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Abstract

Identifying adversarial examples is beneficial for
understanding deep networks and developing ro-
bust models. However, existing attacking meth-
ods for image object detection have two limitations:
weak transferability—the generated adversarial ex-
amples often have a low success rate to attack other
kinds of detection methods, and high computation
cost—they need much time to deal with video data,
where many frames need polluting. To address
these issues, we present a generative method to ob-
tain adversarial images and videos, thereby signif-
icantly reducing the processing time. To enhance
transferability, we manipulate the feature maps ex-
tracted by a feature network, which usually con-
stitutes the basis of object detectors. Our method
is based on the Generative Adversarial Network
(GAN) framework, where we combine a high-level
class loss and a low-level feature loss to jointly train
the adversarial example generator. Experimen-
tal results on PASCAL VOC and ImageNet VID
datasets show that our method efficiently generates
image and video adversarial examples, and more
importantly, these adversarial examples have better
transferability, therefore being able to simultane-
ously attack two kinds of representative object de-
tection models: proposal based models like Faster-
RCNN and regression based models like SSD.

1 Introduction

Deep learning techniques have achieved great success in var-
ious computer vision tasks [Zhu et al., 2017a; Zhu et al.,
2017b; Wei et al., 2018]. However, it is also proved that neu-
ral networks are vulnerable to adversarial examples [Szegedy
et al., 2013], thereby attracting a lot of attention on attacking
(e.g., FGSM [Goodfellow et al., 2015; Dong et al., 2018],
deepfool [Moosavi-Dezfooli et al., 2016], C&W attack [Car-
lini and Wagner, 2017]) and defending (e.g., [Raghunathan
et al., 2018]) a network. Attacking is beneficial for deeply
understanding neural networks [Dong et al., 2017] and mo-
tivating more robust solutions [Pang et al., 2018]. Though
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Figure 1: An example of the comparisons between DAG (Dense Ad-
versary Generation) and our UEA (Unified and Efficient Adversary)
against proposal and regression based detectors. In the first row,
Faster-RCNN and SSD300 detect the correct objects. The second
row lists the adversarial examples from DAG. We see it succeeds to
attack Faster-RCNN, but fails to attack SSD300. In this third row,
neither Faster-RCNN nor SSD300 detects the cars on the adversarial
images. Moreover, the UEA’s processing time is almost 1000 times
faster than DAG for generating an adversarial image.

much work has been done for image classification, more and
more methods are presented to attack other tasks, such as
face recognition [Sharif er al., 2016], video action recogni-
tion [Wei et al., 2019], and the physical-world adversarial at-
tack on road signs [Evtimov et al., 2017].

As the core task in computer vision, object detection for
image data has also been attacked. It is known that the current
object detection models can be roughly categorized into two
classes: proposal based models and regression based mod-
els. The various mechanisms make attacking object detection
more complex than image classification. [Xie er al., 2017]
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Figure 2: The training framework of Unified and Efficient Adversary (UEA). Besides the GAN loss and similarity loss, we formulate DAG’s
high-level class loss and our low-level multi-scale attention feature loss into GAN framework to jointly train a generator. In the testing
phase, the generator is used to output adversarial images or video frames to fool the different classes of object detectors (blue dashed box).

proposes a white-box attacking method for proposal based
models: Dense Adversary Generation (DAG). They choose
Faster-RCNN [Ren et al., 2017] as the threat model. DAG
firstly assigns an adversarial label for each proposal region
and then performs iterative gradient back-propagation to mis-
classify the proposals. The similar methods are also presented
in [Chen et al., 2018; Li et al., 2018]. Because regression-
based methods don’t use region proposals, DAG cannot di-
rectly transfer to attack them. That means DAG has weak
black-box attacking ability. In addition, DAG is an optimiza-
tion method, which often needs 150 to 200 iterations to meet
the end for an image [Xie et al., 2017]. The high computa-
tion cost makes DAG not available for attacking video object
detection, which usually considers temporal interactions be-
tween adjacent frames [Zhu et al., 2017a] and therefore the
most reliable attacking method for video object detection is
to pollute all the frames or many key frames in the video.

