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Abstract

Deep network based cross-modal retrieval has re-
cently made significant progress. However, bridg-
ing modality gap to further enhance the retrieval
accuracy still remains a crucial bottleneck. In this
paper, we propose a Graph Convolutional Hashing
(GCH) approach, which learns modality-unified
binary codes via an affinity graph. An end-to-end
deep architecture is constructed with three main
components: a semantic encoder module, two fea-
ture encoding networks, and a graph convolutional
network (GCN). We design a semantic encoder as a
teacher module to guide the feature encoding pro-
cess, a.k.a. student module, for semantic informa-
tion exploiting. Furthermore, GCN is utilized to ex-
plore the inherent similarity structure among data
points, which will help to generate discriminative
hash codes. Extensive experiments on three bench-
mark datasets demonstrate that the proposed GCH
outperforms the state-of-the-art methods.

1 Introduction
With the development of social network and the Internet, vi-
sual data (e.g., photos and videos) have experienced an ex-
plosive growth, thus introducing renew enthusiasm in near-
est neighbor search field. Cross-modal retrieval is one of the
most popular approaches, which aims to search semantically
similar data points in one modality (e.g., image) by using a
query from another modality (e.g., text). Besides, hashing
method has received wide attention because of its low storage
requirements and fast query speed, which maps high dimen-
sional multi-modal data points into common Hamming space,
endowing similar cross-modal data points with similar hash
codes. However, the modality gap caused by the heteroge-
nous nature of data from different modalities still remains a
challenge for accurate cross-modal hashing.

Many cross-modal hashing methods have been pro-
posed [Bronstein et al., 2010; Ding et al., 2014; Shen et
al., 2015; Deng et al., 2016], most of which adopt shallow
structures and hand-crafted features. However, there is a
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main drawback indwelling in these methods, that the hand-
crafted feature extraction procedure is independent of hash
code learning procedure, limiting the capacity of achieving
accurate hash codes.

On the other hand, deep network-based methods [Yang et
al., 2017; Deng et al., 2018; Yang et al., 2018; Li et al., 2018;
Li et al., 2019] extract features with convolution neural net-
works and then learn hash code simultaneously in an end-
to-end training fashion, which generates more accurate hash
codes. Unfortunately, most of these methods design different
networks for image and text data, such as two-stream net-
work utilized in Deep Cross-Modal Hashing [Jiang and Li,
2017], and directly employ similarity matrix as semantic con-
straints to generate hash codes. Such naive approaches can
not fully exploit semantic correlations to guide the hash code
learning procedure. Furthermore, semantic structural similar-
ities between data points can be very helpful when generat-
ing semantic-preserving hash codes, which is often ignored.
Therefore, how to incorporate semantic relevance and struc-
tural similarities between different data points into hash code
learning procedure is of unprecedented importance.

Data points being independent of each other is a core as-
sumption of existing machine learning algorithms. However,
this assumption does not hold for graph data where each data
point (node) is related to others (neighbors) via some com-
plex link information, which can capture the interdependence
among data points. The same intuition also exists in cross-
modal retrieval, since every data pair in both modalities is
linked with neighboring pairs, and employing such interde-
pendence can be beneficial to accurate retrieval. Deep struc-
ture operates on graph-structured data, such as Graph Con-
volutional Networks (GCNs), has attracted increasing atten-
tion because of its fine capacity of exploiting relationships
between nodes [Huang and Chen, 2017; Yang et al., 2019].
One of the first research on GCNs is presented in [Bruna
et al., 2013], many variants and improvements have been
proposed since then, showing promising results in applica-
tions such as node classification [Duvenaud et al., 2015;
Kipf and Welling, 2016]. The basic idea of GCNs is up-
dating one node’s feature based on neighboring nodes’ ac-
cording to the adjacent matrix of this graph, therefore, GCN
can pay attention to the semantic structure of data points
via adjacency relationships, incorporating such networks in
cross-modal hashing can be favorable for learning structural
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Figure 1: The proposed GCH: green, gray and blue part indicate semantic encoder, feature encoding networks and fusion module, respectively.

similarity-preserving hash codes and further boosting cross-
modal retrieval performance.

