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Abstract

Recent works use 3D convolutional neural net-
works to explore spatio-temporal information for
human action recognition. However, they either
ignore the correlation between spatial and tem-
poral features or suffer from high computation-
al cost by spatio-temporal features extraction. In
this work, we propose a novel and efficient Mu-
tually Reinforced Spatio-Temporal Convolutional
Tube (MRST) for human action recognition. It de-
composes 3D inputs into spatial and temporal rep-
resentations, mutually enhances both of them by
exploiting the interaction of spatial and temporal
information and selectively emphasizes informa-
tive spatial appearance and temporal motion, mean-
while reducing the complexity of structure. More-
over, we design three types of MRSTs according
to the different order of spatial and temporal in-
formation enhancement, each of which contains a
spatio-temporal decomposition unit, a mutually re-
inforced unit and a spatio-temporal fusion unit. An
end-to-end deep network, MRST-Net, is also pro-
posed based on the MRSTs to better explore spatio-
temporal information in human actions. Extensive
experiments show MRST-Net yields the best per-
formance, compared to state-of-the-art approaches.

1

Human action recognition aims to recognize human action-
s by the visual appearance and motion dynamics of the in-
volved humans and objects in video sequences. It is a fun-
damental yet challenging task due to the temporal dynam-
ic of video content, low resolution and background interfer-
ence, etc. Considerable efforts have been investigated for
decades, and existing approaches could be roughly divided
into two categories: 2D CNN based methods and 3D CNN
based methods.
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Figure 1: The illustration of our proposed MRST. The MRST mainly
consists of three units: the STD unit, the mutually reinforced unit
and the STF unit.

The 2D CNN based methods use either Two-stream C-
NNs [Simonyan and Zisserman, 2014] or CNN-Long Short-
Term Memory (CNN-LSTM) [Donahue ef al., 2015]. The
Two-stream CNNs use two CNN branches to extract spa-
tial features from RGB frames and temporal features from s-
tacked optical flow, respectively. The Two-stream CNNs cap-
ture temporal dependencies with hand-crafted optical flow in-
formation, which suffers from expensive computational cost
and cannot model the correlation between spatial and tempo-
ral information. The CNN-LSTM networks connect a LSTM
layer to the bottom of the CNNs. They firstly extract appear-
ance features with CNNs and then model temporal informa-
tion from the video frames by a LSTM layer in tandem, which
loses plenty of useful information.

Jointly modeling spatio-temporal information via 3D C-
NNs is a natural and efficient approach for human action
recognition. However, the basic 3D CNN (C3D) [Tran er al.,
2015] suffers from the high computational complexity of 3D
convolution operation. Some works [Tran et al., 2018; Xie
et al., 2018; Zhou et al., 2018] attempt to design improved
architectures with the basic 3D convolution. Nevertheless,
these methods still suffer from high computational cost using
3D convolutional operation. Other works [Sun et al., 2015;
Qiu et al., 2017] decompose the 3D convolution into two sep-
arate convolutions, i.e., a 2D spatial convolution plus a 1D
temporal convolution and thus significantly reduce the model
size. However, these methods ignore the correlation between
spatial and temporal information. Actually, the joint explo-
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ration of them could offer a comprehensive representation of
videos and thus enhance the accuracy of action recognition.
Human actions in videos contain both appearance informa-
tion and motion information. For example, in a human play-
ing basketball video, exploring the spatial and temporal in-
formation jointly can pay more attention to the human and
ball’s appearance information rather than the surroundings’
since the human and ball are in continuous movement.