To address these issues, in this paper, we propose the Uni-
fied and Efficient Adversary (UEA) for image and video ob-
ject detection. “Efficient” specifies that our method is able to
quickly generate adversarial images, and thus can efficiently
deal with every frame in the video. To this end, we utilize a
generative mechanism instead of the optimization procedure.
Specifically, we formulate the problem into Generative Ad-
versarial Network (GAN) framework like [Xiao ef al., 2018;
Poursaeed et al., 2018], and train a generator network to gen-
erate adversarial images and key frames. Because the test-
ing step only involves the forward network, the running time
is fast. As for “Unified”, it means that the proposed adver-
sary has better transferability than DAG, and thus has strong
black-box attacking ability. It can not only perform reliable
attack to Faster-RCNN like DAG, but also effectively attack
regression based detectors. We observe that both the pro-
posal and regression based detectors utilize feature networks
as their backends. For examples, Faster-RCNN and SSD [Liu
et al., 2016] use the same VGG16 [Simonyan and Zisserman,
2015]. If we manipulate the features maps in Faster-RCNN,
the generated adversarial examples will also make SSD fail
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to detect objects. This idea is implemented as a multi-scale
attention feature loss in our paper, i.e., manipulating the fea-
ture maps from multiple layers. To fool detectors, only the
regions of foreground objects need perturbing. Therefore, an
attention weight is integrated into the feature loss to manip-
ulate the feature subregions. The usage of attention weight
also improves the imperceptibility of generated adversarial
examples because the number of perturbed pixels is limited.
In the viewpoint of DNNs’ depth, DAG’s class loss is applied
on the high-level softmax layer, and attention feature loss is
performed on the low-level backend layer. Besides class loss,
UEA incorporates an additional feature loss to get the strong
transferability, which is reasonable. Figure 1 gives an exam-
ple of UEA, and Figure 2 illustrates the overall framework.
In summary, this paper has the following contributions:

e We propose the Unified and Efficient Adversary (UEA)
for attacking image and video detection. To the best
of our knowledge, UEA is the first attacking method
that can not only efficiently deal with both images and
videos, but also simultaneously fool the proposal based
detectors and regression based detectors.

We propose a multi-scale attention feature loss to en-
hance the UEA’s black-box attacking ability. Further-
more, we formulate the existing high-level class loss and
the proposed low-level feature loss within GAN frame-
work to jointly train a better generator.

The rest of this paper is organized as follows. In Section 2,
we briefly review the related work. We present the proposed
Unified and Efficient Adversary framework in Section 3. Sec-
tion 4 reports all experimental results. Finally, we summarize
the conclusion in Section 5.

2 Related Work

The related work comes from two aspects: image and video
object detection and adversarial attack for object detection.
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2.1 Image and Video Object Detection

Object detection is an area where deep learning has shown
its great power. Currently, the dominant image object de-
tection models can be roughly categorized into two classes:
proposal based models and regression based models. The for-
mer class typically contains R-CNN [Girshick et al., 2016],
Faster-RCNN [Ren et al., 2017], Mask-RCNN [He et al.,
20171, etc. These kinds of methods use a two-step procedure.
They firstly detect proposal regions, and then classify them
to output the final detected results. The latter class is repre-
sented by YOLO [Redmon et al., 2016] and SSD [Liu et al.,
2016]. They regard the detection task as the regression pro-
cess, and directly predict the coordinates of bounding boxes.
Compared with the image scenario, video object detection
incorporates temporal interactions between adjacent frames
into the procedure. They usually apply the existing image
detector on the selected key frames, and then propagate the
bounding boxes via temporal interactions [Zhu et al., 2017a;
Zhu et al., 2017b]. Therefore, image object detection forms
the basis of the video object detection. In this paper, we aim
to present a unified method that can attack both the image and
video detectors.

2.2 Adversarial Attack for Object Detection

Currently, adversarial attacks for the object detection are
rare. The first method is proposed by [Xie et al., 2017],
named DAG. They firstly assign an adversarial label for each
proposal region and then perform iterative gradient back-
propagation to misclassify the proposals. DAG is based on
the optimization, and is time consuming, it needs many itera-
tions to accomplish an adversarial image. [Chen et al., 2018;
Li et al., 2018] present the similar idea. In addition, [Bose
and Aarabi, 2018] tries to attack the face detector. But
their threat model is also based on proposal based detectors
(Faster-RCNN). All these works attack the proposal based ob-
ject detectors, and they are all based on the the optimization
manner. A unified adversary, which can simultaneously at-
tack both the proposal based and regression based detectors,
is absent. In this paper, we aim to fill in this gap, and present
a unified method that can attack both the detectors.

