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Abstract
Weakly supervised object detection (WSOD) has
been widely studied but the accuracy of state-of-art
methods remains far lower than strongly supervised
methods. One major reason for this huge gap is
the incomplete box detection problem which arises
because most previous WSOD models are struc-
tured on classification networks and therefore tend
to recognize the most discriminative parts instead
of complete bounding boxes. To solve this prob-
lem, we define a low-shot weakly supervised object
detection task and propose a novel low-shot box
correction network to address it. The proposed task
enables to train object detectors on a large data set
all of which have image-level annotations, but only
a small portion or few shots have box annotations.
Given the low-shot box annotations, we use a novel
box correction network to transfer the incomplete
boxes into complete ones. Extensive empirical evi-
dence shows that our proposed method yields state-
of-art detection accuracy under various settings on
the PASCAL VOC benchmark.

1 Introduction
Weakly Supervised Object Detection (WSOD) has been
widely studied because annotating a large-scale dataset with
bounding boxes is expensive and time-consuming. For
WSOD methods, datasets with only image-level annotations
are required to do the task of detecting objects. Although a
lot of great works have been made in this area, the accuracy
of state-of-art methods remains far lower than their strongly
supervised baselines (0.47 vs 0.67 mAP by Fast-RCNN on
PASCAL VOC 2007).

We think one of the major reasons for this huge gap might
be the incomplete box detection. Here, we take a simple ex-
ample to illustrate this problem. Given an image with label
person like the first image in Figure 1, the trained detector
only knows that there’s a person in this image but has no
idea of where she/he is. Most of previous methods are struc-
tured on deep classification networks and tend to recognize
the most discriminative parts (red boxes) instead of complete
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Figure 1: Images in first row show the incomplete box detections
(red, small) predicted by state-of-art WSOD method and manually
annotated complete bounding boxes (green, big). In general, our
method is trying to learn a transfer function T that can predict strong
boxes from weak boxes. θ is the model parameter.

object bounding boxes (green boxes). In the above example,
these models are tended to recognize the person’s head in-
stead of the full body because heads are similar and easy to
distinguish while the full bodies are much more diverse and
harder to distinguish due to different clothes or postures. For
some object labels like person, their most discriminative parts
are much smaller than complete bounding boxes and thus will
result in a very low detection accuracy. Through the observa-
tion, we think incomplete box detection is the main reason
why previous methods perform badly on these object classes.

To address the incomplete box detection problem, it is
necessary to introduce auxiliary information about the true
complete bounding boxes. Inspired by few-shot and semi-
supervised learning methods, we introduce a low-shot weakly
supervised object detection task in this paper and propose a
novel box correction method to address it. The definition of
low-shot weakly supervised object detection task is: given a
large dataset with image-level classification labels and only a
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small subset of it has bounding box annotations, the model is
expected to detect the complete objects, rather than a part of
them. The term low-shot here includes both semi-supervised
and few-shot settings so that we use this term for brevity.

For this low-shot weakly supervised object detection task,
we propose a novel box transfer method to correct the in-
complete box predictions. Our method starts with generat-
ing weak boxes and strong boxes pairs. Here, weak boxes
are those incomplete boxes predicted by common weakly su-
pervised methods which are trained only by image-level an-
notations, while strong boxes are the ground truth complete
bounding boxes annotated manually. In the low-shot task, all
images have weak boxes while only a small subset (e.g. 10%)
of images have both weak and strong boxes. For images with
ground truth boxes, we use a greedy method to select possible
weak-to-strong box pairs and design a box transfer function
to learn a transformation from weak boxes to strong boxes.
For images without ground truth boxes, we apply the learned
box transfer function on them to generate pseudo complete
bounding boxes. These generated pseudo boxes are trained
together to maintain the model’s diversity and avoid overfit-
ting into the small subset.

We explore our method in two different settings. 1) Semi-
supervised learning: Only a small proportion of images have
box annotations, irrespective of these images’ class labels.
2) Few-shot learning: Only a few shots of images have box
annotations for each class while different classes have the
same number of images. We compare our method with most
available methods under these two settings on PASCAL VOC
dataset. Our method achieves state-of-art accuracy in most
experiments.