In this paper, we propose a Mutually Reinforced Spatio-
Temporal Convolutional Tube (MRST) towards robust and
accurate human action recognition. It factorizes the 3D inputs
into spatial and temporal representations, mutually enhances
both of them by exploiting the interaction of spatial and tem-
poral information, and fuses the enhanced representations to
obtain effective spatio-temporal features, while reducing the
complexity. Specifically, the MRST consists of a spatio-
temporal decomposition unit, a mutually reinforced unit and
a spatio-temporal fusion unit. An illustration of our MRST
is shown in Fig.1. The spatio-temporal decomposition unit
extracts spatial and temporal features with a 2D convolution
and a 1D convolution, respectively. The mutually reinforced
unit learns the correlation between spatial and temporal infor-
mation by four fully connected layers, and utilizes the corre-
lation to reinforce the discriminative capability of the spatial
features and temporal features. The spatio-temporal fusion
unit selectively emphasizes informative spatial and temporal
features by a global pooling layer and a sigmoid layer and
fuses them to get the effective spatio-temporal feature maps.
In addition, we design three types of MRSTs according to the
different order of spatial and temporal information enhance-
ment, i.e., MRST-P, MRST-S and MRST-T. A novel deep
network, MRST-Net, is also proposed based on the MRST
to better explore spatio-temporal information in human ac-
tions. Experiment results show our proposed deep MRST-
Net achieves state-of-the-art performance on three challeng-
ing action recognition datasets, Kinetics-400, UCF-101 and
HMDB51 with only RGB inputs.

2 Related Work

Human action recognition is one of the core computer vision
tasks and has been studied for decades. Here we outline work
involving deep features and classify them into two categories:
2D CNN and 3D CNN based approaches, according to the
convolutions used in feature learning.

2D CNN based. To explore the spatio-temporal informa-
tion in human actions, the two-stream architecture is first pro-
posed in [Simonyan and Zisserman, 2014] where two 2D C-
NNs are applied to the appearance (RGB frames) and mo-
tion (stacked optical flow) domains, respectively. Features
from the two modalities are fused at the final stage and the
two-stream architecture achieves high video recognition ac-
curacy. Based on this architecture, several mechanisms are
proposed for a better fusion of the two branch network-
s over the appearance and motion [Karpathy er al., 2014;
Feichtenhofer et al., 2017; Tran and Cheong, 2017; Wang et
al., 2018al. On the other hand, early attempts which incorpo-
rate LSTM with traditional features have shown the potential
of the CNN-LSTM architecture for modeling spatio-temporal
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information in action recognition [Donahue et al., 2015]. L-
STM networks are employed to utilize the frame-level fea-
tures of 2D CNNs to explicitly model spatio-temporal rela-
tionships. The work[Hu e al., 2018] extracts different chan-
nels’ attention to further improve the quality of representa-
tions produced by a network.

3D CNN based. The 3D CNN for action recognition is first
presented in [Ji et al., 2013] to learn discriminative features
along both spatial and temporal dimensions. Later, the C3D
feature along with the corresponding 3D CNN architectures
are presented in [Tran et al., 2015]. Since they use 3D con-
volution kernels to model both spatial and temporal infor-
mation rather than 2D kernels which just model spatial in-
formation, more complex relations between appearance and
motion can be learned and captured. The Res3D[Tran et
al., 2017] makes one step further by taking the advantage
of residual connections to ease the learning process. Simi-
larly, I3D[Carreira and Zisserman, 2017] is proposed to use
the Inception network[Szegedy et al., 2015] as the backbone
network rather than residual networks to learn video repre-
sentations. Recently, there are many frameworks proposed to
improve 3D convolution[Tran ef al., 2018; Xie ef al., 2018;
Zhou et al., 2018; He et al., 2018]. However, all of the meth-
ods still suffer from an order of magnitude more computa-
tional cost than their 2D competitors due to the newly added
temporal dimension, which makes the models difficult to
train and unpractical in real-world applications. To decrease
the number of parameters, these works[Sun er al., 2015;
Qiu et al., 2017] decompose a 3D convolution kernel into a
combination of a 2D spatial kernel and a 1D temporal kernel.

3 MRSTs and Deep MRST Network

In this section, we first give a detailed description of the three
types of MRSTs. Each MRST consists of a spatio-temporal
decomposition (STD) unit, a mutually reinforced unit and a
spatio-temporal fusion (STF) unit. We then present our ro-
bust and efficient deep network, MRST-Net for human action
recognition.

3.1 MRSTs

We design the three types of MRSTs according to the differ-
ent order of spatial and temporal information enhancement,
as shown in Fig.2. Each MRST consists of a spatio-temporal
decomposition (STD) unit, a mutually reinforced unit and a
spatio-temporal fusion (STF) unit. The STD unit aims to de-
compose the 3D input signal into spatial features and tem-
poral features with a 2D convolution and a 1D convolution.
The mutually reinforced unit learns the correlation between
spatial and temporal features by four fully connected layers,
and utilizes the correlation to mutually enhance the discrimi-
native capability of the spatial features and temporal features.
The STF unit selectively emphasizes informative spatial and
temporal features and suppresses useless ones and fuses them
together to obtain the efficient spatio-temporal features.