In this paper, we propose a graph convolution network
hashing (GCH) for cross-modal retrieval, which consists of
three main components: a semantic encoder, two feature en-
coding networks and a graph convolution network (GCN)
based fusion module. The proposed method utilizes GCN to
produce an exhausted relation description between different
data points, employs semantic encoder to guide the feature
encoding process and preserves semantic together with struc-
ture similarities in feature learning at the same time, which is
beneficial to generating more discriminative hash codes. The
highlights of our work are as follows:

• We propose a novel graph convolution networks based
cross-modal hashing method to alleviate the modality
gap and improve cross-modal retrieval.

• To fully and effectively explore the semantic informa-
tion, we train the semantic encoder to discover seman-
tic relevance, which acts as ‘teacher module’ guiding
feature encoding networks to learn discriminative and
semantic-rich features. Then GCN is used to further en-
rich features with semantic structure, obtaining a beacon
feature for further updating encoded features.

• Experiments on three benchmarks demonstrate that our
proposed GCH notably outperforms the current state-of-
the-art cross-modal hashing methods, including both tra-
ditional and deep learning based methods.

2 Related Work
Cross-modal hashing methods can be categorized into two
different settings: unsupervised and supervised approaches.
As an unsupervised method, in Collective Matrix Factor-
ization Hashing (CMFH) [Ding et al., 2014], unified hash
codes for multiple modalities are generated using collec-
tive matrix factorization from different views.In contrast,
CMSSH [Bronstein et al., 2010], which is a supervised ap-

proach, presents a cross-modal hashing by preserving intra-
class similarity via eigen-decomposition and boosting.

Models based on deep networks [Cao et al., 2016; Li
et al., 2018; Jiang and Li, 2017; Cao et al., 2018] are
widely regarded and can better access to more discrimina-
tive features than those utilizing hand-crafted features, which
leads to a boost in the performance of deep cross-modal re-
trieval. In recently proposed Cross-Modal Hamming Hashing
(CMHH) [Cao et al., 2018], favorable hash codes are gener-
ated for accurate retrieval by jointly optimizing a novel ex-
ponential focal loss and an exponential quantization loss in a
Bayesian learning framework. In addition, similar to our ap-
proach, Deep Cross-Modal Hashing (DCMH) [Jiang and Li,
2017] and Self-Supervised Adversarial Hashing (SSAH) [Li
et al., 2018] both learn hash codes by preserving label sim-
ilarity correlation, making full use of semantic information.
These two methods achieve satisfying results, yet DCMH
forces hash codes to keep semantic relevance for similar data
points using similarity matrix in an obvious way, without pay-
ing too much attention to latent structure of cross-modal data.
On the other hand, SSAH notices semantic structure lying be-
neath data points, but the algorithm is very time-consuming.
Therefore, how to efficiently connect different modalities and
explore modality consistency under the supervised informa-
tion to produce favorable hash codes is the key to improve
search accuracy for cross-modal hashing.

Different from existing deep network based cross-modal
hashing methods, our work employs GCN to excavate data
structural information and utilizes semantic encoder to ex-
tract semantic information from different modalities, which
are transferred into encoded features, thus both semantic and
structure similarities are well preserved, leading to optimal
hash codes and better retrieval performance.

3 The Proposed GCH Model
In this work, we focus on retrieval between image and text
modalities, which are two most commonly used modalities in
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daily life. Figure 1 shows the flowchart of the proposed GCH
model. It consists of three main components: a semantic en-
coder, two feature encoding networks for both modalities, and
a graph convolution network based fusion module, which will
all be introduced concretely in the framework subsection.

3.1 Problem Formulation
Given a cross-modal dataset O = {oi}ni=1 with n data points,
oi = (xi, yi, li), where xi and yi are original image and text
of the i-th data point, and li = [li1, . . . , lic] is the ground-
truth label assigned to oi, where c is the class number. If oi
belongs to the j-th class, lij = 1, otherwise lij = 0. Specifi-
cally, we utilize multi-label similarity matrix S to denote sim-
ilarity of two data points m,n: if they belong to at least one
same class, Smn = 1, otherwise Smn = 0. The goals of
cross-modal hashing are to learn a unified K-bit hash code
for both modalities: B ∈ {−1, 1}K , and to simultaneously
preserve the original similarity between data pairs. Further-
more, to measure the similarity between two hash codes hi
and hj , we can calculate their Hamming distance with their
inner product 〈hi, hj〉. In order to obtain hash code for either
modality, we can simply perform a non-linear transformation
on the encoded feature, which can be depicted as:

H∗ = h(f∗), (1)
where ∗ = {x, y, l}, h(·) denotes the non-linear transforma-
tion, and the obtained hash code is denoted as H∗.