2 Related Work
2.1 Weakly Supervised Object Detection.
WSOD has attracted much attention in the last decade. In
recent years, due to the breakthrough brought by deep learn-
ing, a large amount of deep models are proposed for WSOD.
Most of these models follow a similar pipeline: box proposal
initialization, proposal classification, proposal refinement and
retraining. We classify these models into three categories ac-
cording to their mainly contributed pipeline steps.

For proposal initialization, Selective Search [Uijlings et al.,
2013] and Edge Boxes [Zitnick and Dollár, 2014] are the most
commonly used proposal methods. Zhu et al. [2017] propose
to train an integrated weakly supervised object proposal net-
work, based on the class activation maps. Different from [Zhu
et al., 2017], Tang et al. [2018] propose to use a multi-layer
fused attention map to refine the initial proposals.

For proposal classification, Bilen and Vedaldi [2016] em-
ploy a two-branch network, called WSDDN, to simultane-
ously perform region selection and classification. However,
WSDDN only uses an image-level classification loss which
makes it tend to recognize the most discriminative parts. To
address the problem, [Diba et al., 2017] and [Lai and Gong,
2017] introduce salient segmentation attention maps to regu-
larize the training. The introduced segmentation regulariza-
tion is helpful but not enough to address the huge gap be-
tween those discriminative parts and the complete bounding

boxes. Our method explicitly formulates the transfer function
to correct the proposals instead of adding regularization. This
makes our method more effective than previous models.

For proposal refinement and retraining, most of these meth-
ods are heuristic. Tang et al. [2017] employ WSDDN as
the basic network and refine the prediction with several On-
line Instance Classifier Refinement (OICR) branches. Ge et
al. [2018] propose a multi-task ensemble framework to refine
the weakly detection results by some other tasks. After pro-
posal refinement, the refined proposals are commonly used
to train a strongly supervised methods. Zhang et al. [2018]
heuristically employ an easy to hard training strategy to dis-
cover reliable proposals. Most of these refinement and re-
training strategies heavily rely on the initialization. If the
initial model is trapped in false incomplete detection, these
strategies can not efficiently correct it.

2.2 Few Shot Object Detection
Dong et al. [2018] propose to generate trustworthy training
samples for few-shot object detection task. They iteratively
train model and select high-confidence samples for retrain-
ing. Compared with them, our proposed task has more an-
notations because we have image-level labels for all images.
Through experiments, the image-level labels are essential for
accuracy improvement. We argue that our task is reasonable
since attaining image-level labels is much easier than bound-
ing boxes.

2.3 Semi Supervised Object Detection
Yan et al. [2017] have designed an EM model for semi su-
pervised object detection task. They combine the ground
truth boxes with image-level labels to iteratively retrain the
EM model. The biggest difference between their model and
ours is that we explicitly separate the weak boxes and strong
boxes while Yan et al. just put them together. As we shown
above, these two boxes may have large difference in size and
putting them together may be contradictory in training. Wang
et al. [2018] design a similar model with [Yan et al., 2017]
which employs Faster RCNN as a base network. Experiments
confirm that our method outperforms both of Yan and Wang’s
model in various semi supervised settings.

2.4 Partially Supervised Learning
Hu et al. [2018] propose a new partially supervised training
paradigm that enables training instance segmentation mod-
els on a large data set which has box annotations, but only a
small fraction of which have mask annotations. The proposed
paradigm is quite similar to our task. The major difference is
that we have a large data set with only image-level annota-
tions while they have box annotations. Since the state-of-arts
WSOD accuracy is still unsatisfactory while the weakly se-
mantic segmentation methods [Khoreva et al., 2017] are ap-
proaching their supervised counterparts, we suppose the task
from image-level annotation to box is harder than the task
from box to segmentation mask.