Spatio-Temporal Decomposition Unit
The spatio-temporal decomposition (STD) unit is designed to
reduce the high computational complexity of 3D convolution.
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Figure 2: The detailed architecture of the three types of MRSTs, which selectively emphasize informative spatial and temporal features by the
guidance of the learned correlation between spatial and temporal information. (a) MRST-P: a parallel structure, which reinforces the spatial
and temporal features simultaneously. (b) MRST-S: a series structure, which first reinforces the temporal features and then reinforces the
spatial features. (c) MRST-T: a series structure, which first reinforces the spatial features and then reinforces the temporal features.

Figure 3: Visualization of the spatial and temporal feature maps.
The left picture is a frame extracted from the juggling balls video
in UCF-101; The middle picture is a spatial feature map of the left
frame, which contains mainly spatial appearance; The right picture
is a temporal feature map of the left frame and its adjacent frames,
which contains mainly temporal motion.

It decomposes the 3D convolutional kernel intoa 1 x 3 x 3
convolutional kernel and a 3 x 1 x 1 convolutional kernel.
The 1 x 3 x 3 convolutional kernels are used to extract spatial
features S and the 3 x 1 x 1 convolutional kernels are used to
extract temporal features T. The number of a STD unit’s pa-
rameters is an order of magnitude less than that of an original
3D convolutional kernel, which could reduce the model size
enormously. We additionally employ two 1 x 1 x 1 convo-
lutions at both ends of the path, which are applied to reduce
and restore the channel dimensions respectively, in order to
decrease the overall computational cost of MRSTs.

Mutually Reinforced Unit

The mutually reinforced unit is designed to generate the rein-
forced spatial and temporal representation, consisting of four
fully connected layers. It takes the primitive spatial features S
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and temporal features T as input and produces the reinforced

spatial information S and temporal information T. As shown
in Fig.3, we find that the primitive spatial features mainly
concentrate on the objects with surrounds, such as the human
appearance and the baluster. Besides, the primitive tempo-
ral features mainly concentrate on the objects which are in
continuous motion, such as the human’s arms and the bal-
1. Based on the above observation, we develop a mutually
reinforced unit to use the primitive spatial and temporal fea-
tures to generate reinforced spatial and temporal representa-
tion. With the mutually reinforced unit, for spatial features,
we can pay more attention to the objects which are in continu-
ous motion. As for the temporal features, we can concentrate
more on objects’ surrounds. Specially, in Fig.3, we reinforce
spatial features by suppressing useless features, which are ir-
relevant to sports, such as the baluster. In the meantime, we
reinforce temporal features by learning the appearance of mo-
tion, such as the human’s arms and the ball.

For a 3D input signal X, the primitive spatial features S
and temporal features T generated by the STD unit have the
same size L x H x W x C, where L, H, W, C refers to the
length, height, width and the number of channels, respective-
ly. We propose three different MRST mutually reinforced u-
nits which differ in the order of getting the reinforced spatial
and temporal information, named as MRST-P unit, MRST-S
unit and MRST-T unit, respectively. Detailed structures are
provided as following:

(1) MRST-P unit: As shown in Fig.2(a), the MRST-P u-
nit adopts a parallel structure, which reinforces the spatial
and temporal features simultaneously. It consists of four ful-
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ly connected networks. The temporal-to-spatial (TS) fully
connected network is designed to learn the temporal features’
guiding effect on spatial features. The spatial-to-spatial (SS)
fully connected network learns the impact of spatial features
on itself. Then the output of TS fully connected network
and SS fully connected network are added together as the
reinforced spatial information S. Similarly, the spatial-to-
temporal (ST) fully connected network and the temporal-to-
temporal (TT) fully connected network are designed to learn
the spatial features’ guiding effect and temporal features’ im-
pact on the temporal features, respectively. The reinforced
temporal information T are obtained by adding the output of
ST and TT fully connected layer. The formulation of obtain-
ing the reinforced information is shown as follows:

S:WSS'S+WTS'T

N (D)
T=Wgr-S+Wpp- T

where Wgg, Wor, Wrg and W refer to the parameters of
the four fully connected layers, respectively.