3 Methodology

In this section, we introduce the details of UEA.

3.1 Problem Definition

Given an image I, our goal is to generate its corresponding
adversarial image I. We hope that I can attack the object
detector Dt. For a ground-truth object (B;, C;) on I, where
B; is the bounding box, and C; is the label. Suppose the
object detector Dt succeeds to detect this object and outputs
(b;, ¢;), where the IOU between B; and b; is more than 0.5,

and C; = ¢;. We let (El, ¢;) denote the detected result of
this object on the adversarial image I (Note that b may be
empty, which represents Dt doesn’t detect this object). If the
IOU between ISZ and B; is less than 0.5 or ¢; # C;, we can
say the object detector Dt is successfully attacked or fooled.
In order to measure the performance of attacking methods,
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we will compute the detection accuracy using mAP (mean
Average Precision) on the entire dataset, and check the mAP
drop after attacks. For videos, we regard the key frames in a
video as images, and perform the same operation. We expect
the adversarial video can also fool the state-of-the-art video
detection models. The Dt is based on proposals or regression.

3.2 Unified and Efficient Adversary

In this section, we introduce the technical details of UEA.
Overall, we utilize a generative mechanism to accomplish this
task. Specifically, we formulate our problem into the con-
ditional GAN framework. The objective of the conditional
GAN can be expressed as:

Lecan(G,D) = Er[log D(1)]+E;[log(1-D(G(1)))], (1)

where G is the generator to compute adversarial examples,
and D is the discriminator to distinguish the adversarial ex-
amples from the clean images. Because adversarial exam-
ples are defined as close as as possible with original exam-
ples [Szegedy et al., 2013], we input the original images (or
frames) and adversarial images (or frames) to the discrimina-
tor to compute GAN loss in Eq.(1). In addition, an Lo loss
between the clean images (or frames) and adversarial images
(or frames) is applied to measure their similarity:

Lr,(G) =Eq[[lI = G(I)]|2]- 2)

After training the generator based on GAN framework, we
use this generator to generate adversarial examples for testing
images and videos. The adversarial examples are then fed
into object detectors to accomplish the attacking task.

3.3 Network Architecture

Essentially, the adversarial example generation can be formu-
lated into an image-to-image translation problem. The clean
images or frames are input, and the adversarial images or
frames are output. Therefore, we can refer to the training
manner of pix2pix [Isola er al., 2017]. In this paper, we uti-
lize the network architecture in [Xiao et al., 2018] for Ima-
geNet images, that is the first framework to generate adver-
sarial examples using a pix2pix adversarial generative net-
work. The generator is an encoder-decoder network with 19
components. The discriminator is similar to ResNet-32 for
CIFAR-10 and MNIST. Please refer to [Xiao et al., 2018] for
the detailed structure of the generator and discriminator.

3.4 Loss Functions

To simultaneously attack the current two kinds of object de-
tectors, we need additional loss functions on the basis of
Eq.(1) and Eq.(2). To fool Faster-RCNN detector, DAG [Xie
et al., 2017] uses a misclassify loss to make the predictions
of all proposal regions go wrong. We also integrate this loss.
The class loss function is defined as follows:

N

Lpac(G) =Ei[D>[fi, (X tn) = fi, (X, )],

n=1

3)

where X is the extracted feature map from the feature network
of Faster-RCNN on I, and 7 = {¢1, ¢, ..., ty } is the set of all
proposal regions on X. t,, is the n-th proposal region from the
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Region Proposal Network (RPN). /,, is the ground-truth label
of t,,, and [, is the wrong label randomly sampled from other
incorrect classes. fi, (X,t,) € R denotes the classification
score vector (before softmax normalization) on the n-th pro-
posal region. In the experiments, we pick the proposals with
score >0.7 to form 7 = {¢1, o, ..., tN }.