3 Method
Let I be all the images having image-level annotations. We
split I into two parts, I = A ∪ B, where images in A have
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Figure 2: Our Box Correction Network (BCNet) Model architecture. The whole dataset is split into two parts, A and B. Images in A have
both image-level and box annotations while images in B have only image-level annotations. Our method firstly generates weak boxes bw for
all images and calculates the weak-to-strong box pairs for images in A. Then the images and boxes are fed into a box correction network
branch to train a transfer function from weak boxes to strong boxes. Lcls(p, bw) means that the classification loss function’s predict target is
calculated using roi and weak boxes. LT (t, bs) means that this transfer loss function’s offset target is calculated using roi and strong boxes.
We use T to transfer the weak boxes into b′w and then train a new refinement branch to jointly fit b′w and bs.

both image-level and box annotations while images in B are
only image-level annotated. Note that under the low-shot set-
tings, A is a small part of I (i.e. 10% ) and A ∩ B = ∅.

Our method starts from obtaining weak and strong boxes.
We pretrain a weakly supervised object detection model and
use it to generate pseudo bounding boxes for all images in I.
These generated pseudo bounding boxes are denoted as their
weak boxes, bw. For images in A, their manually labeled
bounding boxes are denoted as strong boxes, bs. Each box
is defined by a four-tuple (x, y, h, w) that specifies its center
coordinate (x, y) and its height and width (h,w). Weak boxes
are (bxw, b

y
w, b

w
w, b

h
w) and strong boxes are (bxs , b

y
s , b

w
s , b

h
s ).

In general, our method is trying to learn a transfer function
T that can predict strong boxes from weak boxes,

bs = T (bw; θ). (1)

Before learning the transfer function between weak and
strong boxes, we need to generate one-to-one, weak-to-strong
box pairs. Only images in A can be used to generate the one-
to-one pairs. We design a greedy algorithm to accomplish
this. Given an image with its box bw and bs, we firstly calcu-
late the overlaps between bw and bs. Then, each weak box is
assigned a corresponding strong box which owns the largest

overlap with the same label as bw. If the largest overlap is
smaller than a threshold, this pair will be removed.

Having generated the weak boxes forB and weak-to-strong
boxes for A, we’ll utilize both images in A and B to train a
box correction network for the low-shot weakly supervised
object detection task. The overall network structure is shown
in Figure 2. Details will be introduced respectively in next
subsections.

3.1 Box Correction
Given the weak and strong box pairs forA, instead of directly
predicting strong boxes bs, we formulate the transfer function
to predict the offset between bw and bs. The offset targets are
defined as t = (tx, ty, tw, th), in which

tx = (bxs − bxw)/bww, ty = (bys − byw)/bhw,
tw = log(bws /b

w
w), t

h = log(bhs/b
h
w).

(2)

We can easily attain bs by t and bw.
This formulation is similar to the regression in Fast-

RCNN [Girshick, 2015] while we employ it to transfer differ-
ent boxes instead of refining location. For clarity, we denote
this offset prediction function as F and our general transfer
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function T is replaced by F ,

t = F (bw; θ). (3)

The offset prediction function F can be implemented as
a fully connected neural network. In training, we apply a
smoothL1 loss function to learn F ,

Lloc(t, v) =
∑

i∈{x,y,w,h}

smoothL1(v
i − ti), (4)

in which v is the coordinates and height/width offset pre-
dicted by F .

Notice that the box-annotated data setA is a very small part
of I. If we only train the transfer function T with the weak-
to-strong box pairs, the number of training set may be too
small such that the model may easily overfit into these limited
samples. In order to enrich the training samples, we integrate
the transfer function T together with roi proposal classifica-
tion. In Fast-RCNN, some roi proposals are pre-calculated
by Selective Search [Uijlings et al., 2013]. These proposals
are utilized to jointly learn object classification and bounding
box regression. The original loss function of Fast-RCNN is

L(p, u, t, v) = Lcls(p, u) + Lreg(t, v), (5)

where p is the roi class predictions and t is the predicted offset
between rois and targets. u is the class label and v is the target
offset. Only rois with foreground label will contribute to the
regression loss Lreg .