3.2 Framework
In order to discover abundant semantic information in labels
and transfer such information to encoded features, inspired by
the idea of ‘Teacher-Student’ strategy, we construct a novel
semantic encoder as a teacher module to fully exploit the
knowledge of semantic information lying in labels, and guide
the feature encoding process with these knowledge. The en-
coder can be formulated as follows:

gl = Gl(l, θl). (2)
where θl is network parameter. Concretely, it is an end-to-end
full-connected deep neural network. We hope the semantic
encoderGl can well preserve the similarities between seman-
tic features and corresponding hash codes, to this end, the ob-
jective function of semantic encoder is formulated as follows:

min
θl
Ll =− α

n∑
i,j=1

(
SijΓ

l
ij − log

(
1 + eΓl

ij

))
+ β

∥∥∥L̂l − L∥∥∥2

F
,

(3)

where Γlij = 1
2 (H l

i)(H
l
j)
>, α and β are hyper-parameters,

‖·‖F is the Frobenius norm. H l
∗i is the predicted hash code

transformed from the feature gl and L̂l is the predicted label,
which can also be obtained from the feature. In Eq. (3), the
first term is negative log-likelihood function, which is used to
preserve similarities between features, and the second one is
classification loss between the original label L and the pre-
dicted label L̂l. The output of semantic encoder is very help-
ful in guiding feature encoding networks to learn a semantic-
rich feature, which favors the generation of hash codes for
both modalities.

Furthermore, in order to build correlation between different
modalities and further learn reliable hash codes, we construct
two feature encoding networks to encode cross-modal data
into common representation under the supervision of seman-
tic encoder. For the i-th data point oi, we model the image
feature encoding function Ex(x, θx) with convolutional neu-
ral network to extract high-level image feature fx. Further-
more, we construct text feature encoding network Ey(y, θy)
with four fully-connected layers, where θx and θy are net-
work parameters. The feature encoding networks can be writ-
ten as:

f∗ = E∗(∗, θ∗), ∗ = {x, y}. (4)
In addition, we wish to preserve the knowledge distilled

from labels, i.e., the semantic relevance, in encoding net-
works. Therefore, an end-to-end training procedure under the
guidance of semantic encoder must be adopted for both en-
coding processes. In this way, knowledge, i.e., the semantic
relevance, is transferred from ‘Teacher’ (semantic encoder) to
‘Students’ (feature encoding networks). In order to introduce
the supervision of semantic encoder, similar to Eq. (3), the
objective function of feature encoder takes following form:

min
θ∗
L∗ = αJ1 + βJ2 + γJ3

=− α
n∑

i,j=1

(
SijΓ

l∗
ij − log

(
1 + eΓl∗

ij

))
+ β

∥∥Hb −H∗
∥∥2

F
+ γ
∥∥∥L̂∗ − L∥∥∥2

F
.

(5)

Like those defined in Eq. (3), Γl∗ij = 1
2 (H l

i)(H
∗
j )>, α,

β and γ are hyper-parameters, ‖·‖F is the Frobenius norm.
H∗ are predicted hash codes for both modalities and L̂∗ are
predicted labels. Specifically, Hb is the beacon hash code
generated by GCN, which contributes to encoding more dis-
criminative features and will be discussed in the later sec-
tion. It is worth noting that in Eq. (3), we encode features for
each modality under the guidance of semantic encoder, which
takes form of H l in Γl∗ij . By doing so, semantic relevance ob-
tained from semantic encoder is well preserved in encoded
features for both modalities. Similarly to Eq. (3), here J3

is employed to keep categorical information by reducing the
difference between L̂ and the original label L.