(2) MRST-S unit: As shown in Fig.2(b), the MRST-S unit
employs a series structure, consisting of four fully connect-
ed layers. First of all, a ST fully connected network and a
TT fully connected network are designed to learn the spatial
features’ guiding effect and temporal features’ impact on the
temporal features, respectively, for producing the reinforced
temporal information T. After that, the reinforced spatial in-
formation S are obtained based on the primitive spatial fea-
tures S and the reinforced temporal information T. The for-
mulation of the MRST-S unit is shown as follows:

TZWST'S—FWTT-T

- - 2)
S=Wgs-S+Wrg-§(T)

where J refers to the ReLU function.

(3) MRST-T unit: As shown in Fig.2(c), the MRST-T unit
utilizes a series structure and consists of four fully connected
layers. Firstly, a TS fully connected network and a SS fully
connected network are designed to learn the temporal fea-
tures’ guiding effect and spatial features’ impact on the spa-
tial features, respectively, for producing the reinforced spatial
information S. Afterwards, the reinforced temporal informa-
tion T is obtained based on the primitive temporal features T
and the reinforced spatial information S. The formulation of
the MRST-T unit is is shown as follows:

S=Wss-S+Wpg-T

~ - (3)
T:WST'5(S)+WTT~T

Spatio-Temporal Fusion Unit
The spatio-temporal fusion (STF) unit aims to selectively em-
phasize informative spatial and temporal features, which can
be interpreted as a means of biasing the allocation of avail-
able computational resources towards the most informative
components of features, and fuses them to obtain effective
spatio-temporal features.

For any given transformation U = F;,(X), where X is a
three-dimensional input and Fy,. refers to a 3D convolutional
operator. We suppose U € REXHXWXC "and we can write it
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as U = [uy,ug, ..., uc], where u, refers to the parameters of
the c-th channel in U. We first use the global average pool-
ing operation to generate channel-wise statistics. Formally,
a statistic z € RY is generated by shrinking U through its
spatio-temporal dimensions L. x H x W, such that the c-th
element of z is calculated by:

1 L H W

2o = Fop(Ue) = Tgrsqy 22 D D uelkiing) @)
k=11:1=1 j=1

To ensure that multiple channels are allowed to be empha-

sised, we follow the global pooling operation with a sigmoid
function.

s=o(z) 5)
where o refers to the sigmoid function. The final output of
the STF unit X* is obtained by rescaling the transformation
output U with the activation:
= Fscale(ua Sc) = Sc - Uc (6)
where X* = [x},x3,...,x5], and the scale function refers to
channel-wise multiplication between the scalar s and the fea-
ture map u.. Particularly, in our MRSTs, the STF unit takes
the spatial features S, the temporal features T, the reinforced
spatial information S and the reinforced temporal information
T as inputs and the final output can be calculated by:

8" = Fcale(S, U<ng<s)))

T* = Fscale (Ta U(ng (T) ))
where o refers to the sigmoid function, and F, represents the
global average pooling operation, which is shown in Eq.4.

3.2 Deep MRST Network

We propose a simple yet efficient MRST-Net by stacking the
MRST blocks. The proposed MRST-Net contains an initial
convolutional block, five residual convolutional blocks and a
LSTM [Hochreiter and Schmidhuber, 1997] layer. The ini-
tial convolutional block consists of six convolutional layers,
which extracts primitive features. Each of the five residu-
al convolutional blocks contains several MRSTs with Batch
Normalization (BN) and Rectified Linear Units (ReLU). The
main idea of the residual convolutional block is to learn the
additive residual function with reference to the unit inputs
which is realized through a shortcut connection, instead of di-
rectly learning unreferenced non-linear functions [He et al.,
2016]. Moreover, the Max-Pooling operation is performed
with the initial convolutional block and each residual convo-
lutional block, reducing the size of the feature maps (All the
Max-Pooling layers’ kernel size are 1 x 2 X 2 and strides are
(1,2,2)). We also add a Max-Pooling layer and a reshape oper-
ation after the conv6_x residual block to get the LSTM input.
The LSTM layer progressively takes each time’s feature out-
put from the last residual block as input and decides whether
to retain or discard the features from the current time and pre-
vious ones. Finally, a fully connected layer is designed to
predict the classification of the input video sequence. More
details of the network architecture are provided in Table 1.