We adapt this loss function to introduce the T function as

LA(p, uw, t, vs) = Lcls(p, uw) + LT (t, vs). (6)

Here, uw is the class label calculated from weak boxes bw,
and vs is the offset target between rois and strong boxes bs.
Only rois with foreground label in uw will contribute to the
regression loss LT .

Comparing with the original loss function, the regression
part in the adapted function is no longer used for refining lo-
cation. In our loss function, the classification loss attempt
to select rois who have a large overlap with weak boxes bw
while the regression loss is used to predict the offset between
these selected rois and paired strong boxes bs. This way en-
sures the transfer function T can be trained by all possible
proposals, thus enabling a better transfer between weak and
strong boxes.

3.2 Balanced Training
For images inA, the loss function is shown as equation 6. For
images in B, since they only have weak boxes, as a result, we
can only train the classification part of loss function

LB(p, uw, t, vs) = Lcls(p, uw). (7)

Note that the size of A is much smaller than B in our pro-
posed low-shot tasks. In order to fully exploit all the images
in B, we use the trained box correction function to generate
pseudo corrected boxes for images in B and use all of the
transferred boxes in A ∪ B to learn a new refinement branch
of proposal classification and regression.

For each training iteration, one image za from A and one
image zb from B are trained together to make balanced train-
ing samples. za and zb are firstly fed into a box correction
branch with the following loss function,

L1 =LA + LB

=Lcls(p
a, uaw) + LT (t

a, vas ) + Lcls(p
b, ubw)

(8)

The outputs of the first box correction branch are trans-
ferred boxes, denoted as b′aw and b′bw. These boxes are in turn
used to train a second refinement branch. We suppose the
second branch is functionally the same as Fast-RCNN whose
regression loss is used to refine location so that a classifica-
tion loss by bas is utilized to jointly train this branch as shown
in Figure 2. The entire loss of the second branch is

L2 =L′A + L′B + L′strong

=Lcls(p
′a, u′aw ) + Lreg(t

′a, v′as ) + Lcls(p
′b, u′bw)

+Lreg(t
′b, v′bw) + Lcls(p

′a, uas),

(9)

where uas is the class label calculated from strong boxes for
za. In Figure 2, we replace u, v with bs or bw to show it more
clearly that which boxes are used in particular loss.

3.3 Multi-Stage Correction
During experiments, we find that the learned transfer function
T is able to transfer the weak boxes towards the strong ones.
However, in some cases, if the strong boxes are much bigger
than the weak boxes, T can only enlarge the boxes a little but
the enlarged ones are still much smaller than the strong boxes.
We think the result is caused by the smoothL1 loss function,

smoothL1(x) =

{
0.5x2, if |x| < 1
|x| − 0.5 otherwise.

If the strong boxes are much bigger than the weak boxes,
|x| may be very large while training. Though smoothL1 has
the same gradient when |x| ≥ 1, it can not effectively give
enough loss penalty on these samples to cover the huge gap
between the strong and weak boxes.

To address this problem, we introduce a simple but effec-
tive technique, the multi-stage correction. The intuition is
straightforward. If a single transfer function can only make
a limited step from the weak boxes towards the strong boxes,
why not continuously make several steps? In the proposed
multi-stage correction, a later stage uses the transferred boxes
produced by its previous stage as the weak boxes and learns
a new transfer function T ′ for current stage. Only the last
stage has the classification loss by the strong boxes which is
Lcls(p

′, bs) in Figure 2 because we treat it as a correct box de-
tection branch rather than a weak-to-strong transfer branch.