To further enhance encoded features, we first need to fuse
encoded features without losing too much semantic rele-
vance. Inspired by [Vaswani et al., 2017], self-attention
mechanism is chosen for semantic-preserving fusing method
in our work. Concretely, features from two modalities are re-
weighted using features from relative modality, which can be
formulated as follows:

fr =
1

2
(fxs−a+fys−a), fxs−a = fx×W̃ , fys−a = fy×W̃ . (6)

where W̃ = norm(fx × fy>) serves as the normalized
weight matrix, fx and fy are original features from respec-
tive modality, fxs−a and fys−a are the processed features and
fr is the fused feature. As for operative symbols, × denotes
matrix inner product, and norm is matrix normalization.

Based in this fusion module, we can formulate out graph
convolution network as follow: given Nb pairs of training
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Algorithm 1 Semantic encoder guided learning for graph
convolutional network hashing (GCH).

1: Input: Image set X; text set Y ; label set L;
2: Output: Learned network parameters θx,y,l,G;
3: Initialization: network parameters θx,y,l,G; hyper-

parameters: α, β, γ; learning rate: µ; mini-batch size:
Nx,y,l
b = 128; maximum iteration number: Tmax, iter=0;

4: while iter < Tmax do
5: Update θl by BP algorithm.
6: Update θx,y under guidance of semantic encoder.
7: Update θG under guidance of semantic encoder, calcu-

late beacon feature.
8: Re-update θx,y using beacon feature.
9: end while

data points {xi, yi, li}Nb
i=i, after feeding corresponding data

points to each feature encoding networks, we will have two
feature matrices fx ∈ RNb×d and fy ∈ RNb×d, which will be
fused using afore mentioned self-attention fusing mechanism.
After obtaining the fuse semantic-rich feature fr, it needs to
be further enhanced with structural similarities to make up for
the deficiency of the modality gap. To this end, we employ a
multi-layer GCN, in which way in-batch features with strong
latent structural relations will interact during parameter up-
dating, leading to optimal hash codes to unify both modalities
and to improve retrieval accuracy eventually.

The fused feature is fed into multi-layer GCN along with
the adjacency matrix A ∈ RNb×Nb concerning the adjacent
relationships of Nb in-batch data pairs. Suggested by [Kipf
and Welling, 2016], the layer-wise propagation rule of multi-
layer GCN can take the following form:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)). (7)

Here, Ã = A + IN is the normalized adjacency matrix of
the undirected graph G. Entries of A can be computed as
A(i, j) = li × lj , here li is the ground truth label of data
point i. IN is the identity matrix, indicating every node is
connected to itself, D̃ii =

∑
j Ãij is the degree matrix of Ã

and σ(·) denotes an activation function, such as ReLU. H(l)

and H(l+1) are the input and output feature matrices of the l-
th layer, representing features learned by the preceding layer
and the present layer. W (l) acts like convolutional filter in
conventional CNNs in l-th layer, whose parameters will be
updated during training.

Updating parameters in GCN during training is beneficial
to dynamically updating nodes’ features. It can be learned
from Eq. (7) that, for a node Vi, graph convolution concate-
nates the features of Vi’s neighboring nodes by a weighted
summation and simultaneously assigns new features to Vi
based on Ã, indicating that features of neighboring nodes are
encouraged to be closer. In this way, the fused feature of two
modalities are tightened by structural similarities. Accord-

ingly, the overall objective is defined as:

min
θG
LGCN =− α

n∑
i,j=1

(
SijΓ

G
ij − log

(
1 + eΓG

ij

))
+ β

∥∥∥L̂G − L∥∥∥2

F
,

(8)

where ΓGij = 1
2 (Hb

i )(Hb
j )>. The output of GCN is denoted as

beacon feature, which denotes as Hb in Eq. (8) and Eq. (5),
serves as a ‘beacon’ in the common feature space for encoded
features to approach. In this way, the structural similarities
are well preserved in encoded features. The remaining pa-
rameters in Eq. (8) are as same as those in Eq. (3).

3.3 Training Strategy
Combining the four aforementioned objective functions, the
overall objective function of GCH can be formulated as:

Lall = Lx + Ly + Ll + LGCN . (9)

In particular, we regard them of equal importance as dis-
cussed earlier in the paper. The objective Eq. (9) is learned
via iterative optimization. Concretely, the optimization order
is Ll ⇒ L∗ ⇒ LG ⇒ L∗, where ∗ = {x, y}. It is noted
that network parameters are fixed when training other parts
of the network and are learned by utilizing stochastic gradi-
ent descent (SGD) with a back-propagation (BP) algorithm,
which are widely used in existing deep methods. Algorithm 1
outlines the whole learning algorithm in detail.