DAG loss function is specially designed for attacking
Faster-RCNN, therefore its transferability to other kinds of
models is weak. To address this issue, we propose the fol-
lowing multi-scale attention feature loss:

£Fea(g) = EI[Z HAm © (Xm - Rm)||2]a

m=1

“

where X,,, is the extracted feature map in the m-th layer of
the feature network. R,, is a randomly predefined feature
map, and is fixed during training. To fool detectors, only the
regions of foreground objects need perturbing. We use the
attention weight A,, to measure the objects in X,,. A, is
computed based on the region proposals of RPN. We let s,
denote the score of region proposal t,,. For each pixel in the
original image, we collect all the region proposals covering
this pixel, and compute the sum S of these proposals’ scores
Sn, and then divide S by the number of proposals N to obtain
the attention weight in the original image. Finally, A,, is ob-
tained by mapping the original attention weight to the m-th
feature layer. For the pixels within objects, their weights will
have large values and vice verse. o is the Hadamard product
between two matrices. By making X,,, as close as R,,,, Eq.(4)
enforces the attention feature maps to be random permuta-
tion, and thus manipulates the feature patterns of foreground
objects. R,,, can also be replaced by other feature maps dif-
ferent from X,,,. In the experiments, we choose the Relu layer
after conv3-3 and the Relu layer after conv4-2 in VGG16 to
manipulate their feature maps. To compute A,,,, we use the
top 300 region proposals according to their scores.
Finally, our full objective can be expressed as:

L=Lcgan +aLlyr, +Lpac + €LFea, (5)

where «, 3, € are the relative importance of each objective.
We set o = 0.05, 3 = 1. Fore, weset 1 x 10~%and 2 x 10™4
for the selected two layers, respectively. G and D are obtained
by solving the minmax game argmingmaxpL. To optimize
our networks under Eq.(5), we follow the standard approach
from [Isola ef al., 2017] and apply the Adam solver [Kingma
and Ba, 2014]. The best weights are obtained after 6 epochs.

4 Experiments

4.1 Datasets

For image detection, we use the training dataset of PASCAL
VOC 2007 with totally 5011 images to train the adversarial
generator. They are categorized into 20 classes. In testing,
we use the PASCAL VOC 2007 testing set with 4952 images.

For video detection, we use ImageNet VID dataset. There
are 759 video snippets for training set, and 138 for testing set.

http://bvisionwebl.cs.unc.edu/ILSVRC2017/download-videos-
1p39.php
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The frame rate is 25 or 30 fps for most snippets. There are 30
object categories, which are a subset of the categories in the
ImageNet dataset.

4.2 Metrics

We use two metrics: attacking performance against object de-
tectors; the generating time for adversarial examples.

Fooling Rate: to test the fooling rate of different attacking
methods, we use the mAP drop (mean Average Precision).
The mAP is usually to evaluate the recognition accuracy of
object detectors both for image and video data. If the adver-
sary is strong, detectors will achieve a lower mAP on adver-
sarial examples than clean examples. The reducing error can
be used to measure the attacking methods.

Time: to tackle with video data, the time for generating ad-
versarial examples is important. In the experiments, we report
the processing time for each image (frame) against different
attacking methods.

4.3 Threat Models

For image detection, our goal is to simultaneously attack
the proposal based detectors and regression based detec-
tors. We select two representative methods: Faster-RCNN
and SSD300. There are a lot of implementation codes for
them. Here we use the Simple Faster-RCNN and torchCV
SSD300. We retrain their models on PASCAL VOC training
datasets. Specifically, Faster-RCNN is trained on the PAS-
CAL VOC 2007 training dataset, and tested on the PASCAL
VOC 2007 testing set. The detection accuracy (mAP) reaches
0.70. SSD300 is trained on the hybrid dataset consisting of
PASCAL VOC 2007 and 2012 training set, and tested on the
PASCAL VOC 2007 testing set. The mAP reaches 0.68.

For video detection, the current video detection methods
are based on image detection. They usually perform image
detection on key frames, and then propagate the results to
other frames [Zhu et al., 2017a; Zhu et al., 2017b]. However,
as shown in [Zhu er al., 2017b], the detection accuracy of
these efficient methods cannot even outperform the simple
dense detection method, that densely runs the image detection
on each frame in a video. In [Zhu et al., 2017al, although
their method beats dense detection method, they cost more
time. If they reduce the processing time, the accuracy also
falls below the dense detection. Therefore, we choose the
dense detection method as the threat model. We argue if the
dense detection method is successfully attacked, the efficient
methods will also fail.