3.4 Image-level Regularization
In the multi-stage model, our method actually follows an it-
erative training strategy, training a function to transfer boxes
and then using the transferred boxes for retraining. One con-
cern over this strategy is that it may amplify the noise from
the first stage. To avoid this dilemma, we introduce an image-
level regularization function in the final stage since all the
images have image-level annotations.
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Methods, Backbone aero bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mAP(%)
Only image-level labels (lower bounds):
WSDDN[Bilen and Vedaldi, 2016], AlexNet 42.9 56.0 32.0 17.6 10.2 61.8 50.2 29.0 3.8 36.2 18.5 31.1 45.8 54.5 10.2 15.4 36.3 45.2 50.1 43.8 34.5
OICR[Tang et al., 2017], VGG 58.5 63.0 35.1 16.9 17.4 63.2 60.8 34.4 8.2 49.7 41.0 31.3 51.9 64.8 13.6 23.1 41.6 48.4 58.9 58.7 42.0
OICR+FasterRCNN, VGG 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0
[Ge et al., 2018]+FasterRCNN, VGG 64.3 68.0 56.2 36.4 23.1 68.5 67.2 64.9 7.1 54.1 47.0 57.0 69.3 65.4 20.8 23.2 50.7 59.6 65.2 57.0 51.2

Image label and semi-supervised boxes:
EM [Yan et al., 2017], AlexNet, 10% boxes - - - - - - - - - - - - - - - - - - - - 48.3∗
Our BCNet, AlexNet, 10% boxes 58.3 60.4 38.3 27.8 27.7 62.9 70.1 63.6 27.9 53.2 47.2 52.1 67.0 64.5 57.5 24.1 48.7 46.1 65.0 56.6 51.0
[Wang et al., 2018], VGG, 16% boxes 58.2 75.9 56.6 45.2 39.6 73.2 75.8 77.2 38.4 65.7 61.0 72.3 78.6 67.3 68.1 33.0 61.5 61.1 72.1 66.7 62.4
Our BCNet, VGG, 16% boxes 63.7 77.2 62.9 48.0 39.7 73.3 76.0 78.0 39.4 72.9 56.1 75.4 79.9 69.5 70.2 31.0 60.6 62.2 75.0 68.6 64.0

Only few-shot boxes:
[Dong et al., 2018], ResNet101, 4 shots 46.6 55.6 37.9 26.1 27.9 46.6 57.9 58.1 24.1 37.6 12.8 33.1 51.4 59.7 40.1 17.5 36.1 52.0 61.4 52.1 41.7

Image label and few-shot boxes:
[Dong et al., 2018], ResNet101, 4 shots - - - - - - - - - - - - - - - - - - - - 48.0∗
Our BCNet, VGG, 4 shots 60.5 65.6 47.3 27.4 29.1 69.9 67.9 62.7 23.5 63.3 36.8 49.6 58.4 67.5 54.3 18.0 55.3 56.6 60.2 66.0 52.0
Our BCNet, ResNet101, 4 shots 61.6 68.1 46.5 30.4 24.9 67.0 64.5 66.2 26.5 64.6 41.1 56.3 57.6 61.7 53.6 22.7 52.5 61.5 66.0 63.7 52.8

Fully supervised (upper bounds):
Fast RCNN, VGG 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9
Faster RCNN, VGG 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6 69.9

More results:
Our BCNet, VGG, 10% boxes 64.7 73.1 55.2 37.0 39.1 73.3 74.0 75.4 35.9 69.8 56.3 74.7 77.6 71.6 66.9 25.4 61.0 61.4 73.8 69.3 61.8
Our BCNet, ResNet101, 10% boxes 68.3 72.0 61.2 48.1 40.8 73.3 73.4 77.8 37.0 69.7 58.3 78.2 80.0 67.5 70.5 27.4 62.9 63.6 73.4 63.6 63.4
Our BCNet, ResNet101, 16% boxes 67.3 74.2 65.2 51.7 40.8 74.1 72.7 77.2 39.2 70.3 59.9 77.2 78.5 69.9 68.6 30.6 60.0 68.2 75.9 66.8 64.4
Our BCNet, VGG, 10 shots 59.7 69.1 44.6 29.4 40.1 69.2 73.2 72.9 32.9 58.1 53.3 66.7 71.3 66.0 61.7 24.6 53.0 62.0 67.2 67.4 57.1
Our BCNet, ResNet101, 10 shots 63.4 69.4 54.7 39.5 35.9 70.6 71.8 71.8 33.5 64.6 50.0 65.3 72.7 62.5 61.6 29.2 54.5 63.3 66.7 69.4 58.5
Our BCNet, ResNet101, 20 shots 66.5 67.6 56.7 40.5 40.4 72.8 71.3 76.6 39.4 65.0 54.1 71.4 72.9 66.6 66.0 26.1 59.0 65.5 67.7 67.6 60.7