After the whole network is well-trained in the end-to-end
fashion, hash codes for the unseen data points can be obtained
directly by feeding the original feature into feature encoding
networks:

bx,yq = sign(f∗(bq; θ
∗)), (10)

where ∗ = {x, y}.

4 Experiments and Discussions
Three popular benchmark datasets in cross-modal re-
trieval: MIRFLICKR-25K [Huiskes and Lew, 2008], NUS-
WIDE [Chua et al., 2009], and Microsoft COCO [Lin et al.,
2014] are adopted to validate our proposed method. Our GCH
is implemented with TensorFlow [Abadi et al., 2016] and ex-
ecuted on a server with one NVIDIA TITAN Xp GPU.

4.1 Datasets
MIRFLICKR-25K contains 25,000 data points collected from
Flickr. In total, 20,015 data points are selected in our exper-
iment, using 10,000 data points for training and 2,000 for
query. The remaining part is used for retrieval. The text
for each point is represented as a 1,386-dimensional bag-of-
words vector, and each point is annotated with at least one of
the 24 unique labels.

NUS-WIDE contains about 269,648 web images with 81
ground truth concepts. After pruning the data without any la-
bel or tag information, a subset of 188,321 data points that
belong to the 21 most-frequent concepts are selected, includ-
ing 10,500 data points for training and 2,100 data points for
query. The rest serves as retrieval set.
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TASK Method MIRFLICKR-25K NUS-WIDE MS-COCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Image Query
v.s.

Text Database

SCM 0.556 0.559 0.557 0.436 0.432 0.429 0.385 0.387 0.384
CMSSH 0.568 0.595 0.529 0.437 0.445 0.423 0.538 0.479 0.450
STMH 0.588 0.618 0.650 0.482 0.500 0.500 0.469 0.556 0.565
SePH 0.752 0.772 0.784 0.653 0.659 0.688 0.561 0.601 0.648

DCMH 0.724 0.731 0.731 0.568 0.561 0.596 0.505 0.536 0.557
OURS 0.833 0.857 0.869 0.693 0.719 0.753 0.648 0.686 0.708

Text Query
v.s.

Image Database

SCM 0.556 0.559 0.557 0.436 0.432 0.429 0.385 0.387 0.384
CMSSH 0.568 0.595 0.529 0.437 0.445 0.423 0.538 0.479 0.450
STMH 0.613 0.623 0.654 0.435 0.472 0.460 0.524 0.554 0.578
SePH 0.689 0.697 0.709 0.578 0.575 0.568 0.572 0.620 0.650

DCMH 0.764 0.749 0.780 0.558 0.591 0.616 0.549 0.572 0.605
OURS 0.892 0.910 0.907 0.732 0.766 0.761 0.745 0.797 0.830

Table 1: MAP evaluation. The best accuracy is shown in boldface. The baselines are based on CNNF features.

MS-COCO contains about 80,000 training images and
40,000 validation images. 117,218 data points are used in
our experiment, 10,000 data points for training and 5,000 for
query. The rest of data points serve as retrieval set. Each text
is represented as a 2,000-dimension bag-of-words vector.

4.2 Implementation Details
We adopt the first seven layers of CNNF [Chatfield et al.,
2014] neural network as image feature encoder, which is one
variation of AlexNet [Krizhevsky et al., 2012] pretrained on
Imagenet dataset [Deng et al., 2009]. For texts, a neural net-
work with four fully-connected layers is constructed to ex-
tract high-level features, (i.e., T → 512 → 512 → N ). N is
number of nodes in output layer, which equals to the length
of hash code K or total class label c for different datasets,
depending on different types of the output. For the inputs of
these networks, raw images are resized into 224 × 224 × 3
and texts are represented with bag-of-words vectors.

Semantic encoder is built with a three-layer feed-forward
network to project label to binary codes, (i.e., L → 512 →
512 → N ), N equals to the length of hash code K or to-
tal class label c for different datasets, depending on different
types of the output.

A two-layer GCN with each layer’s output feature dimen-
sions being Nb × 1024 and Nb ×K is employed, where Nb
is batch size. Activations for these two layers are ReLU and
sigmoid respectively.