*
XC

)
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MRST-Net
layer output size kernel size
1 x7x7,64 3><1><164
convl L x 112 x 112 (1x1x1,64)
1><1><164
1x3x3,64 3x1x1,64
conv2_x L x 56 x 56 |: (1x1x1,64) x4 :|
1x1x1,128
I1x1x1,64
1 x3x3,64 3><1><164
conv3_x L x 28 x 28 |: (1x1x1,64) j|
1><1><1256
1x1x1,128
1x3x%x3,128 3 x1x1,128
conv4_x L x 14 x 14 |: (1x1x1,128) x 4 ] 12
1x1x1,512
1x1x1,256
1x3x3,256 3x1x1,256
conv5_x LXx7x7 [ (1x1x1,256) x 4 :|
1x1x1,512
1x1x1,256
1x3x3,256 3x1x1,256
convo_x L x4x4 |: (1x1x1,256) x 4 ‘|
1x1x1,512
Max Pool L x 2048 1 x 2 x 2, stride (1,2,2) and reshape
LSTM L x 1024 1024 hidden units

average temporal pooling, fc layer with softmax

Table 1: Architecture of the deep MRST-Net. It has one initial con-
volutional block and five residual convolutional blocks and a LSTM
layer. The Max-Pooling layers after the first layer of each convolu-
tional block are omitted for simplification. The details of residual
convolutional blocks are shown in brackets, next to the number of
times each block is repeated in the stack. The dimensions of filters
and outputs are given by time, height, and width.

4 Experiments

4.1 Datasets and Implementation Details

Datasets. Three well-known benchmarks, i.e., Kinetics-
400[Kay et al., 2017], UCF-101[Soomro et al., 2012], and
HMDB-51[Kuehne et al., 2013], are included in the evalua-
tions. The large-scale Kinetics-400 benchmark dataset con-
sists of approximately 300, 000 videos from 400 action cate-
gories. UCF-101 consists of 13,320 manually labelled videos
from 101 action categories. HMDBS1 is collected from var-
ious sources, e.g. web videos and movies, which proves to
be realistic and challenging. It consists of 6,766 manually
labelled clips from 51 categories. Both UCF101 and HMD-
B51 are provided with 3 splits for training and testing and we
report the accuracy by averaging over all 3 splits.

Implementation details. Our data augmentation includes
random clipping on both spatial (firstly resizing the smaller
video side to 256 pixels, then randomly cropping a 224 x 224
patch) and temporal (randomly picking the starting frame a-
mong those early enough to guarantee a desired number of
frames). We average clip predictions which are uniformly
sampled from the long video sequence to obtain the video
predictions. Batch normalization is applied to all convolu-
tional layers. We use the Adam Gradient Descent optimizer
with an initial learning rate of 1e ~* to train the MRS T-related
networks from scratch. The drop out ratio and weight decay
rate are set to 0.5 and 5e~°. We set the initial learning rate
is 15 and utilize the gradient descent optimizer with a mo-
mentum of 0.9 to train our MRST-related networks initialized
with the ImageNet-1k and Kinetics-400 pre-trained model.
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method UCF101 | HMDB51 size
C3D 85.3% 58.5% 321M
STD 86.9% 60.8% 209M
STD(with STF) 88.8% 63.8% 213M
MRST-P 91.2% 67.2% 211M
MRST-S 90.8% 66.4% 211M
MRST-T 92.2% 68.9% 211M

Table 2: Ablation study. Performance comparison to C3D, STD,
STD with STF on UCF101 and HMDBS51. They use the same net-
work structure as C3D and they are all pre-trained on Kinetics-400.
The complexity is measured using model size.

We employ the higher drop out ratio of 0.9 and the weight
decay rate of 5e 4 to prevent over-fitting.