Accuracy (mAP .
Methods oo RN ( 551)3300 Time (s)
Clean Images 0.70 0.68 \
DAG 0.05 0.64 9.3
UEA 0.05 0.20 0.01

Table 1: The mAP and Time comparisons between DAG and UEA.

https://github.com/chenyuntc/simple-faster-rcnn-pytorch
https://github.com/kuangliu/torchcv



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4.4 Results on Image Detection

Comparisons with State-of-the-art Methods

The current state-of-the-art attacking method for image de-
tection is DAG. Therefore, we use DAG as our compared
method. For that, we generate adversarial image using DAG
and UEA, respectively, and then perform the same Faster-
RCNN and SSD300 on the adversarial examples to observe
the accuracy drop (compared with the accuracy on clean im-
ages). Meanwhile, we also check the generating time (Time).
The comparison results are reported in Table 1.

From the table, we see: (1): Both DAG and UEA work
well on attacking Faster-RCNN detector. They achieve the
same 0.65 accuracy drop (0.70-0.05). This is expected be-
cause DAG and UEA formulate the same class loss of Eq.(3)
into their methods, and they perform the white-box attack
against Faster-RCNN. (2): DAG cannot attack SSD detector,
the accuracy drop is only 0.04 (0.68-0.64). By contrast, UEA
obtains a 0.48 accuracy drop (0.68-0.20), which is 12 times
larger than DAG. This verifies the weak black-box attacking
ability of DAG. Instead, UEA integrates a feature loss to ma-
nipulate the shared feature networks between Faster-RCNN
and SSD. The feature loss enhances the transferability and
black-box attacking ability to other kinds of detectors. The-
oretically, UEA is able to attack a large class of object de-
tectors besides SSD and Faster-RCNN, because the majority
of object detectors use the feature network. (3): As for the
generating time of adversarial examples, UEA is almost 1000
times faster than DAG (0.01 vs 9.3). The efficiency is helpful
to tackle with video data. Even for the video with 100 frames,
UEA will only cost one second to pollute all the frames.

We also evaluate the perceptibility of adversarial examples.
Figure 3 gives the comparisons. As an optimization method,
DAG is highly relevant with different images. Their pertur-
bations are increasing with the rising iterations. For example,
DAG only costs 1 iteration for “cat” image, and the pertur-
bations are imperceptible. But for “motorbike” image, DAG
costs 81 iterations, and the perturbations are very obvious (see
the regions in red circles). The “cow” and “boat” images have
the similar trend (see the regions in red circles). UEA is a gen-
erative method. We see the adversarial examples are always
imperceptible, and almost the same as the clean images.

Ablation Study of UEA

Now we look into the ablation study of UEA. As introduced
in Section 3, UEA utilizes two key loss functions in the train-
ing phase. The first is class loss, i.e., Eq.(3), and the second
is multi-scale attention feature loss, i.e., Eq.(4). We study the
function of each loss, and report the results for each category
detection in Figure 4. In this figure, Y-axis is the mAP, X-axis
is the category index in PASCAI VOC. In sequence, they de-
note “Airplane”, “Bicycle”, “Bird”, “Bottle”, “Bus”, “Car”,
“Cat”, “Chair”, “Cow”, “Table”, “Dog”, “Horse”, “Motor-
bike”, “Person”, “Plant”, “Sheep”, “Sofa”, “Train”, “TV”.
Blue curve denotes the class loss. Red curve denotes the
feature loss. Black curve denotes the hybrid loss, which is
the full version of UEA with both class loss and feature loss.
From the figure, we see that “class loss” works well on Faster-
RCNN, but shows the limited attacking ability on SSD300.
After adding the proposed “feature loss”, UEA has the simi-
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Figure 3: The perceptibility comparison of adversarial images. The
first row is clean images. The second row is output by DAG (the
iteration is 1, 81, 133, 41, respectively). The third row is our output.

Faster-RCNN SSD300
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e
o
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123456 7 8 91011121314 15 16 17 18 19 20

Figure 4: The ablation study of UEA for each category detection.

lar attacking performance with “class loss” on Faster-RCNN,
but shows stronger attacking ability on SSD300. These re-
sults demonstrate that hybrid the high-level class loss and
low-level feature loss is a reasonable choice.