Regarding the activate function used in GCH: Sigmoid
activation is used to output predicted labels; tanh activation
is used to output hash codes; and the rest of the layers are all
uniformly activated by the LReLU function.

4.3 Metrics and Baselines
We adopt two common used protocols in cross-modal
retrieval: Hamming ranking and hash lookup, where
three evaluation criteria: Mean Average Precision (MAP)
with MAP@R=500, precision-recall curve (PR curve) and
Precision@N curve with N=1000, are utilized.

As for baselines, five cross-modal hashing state-of-the-
art methods are compared, including STMH [Wang et al.,

TASK Method Flickr NUS CoCo

I� T GCH-A 0.755 0.525 0.641
GCH 0.833 0.693 0.648

T� I GCH-A 0.811 0.510 0.741
GCH 0.892 0.732 0.754

Table 2: MAP results for ablation study.

2015], CMSSH [Bronstein et al., 2010], SCM [Zhang and
Li, 2014] and SePH [Lin et al., 2015], which are all shallow
structure based cross-modal retrieval hashing methods, and
DCMH [Jiang and Li, 2017], which is a deep network based
approach. We additionally compare GCH with the recently
proposed CMHH [Cao et al., 2018], which is also a deep net-
work based cross-modal retrieval method.

4.4 Performance Evaluation
Table 1 reports the MAP for our GCH and peer methods on
three popular datasets in cross-modal retrieval. During im-
age data processing, deep CNNF features are extracted for
all shallow structure-based methods to facilitate fair compe-
tition. Our GCH takes the raw images as input. From Ta-
ble 1, we can see that: 1) Compared with the shallow base-
lines STMH, CMSSH, SCM and SePH, our GCH achieves
an average of 38%/43%, 52%/52%, 53%/62%, 11%/29%
increase in MAP evaluated on MIRFLICKR-25K dataset; 2)
While compared with DCMH, it can be seen that GCH can
also achieve average improvement by 17%/18%. Evaluation
on NUS-WIDE and MS-COCO datasets with more complex
test scenarios and vast amounts of data, which are more chal-
lenging, GCH always outperforms peer methods. The main
reason is that the proposed semantic encoder can well acquire
the semantic information and use it to guide the encoding pro-
cess for features. In addition, GCN enhances features with se-
mantic relevance and data structure, thus more reliable hash
codes can be produced and retrieval performance is improved.
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Figure 2: Precision-recall (left half) and Precision Top-1000 curves (right half). The baselines use CNN-F features. The code length is 64.

We plot the PR curve for the returned points given Ham-
ming radius varying from 0 to 1, 000 with a stepsize of
1. Left two columns in Figure 2 illustrate PR curves of
all state-of-the-art methods with 64-bit hash code on three
benchmark datasets, and the right two columns demonstrate
Precision@1000 curves, which all show that our GCH notably
outperforms all competitors.

The ablation study of GCH is quite straightforward, by
simply replacing GCN with fully-connected layers, we use
Table 2 to show the comparison MAP with code length 16 on
three datasets. The variant of GCN is denoted as GCH-A. For
simplicity, we use abbreviation for each dataset name. From
the results, we can see that our method can achieve a higher
performance when using the designed modules, meaning that
GCN has significantly improved the overall performance.

Specially, we compare our method with Cross-Modal
Hamming Hashing. CMHH is one recently proposed method
on cross-modal hashing, whose source codes are not pub-
licly available. For fair comparison, we follow the settings
used in CMHH on MIRFLICKR25K dataset. Table 3 shows
the experiment results, the underlined results are reported in
CMHH. It can be seen that our method outperforms CMHH
significantly, demonstrating the effectiveness of the proposed
method.

TASK Method Flickr-25K

I� T CMHH 0.783
GCH 0.833

T� I CMHH 0.758
GCH 0.891

Table 3: MAP compared with CMHH.

5 Conclusion
We have presented a novel graph convolutional networks
based cross-modal hashing, for large-scale cross-modal re-
trieval. The main contribution of our method is that we pro-
pose a GCN based hashing network for cross-modal retrieval.
In addition, we utilize a novel semantic encoder to preserve
rich semantic in feature encoding process. Extensive experi-
ments on popular datasets show that our model achieves state-
of-the-art performance in cross-modal retrieval task.
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