4.2 Ablation Study

To demonstrate the effectiveness of each component of the
proposed MRSTs, we conduct a series of ablation experi-
ments on UCF-101 and HMDBS51 datasets. We also make
a comparison with C3D[Tran er al., 2015], the baseline 3D
CNN. We choose C3D as our baseline since it is the most di-
rect way to demonstrate the effectiveness of our final MRSTs.
For fairness, all architectures use the same backbone (with 8
convolutional layers, 5 max-pooling layers, and 2 fully con-
nected layers) and the same input 16 x 3 x 224 x 224 (16 is
the number of frames in each input clip). Moreover, they are
all pre-trained on the Kinetics-400 datasets.

Table 2 shows the comparison results in terms of the Top-1
classification accuracy and the model size on both UCF-101
and HMDBS51 datasets. From Table 2, we can observe that
our three MRSTSs significantly outperform the baseline ap-
proach C3D. We also find that compared to the STD unit, the
STD unit with STF improves accuracy by 1.9% on UCF-101
and 3% on HMDBS51, which can prove the efficiency of at-
tention recalibration. In addition, all the three MRSTs outper-
form the STD (with STF) unit, which strongly demonstrates
the effectiveness of the mutually reinforced unit. Meanwhile,
we find that among all three MRSTs, the MRST-T yields the
best performance. Compared to the MRST-P, the MRST-T in-
creases accuracy by 1% and 1.7% on UCF-101 and HMDBS51
respectively. And compared to the MRST-S, the MRST-T
improves accuracy by 1.4% on UCF-101 and 1.7% on HMD-
B51. We conjecture that the human action recognition task re-
lies more on temporal features, namely the objects which are
in continuous motion. Moreover, some objects with surround
in spatial features may interfere with extracting effective at-
tentions. As for some tasks rely more on spatial features,
such as the video person re-identification task, the MRST-S
may get better performance than the others. We also evaluate
the model size in all the six architectures. It is clear that the
model size of MRST is much smaller than the C3D and is
close to the STD model size, which proves that our MRSTs
consume less computational resources.

4.3 Comparison to the State-of-the-Art Methods

We further demonstrate the advances of our proposed MRST-
Net in comparison with state-of-the-art methods for action
recognition. All methods use only RGB input. Based on the
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Method Backbone Input X clips number Kinetics-400 | #Params | FLOPs

C3DlICarreira and Zisserman, 2017] - [16 x 3 x 224 x 224] x 1 56.1% 79.0M 296.7G
LRCNI[Carreira and Zisserman, 2017] - [25 x 3 x 224 x 224] x 1 63.3% 9.0M 41.5G
Nonlocal-I3d[Wang et al., 2018b] ResNet50 128 x 3 x 224 x 224] x 1 67.3% 35.3M 145.7G
ARTNet[Wang et al., 2018al ResNet18 16 x 3 x 112 x 112] x 25 69.2% 35.2M 25.7G
I3D-RGBICarreira and Zisserman, 2017] | BN-Inception | [All x 3 x 256 x 256] x 1 71.1% 12.7M 544.4G
StNet[He et al., 2018] ResNet101 25 x 15 x 256 x 256] x 1 71.4% 52.2M 310.5G
R(2+1)D-RGBITran er al., 2018] ResNet34 32 x 3 x 112 x 112] x 10 72.0% 63.8M 152.4G
S3D[Xie et al., 2018] BN-Inception | [All x 3 x 224 x 224] x 1 72.2% 8.8M 518.6G
MEF-Net[Chen et al., 2018] - 16 x 3 x 224 x 224] x 50 72.8% 8.0M 11.1G
MRST-T(ours) ResNet101™ 16 x 3 x 224 x 224 x 20 74.1% 31.7M 99.6G

Table 3: Performance comparison with the state-of-the-art results on Kinetics-400 with only RGB frames as inputs. Here, “All” means using
all frames in a video. #Params means the total number of model parameters. FLOPs means floating point operations.

results in section 4.2, we use the MRST-T (which gets the best
performance among three MRSTs) and ResNet101* (com-
pared to the base ResNet101, we add a spatial pooling layer
and change the channel numbers of some layers, as shown in
Table 1.) structure as backbone. In order to control the num-
ber of parameters of the whole network, we use the input clip
size as 16 x 3 x 224 x 224. We uniformly sample 20 clips
per video and average these 20 clip predictions to obtain the
video prediction. Related results on Kinetics-400, UCF101
and HMDBS1 are shown in Tables 3 and 4, respectively.