Table 1: mAP (%) on the PASCAL VOC 2007 test set. For results with *, their authors only plot the mAP in figures and what we report
are the estimated results. The BCNet refers to our Box Correction Network with multi-stage correction and image-level regularization. 10%
boxes means that 10% of all images have box annotations. The 10% images actually correspond to 500 images in VOC 2007, and 16%
correspond to 811 images. 4 shots means that each class only has 4 images with box annotations.

For an image, let pic be the ith roi prediction for class c. We
use the maximum pic across rois to represent the image-level
prediction for class c, that is qc = maxi(pic). The image-
level regularization is defined as the binary cross entropy with
qc and the image-level label yc,

Limg = − 1

C

∑
c

yclog(qc) + (1− yc)log(1− qc). (10)

4 Experiments
4.1 Experiment Settings
We evaluate our method on the PASCAL VOC 2007 data
set which contains 5011 training images and 4952 images
for test. The evaluation metric is mean Average Precision
(mAP) which is commonly used in object detection. In exper-
iments, we explore our method in two different settings, semi-
supervised and few-shot. For semi-supervised settings, only a
limited number of images have box annotations, irrespective
of these images’ labels. For few-shot settings, different labels
have a same number of images with box annotations.

4.2 Implementation Details
Network backbone. We mainly use the VGG16 as base
network for our experiments because most of the previous
WSOD methods are structured on it. For fair comparison with
[Yan et al., 2017], we also report results based on AlexNet.
In addition, we give the results on ResNet for reference.

Pretraining. We use OICR [Tang et al., 2017] to generate
the weak boxes. In experiments, we find that only using Ima-
geNet pre-trained weight as initialization performs poorly for
small networks, e.g. AlexNet, or with very small number of
box annotations, e.g. 4 shots. We suppose this is caused by

the limited generalization ability in these experiments. In-
stead of using ImageNet pre-trained weight, we employ a
Fast-RCNN which is trained by weak boxes to initialize our
model in these experiment.

Training and inference. For fair comparison with the prior
arts, we use Edge Boxes as our roi proposal method. SGD is
used to optimize the models. In experiments, models are fine-
tuned with 60 epochs. The learning rate is 0.001 in the first 40
epochs and will be reduced to 0.0001 in the last 20 epochs.
All other hyper-parameters follow those in Fast-RCNN. We
resize the image minimum side into {400, 600, 750} as data
augmentation. To jointly train the model with images fromA
and B, we randomly crop the input images by a fixed 600 ×
600 window. In most cases, two-stage box correction branchs
are used for multi-stage correction.

Low shot selection. One concern over the experiments is
the sensitivity of our method to different selection of box an-
notated images. To figure out whether different selection of
box annotated images can greatly influence the results, we
have conducted several experiments and find that for experi-
ments with more than 10% of all or 10 shots box annotations,
different selections have very little effect on final accuracy.
For experiment with very small number of box annotations,
an average result is reported instead.

Reproducibility. We implement our method on Pytorch
and Code is available at https://github.com/ptx9363/BCNet.

4.3 Comparison with State-of-the-arts
We evaluate our model on PASCAL VOC 2007 test bench-
mark and compare it with most available state-of-art methods
under semi-supervised or few-shot settings. The results are
shown in Table 1.
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For methods with image labels and semi-supervised boxes,
our method outperforms all of previous methods under the
equal semi-supervised settings. Both [Yan et al., 2017] and
[Wang et al., 2018] treat the weak boxes and the strong boxes
equally while our method explicitly separate them. The com-
parison results confirm the necessity and effectiveness of this
separation technique.

For methods with image labels and few-shot boxes, our
method also performs better than these methods in equal set-
tings. Dong et al. [Dong et al., 2018] have proposed to use
image-level labels as an object filter in their paper. Compared
with them, we have fully utilized the images in B and used
balanced box transfer to get a better prediction.

