

Optical Flow

Firstly, we compare the optical flow results of several variants
of our method: Separate indicates the flow model trained sep-
arately, i.e. the model of the first stage. Rigid indicates the
rigid flow obtained by the depth and optical flow from the
model in the first stage. Joint means the optical flow predic-
tions of the model in the joint training stage. Fusing with R*"
and Fusing with RP" are the results of fusing rigid flow and
optical flow with R*" and RP" respectively.

The results are shown in Table 1. Rigid flow in the static
region is much more precise than optical flow, and the joint
training optical flow and depth models consistently improve
the performance of static and moving regions. It is worth
noting that the fusion rigidity with R** can improve the ac-
curacy of the static region, but worse in the moving region.
As a compromise, fusion rigidity with RP" achieves the best
comprehensive metrics EPE and F1 scores.

We also compared our method with state-of-the-art meth-
ods, including Flownet2 [Ilg et al., 2017] and PWC-Net [Sun
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Setting KITTI 2012 KITTI 2015

Method Train Test Super- | train  train train train train train test

Stereo  Stereo vised Noc Occ All move  static all all
Flownet2 v - - 4.09 - - 10.06 -
Flownet2-+ft v - - (1.28) - - (2.3) 11.48%
PWC-Net v - - 4.14 - - 10.35 -
PWC-Net+ft v - - (1.45) - - (2.16) 9.60%
UnFlow-CSS 1.26 - 3.29 - - 8.10 -
[Wang et al., 2018b] - - 3.55 - - 8.88 31.2%
[Wang er al., 2018c] v v 1.04 5.18 1.64 5.30 5.39 5.58 18.00 %
Ours (Monocular) v 228 7.25 2.96 8.59 4.88 5.74 -
Ours (Stereo) v v 1.09 4.87 1.92 7.92 3.85 5.19 11.66 %

Table 2: Quantitative results of optical flow estimation. The metrics are all average end-point-error (EPE) except for the last column which is

the percentage of erroneous pixels (Fl-all). Methods with the suffix “-ft” refer to the model with supervised fine-tuning.

Method Train Test Lower the better Higher the better

Stereo  Stereo | AbsRel SqRel RMSE RMSElog | § <1.25 §<1.252 §<1.253
[Zhou et al., 2017] 0.216 2.255 7.422 0.299 0.686 0.873 0.951
[Godard er al., 2017] v 0.124 1.388 6.125 0.217 0.841 0.936 0.975
Ours (Monocular) v 0.108 1.020 5.528 0.195 0.863 0.948 0.980
[Godard er al., 2017] v v 0.068 0.835 4392 0.146 0.942 0.978 0.989
Ours (Stereo) v v 0.051 0.532 3.780 0.126 0.957 0.982 0.991

Table 3: Quantitative results of disparity estimation on the KITTI2015 training set. Standard metrics for disparity evaluation are used.

et al., 2018] for supervised learning, UnFlow-CSS [Meister et
al., 2018] for unsupervised learning, and recent works [Wang
et al., 2018b; Wang er al., 2018c]. The results in Table 2
show that our method achieves the best unsupervised results
on KITTI2015, in which the scene is more difficult than
KITTI2012 since both cameras and scene are moving. Note
that the training results of FlowNet2+ft and PWC-Net+ft are
meaningless, for which are trained and validated on the same
data. While on the test set, our results are very close to
these supervised methods. In addition, the monocular trained
model performs worse than stereo based approaches, while
our fusion method still significant boost the preference.

Depth

The depth estimation in our method is primarily based on the
work of [Godard et al., 2017], with an additional rigid photo-
metric loss L;ig . The results in Table 3 show that our monoc-
ular method achieving better performance, which proves the
effectiveness of rigid photometric loss. However, comparing
with the stereo method, the promotion is limited as the excel-
lent performance of the original method.

Camera Motion

We evaluate the camera motion estimation on KITTI odome-
try benchmark, where the 00-08 sequences are used for train-
ing and the 09-10 sequences for testing. We compared our
approach to the traditional SLAM method and several unsu-
pervised methods. Since the length of the sequence used for
estimation in these methods is different, we follow the met-
ric in [Zhou et al., 2017] where the results are evaluated in
terms of 5-frame trajectories. For some methods that input
with less than five frames, we first compute the full trajectory
and get the result for the 5-frame snippet by a sliding win-
dow. Note that although our method is capable of predicting
scaled output, some methods are scale agnostic, so we still
optimize the scale factor to align with the ground truth for

Method # frames Sequence 09 Sequence 10

ORB-SLAM(Full) All 0.014 £0.008  0.012 £ 0.011
[Zhou et al., 2017] 5 0.016 £ 0.009  0.013 £ 0.009
Geonet 5 0.012 £ 0.007  0.012 £ 0.009
[Wang et al., 2018cl] 2 0.012 £ 0.006  0.012 £ 0.008
Ours (Stereo) 2 0.012 £ 0.007  0.012 +£ 0.006
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Table 4: Quantitative evaluation of the odometry task using the met-
ric of the Absolute Trajectory Error (ATE).

Method Pixel Acc. Mean Acc. Mean IoU  f.w. IoU
[Yang et al., 2018] 0.89 0.75 0.52 0.87
[Wang er al., 2018c¢] 0.90 0.82 0.56 0.88
Ours 0.93 0.84 0.57 0.90

Table 5: Results of motion segmentation. The metrics are pixel ac-
curacy, mean pixel accuracy, mean IoU, frequency weighted IoU.

comparison. The results in Table 4 demonstrate the effective-
ness of our approach, despite the discarding of a specialized
pose network.

Object Motion Segmentation

We evaluate the motion segmentation task follow the setting
in [Yang et al., 2018], which using the object map provided
in the KITTI 2015 dataset to generate the ground truth map.
As shown in Table 5, our method improvements all metrics
that produce a more precise motion segmentation.

5 Conclusion

We propose a jointly unsupervised learning method of opti-
cal flow and stereo depth estimation. We demonstrate the ad-
vantages of exploiting local rigidity to fuse these two tasks.
Our method reveals the capability of unsupervised learning
in scene flow estimation. The impressive results compared
to other baselines including the supervised methods indicate
the possibility of learning scene flow without costly collected
ground-truth data. For future work, we would like to find an



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

unsupervised learning method to distinguish the rigidity re-
gion by a network in the end-to-end manner.
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