Qualitative Comparisons

We give some qualitative comparisons between DAG and
UEA in Figure 5. From the figure, we see both Faster-RCNN
and SSD300 work well on the clean images, and detect the
correct bounding boxes and labels. For DAG, it succeeds to
attack Faster-RCNN (see the sixth row where Faster-RCNN
doesn’t detect any object on two images and predicts wrong
labels on three images). However, SSD300 still works well
on the adversarial examples generated by DAG. For UEA,
Faster-RCNN cannot detect any bounding box on five adver-
sarial examples, and SSD300 detects wrong objects on two
images and zero detection on three images.

To better show the intrinsic mechanism of UEA, we visu-
alize the feature maps extracted from adversarial examples
via DAG and UEA, respectively. Because Faster-RCNN and
SSD300 utilize the same VGG16 as their feature network, we
select the feature maps extracted on conv4 layer and visual-
ize them using the method in [Zeiler and Fergus, 2014]. From
Figure 6, we see that the feature maps via UEA have been ma-
nipulated. Therefore, the Region Proposal Network within
Faster-RCNN cannot output the available proposal regions,
and thus Faster-RCNN doesn’t detect any bounding box. For
SSD300, the manipulated features make the regression oper-
ation not work, leading to wrong or vacant predictions.
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Figure 5: The qualitative comparisons between DAG and UEA ver-
sus Faster-RCNN and SSD300. Please see the texts for details.

4.5 Results on Video Detection

In this section, we report the results on video object de-
tection. We here use the ImageNet VID dataset. As
discussed in section 4.3, we attack the dense frame de-
tection methods. Specifically, we train Faster-RCNN and
SSD300 on ImageNet VID dataset, and then run the de-
tectors on each frame in the testing video. We believe
that if the dense frame detection method can be suc-
cessfully attacked, other efficient methods will be also
fooled. More qualitative attacking results can be found in
https://sites.google.com/view/ueaattack/home

Table 2 shows the quantitative attacking performance of
UEA on ImageNet VID. Specifically, we train Faster-RCNN
and SSD300 on the training set of ImageNet VID, and run
the trained detectors on the testing set. In addition, we use
UEA to generate the corresponding adversarial videos for the
testing set of ImageNet VID, and then run the same detectors.
In Table 2, we see UEA achieves 0.40 mAP drop for Faster-
RCNN, and 0.44 mAP drop for SSD300, which shows UEA
achieves a good attacking performance in the video data.

We here use the VGG16 based Faster-RCNN and SSD300.
[Zhu et al., 2017b] shows that if we use ResNet 101 as the
backbone network, and replace Faster-RCNN with FCN [Dai
et al., 2016] as the object detector, the original mAP will
reach 0.73. Because our paper aims at measuring the attack-
ing ability of UEA, rather than the detecting performance,
the mAP drop is the key metric, rather than mAP. There-
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Figure 6: The feature visualization of adversarial examples via DAG
and UEA, respectively. Please see the texts for details.

fore, we here don’t use ResNet 101+FCN. Similarly, we also
don’t use the SSD500, although it has better detection than
SSD300. The current mAP drop has verified the powerful at-
tacking ability of UEA both against the proposal based detec-
tor (Faster-RCNN) and regression based detector (SSD300).
We believe that if we use the advanced object detectors, the
mAP drop will also improve.

Accuracy (mAP .
Methods g PN ( 551)3300 Time (s)
Clean Videos 0.43 0.50 \
UEA 0.03 0.06 0.3s
mAP drop 0.40 0.44 \

Table 2: The attacking performance of UEA on video detection.

5 Conclusion

In this paper, we proposed the Unified and Efficient Adver-
sary (UEA). UEA was able to efficiently generate adversar-
ial examples, and its processing time was 1000 times faster
than the current attacking methods. Therefore, UEA could
deal with not only image data, but also video data. More
importantly, UEA had better transferability than the existing
attacking methods, and thus, it could meanwhile attack the
current two kinds of representative object detectors. Experi-
ments conducted on PASCAL VOC and ImageNet VID veri-
fied the effectiveness and efficiency of UEA.
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