By comparing our BCNet with common WSOD methods,
we find that introducing the box correction transfer network
can bring huge improvement on these methods. We would
like to highlight that even if only 4 images with box annota-
tions are provided, our method could greatly improve the pre-
diction accuracy of OICR (our base WSOD model) for some
classes like person (13.6% to 54.3%), cat (34.4% to 62.7%),
dog (31.3% to 49.6%). These huge improvements show that
our BCNet is robustly effective for helping some weakly su-
pervised object detection methods which may have serious
incomplete detection problem.

By comparing our BCNet with previous few-shot methods,
we find that the image-level labels are essential for accuracy
improvement (52.0% vs 41.7%). Since attaining image-level
labels are much easier than box annotations, e.g. from search
engine, we think our model is more practical in real world
applications.

4.4 Ablation Study
Effectiveness of components. Firstly we conducted ex-
periments to understand the different contribution of sub-
modules. Tabel 2 shows the ablation results. We can see that
the balanced training and box transfer are essential for our
method. Without balanced training, we treat images equally
from A and B while the size of A is much smaller than B so
that the model can not fit the transfer function T well enough.
Without box transfer, we directly finetune the features from
WSDO with few shot annotated boxes and the results confirm
that transferring boxes is more effective than transferring fea-
tures.

Amounts of box annotations. We also conducted exper-
iments by varying box annotations proportions in semi-
supervised task and number of shots in few-shot task. The
results are summarized in Figure 3 and Table 3. As illus-
trated in Figure 3, our method robustly performs better than
the state-of-art method [Yan et al., 2017]. When 40% boxes

BCNet on AlexNet
w/o balanced training

√ √ √ √ √

w/o box transfer
√ √ √ √

w/o multi-stage
√ √

w/o image-level
√ √

VOC07 mAP(%) 45.6 47.7 49.7 50.6 50.3 51.0

Table 2: Ablation experiments on AlexNet for balanced training,
box transfer, multi-stage correction and image-level regularization.
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Only strong box annotations

[Yan et al., 2017]

Our BCNet

Fully supervised

Figure 3: Semi-supervised performance (mAP%) by varying box
annotation proportions. For fair comparison, our models are based
on AlexNet.

methods 4-shot 10-shot 20-shot Fully supervised
Our BCNet 52.8 58.5 60.7 68.9
[Wang et al., 2018] 48.0 56.9 63.1 74.8

Table 3: Few-shot performance (mAP%) by varying number of box
annotation shots. Wang’s results are estimated from their figures.

are annotated, our method achieves 56.0% mAP which is
only 1.1 lower than fully supervised upper bound. We com-
pare our method with [Wang et al., 2018] by varying num-
ber of annotation shots in Table 3. It’s important to note that
Wang employs a mixed model which contains several differ-
ent base networks while our method is structured on a single
base network. Therefore, their model owns a much higher
upper bound (74.8%) than ours (68.9%) as shown in the ta-
ble and we think it explains why their model performs better
in 20-shot experiments. Even if only be structured on sin-
gle ResNet101, our method achieves better results in 4-shot
and 10-shot experiments. It confirms the effectiveness of our
method on few-shot tasks.

5 Conclusion and Future Work
In this paper, we are trying to solve the incomplete detection
problem that exists in most previous weakly supervised ob-
ject detection methods. We introduce a low-shot weakly su-
pervised object detection task and propose a novel Box Cor-
rection Network (BCNet) to address it. We explicitly separate
the incomplete boxes and complete boxes and our BCNet at-
tempts to learn a transfer function to correct those incomplete
boxes into complete ones. Experiment results show that BC-
Net is more effective than previous models.

Exploring more forms of transfer function will be our fu-
ture works. In addition, how to learn a better transfer function
by using advanced semi-supervised method or few shot learn-
ing method (e.g. vat [Miyato et al., 2018] or maml [Finn et
al., 2017]) is another problem that we are interested in.
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