Results on Kinetics-400. Table 3 shows the performance
comparison of our proposed MRST-T-Net (pre-trained on
ImageNet-1k) against nine state-of-the-art methods in terms
of Kinetics-400 Top-1 classification accuracy and the total
number of parameters and the FLOPs. The compared meth-
ods use only RGB inputs and they have almost the same
backbone. The proposed MRST-T-Net achieves 74.1% Top-1
classification accuracy, and the total number of parameter-
s is 31.7M, and the FLOPs is 99.6G. We can see that our
method surpasses existing methods, improving the 2nd best
compared method MF-Net by 1.3% at Top-1 classification
accuracy. Moreover, our MRST-T-Net achieves significant
performance improvement compared to the baseline C3D by
18% at Top-1 classification accuracy. Besides, the total num-
ber of parameters of our proposed MRST-T-Net is no more
than half of the C3D. Compared to the same backbone struc-
ture ResNet101-StNet[He et al., 2018], our network has few-
er parameters. We can also see that the computational cost
(FLOPs) of MRST-T-Net is lower than those of most existing
3D CNN based methods. The comparisons indicate that the
MRST-T-Net can learn and represent spatio-temporal features
much more efficiently and accurately than other methods.

Results on UCF-101 and HMDBS51. We also experimen-
t with fine-tuning MRST-T-Net (pre-trained on ImageNet-1k
and Kinetics-400) on UCF-101 and HMDBS51 to evaluate the
generality and robustness. From Table 4, we can observe that
the proposed MRST-T-Net outperforms almost all the exist-
ing state-of-the-art methods with only RGB inputs on both
UCF-101 and HMDB51, obtaining 96.5% Top-1 classifica-
tion accuracy on UCF-101 and 75.4% Top-1 classification
accuracy on HMDBS51. In addition, MRST-T-Net boosts the
baseline method C3D by 14.2% at Top-1 accuracy on UCF-
101 and 23.8% at Top-1 accuracy on HMDBS51. The only
method that has better performance on UCF-101 than ours
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Method UCF101 HMDB51

Two-stream[Simonyan and Zisserman, 2014] 73.0% 40.5%
C3DI[Tran et al., 2015] 82.3% 51.6%
ST-ResNet-50[Feichtenhofer ef al., 2017] 82.3% 48.9%
ST-ResNet-152[Feichtenhofer et al., 2017] 83.4% 46.7%
TSN[Wang et al., 2016] 85.7% 54.6%
Res3DI[Tran et al., 20171 85.8% 54.9%

P3D ResNet[Qiu et al., 2017] 88.6% -
MiCT-Net[Zhou et al., 2018] 88.9% 63.8%
ARTNet[Wang et al., 2018a] 94.3% 70.9%
I3D-RGBI[Carreira and Zisserman, 2017] 95.6% 74.8%
MF-Net[Chen et al., 2018] 96.0% 74.6%
R(2+1)D-34-RGBI[Tran et al., 2018] 96.8% 74.5%
MRST-T(ours) 96.5% 75.4%

Table 4: Action recognition accuracy on UCF-101 and HMDBS1,
averaged over three splits. The top part of the table refers to relat-
ed methods with the Sports-1M pre-trained, the lower part refers to
related methods with the Kinetics-400 pre-trained.

is the R(2+1)D-34 layers network, but our proposed model
require fewer parameters and less computational cost.

5 Conclusion

In this work, we propose a mutually reinforced Spatio-
Temporal Convolutional Tube (MRST) for human action
recognition. It decomposes 3D inputs into spatial and tem-
poral representations, mutually enhances both of them by
exploiting the interaction of spatial and temporal informa-
tion, and fuse them for extracting effective spatio-temporal
features, while reducing the computational complexity. Ex-
periment results show that the MRST-T yields the best per-
formance among three MRSTs and significantly outperforms
traditional 3D CNNs for action recognition. Moreover, the
MRST-T-Net achieves the best performance on three datasets,
Kinetics-400, UCF-101 and HMDBS51 in comparison to state-
of-the-art approaches, indicating that the proposed MRST-T-
Net is general and efficient.
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