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Abstract

Sampling-based anticipatory algorithms can be
very effective at solving online optimization prob-
lems under uncertainty, but their computational
cost may be prohibitive in some cases. Given an
arbitrary anticipatory algorithm, we present three
methods that allow to retain its solution quality at
a fraction of the online computational cost, via a
substantial degree of offline preparation. Our ap-
proaches are obtained by combining: 1) a simple
technique to identify likely future outcomes based
on past observations; 2) the (expensive) offline
computation of a “contingency table”; and 3) an
efficient solution-fixing heuristic. We ground our
techniques on two case studies: an energy manage-
ment system with uncertain renewable generation
and load demand, and a traveling salesman prob-
lem with uncertain travel times. In both cases, our
techniques achieve high solution quality, while sub-
stantially reducing the online computation time.

1 Introduction

Optimization problems under uncertainty arise in many im-
portant application domains, such as production scheduling
or energy system management. These problems often bene-
fit from making all or part of their decisions online, reacting
and adapting to external events. In this context, stochastic
online anticipatory algorithms have proved particularly effec-
tive (see e.g. [Hentenryck and Bent, 2009]). However, many
of such algorithms have a considerable computational cost,
which may be problematic if (as it is often the case) online
decisions must be taken within a short time frame.

In most practical settings, however, a substantial amount of
time and information is available before the online problem
is solved, in an offline phase. For example, one may have
access to energy production forecasts, historical travel times
in routing problems, results from test runs in cyber-physical
systems. We refer to this sort of data as offline information.
Usually, it is employed to characterize the uncertain elements
and for sampling likely outcomes (i.e. scenarios). We will
show how to exploit this information at a much deeper level.

We propose three hybrid offline/online methods that build
over a given, sampling-based, anticipatory algorithm, and al-
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low to match its solution quality at a fraction of the online
computational cost. One of them can even rely on a determin-
istic algorithm, thus providing state-of-the art performance
in problems for which no anticipatory approach is available.
All our methods work by shifting part of the computation to
the offline phase, where time limits are more relaxed and the
costs can be better amortized (e.g. via parallelization).

We obtain our methods by combining three basic contri-
butions: 1) a technique to estimate the probability of future
outcomes, given past observations; 2) a scheme for building a
“contingency table”, with precomputed solutions to guide the
online choices; and 3) an efficient fixing heuristic for adapt-
ing the precomputed solutions to run-time conditions.

We ground our approaches on a (numeric) energy manage-
ment problem with uncertain loads and generation from Re-
newable Energy Sources (RES), and on a (discrete) Traveling
Salesman Problem with uncertain travel times. We show how
our methods reach a solution quality comparable with the an-
ticipatory algorithm, with lower (or dramatically lower) on-
line computational cost.

The paper is structured as follows: in Section 2 we cover
background and related works. We show our contributions
in Section 3 and their grounding in Section 4. Experimental
results are in Section 5 and concluding remarks in Section 6.

2 Background and Related Work

Historically, the literature on optimization under uncertainty
has focused on offline problems [Powell, 2016; Sahinidis,
2004]. These methods usually rely on sampling (yielding a
number of scenarios) to obtain a statistical model of future
uncertainty. Robust solutions can be obtained by building
one copy of the decision variables per scenario, and linking
them via non-anticipativity constraints (decisions based on
the same observations should be identical). This is known as
the Sample Average Approximation method [Kleywegt et al.,
2002]: it provides convergence guarantees under reasonable
assumptions, and can substantially outperform myopic opti-
mization.

More recently, improvements in the solution techniques
and computational power have enabled the application of
similar methods to online optimization. This lead to so-called
online anticipatory algorithms, which proved very effective
at finding robust, high quality, solutions as uncertainty slowly
reveals itself. A very good overview of this line of research
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is provided by [Hentenryck and Bent, 20091, while notable
algorithms and results are described in [Chang er al., 2000;
Bent and Van Hentenryck, 2004; 2005; Mercier and Van Hen-
tenryck, 2008; De Filippo et al., 2018].

Online anticipatory algorithm typically rely on scenario
sampling to estimate the possible developments for a fixed
number of future steps, known as look-ahead horizon. Larger
sample sizes result in higher accuracy, but also in more and
bigger (possibly NP-hard) problems to be solved. This is a
strong limitation, since in many practical cases online deci-
sion must be produced within strict time limits. Consider-
able research effort has therefore focused on improving the
efficiency of these algorithms. For example, the CONSEN-
SUS and REGRET algorithms from [Bent and Van Hentenryck,
2004] both attempt to reduce the number of problems w.r.t.
the earlier EXPECTATION approach. Computational studies
such as [Borodin and El-Yaniv, 2005; Mercier and Van Hen-
tenryck, 2007] aim at characterizing the algorithm sensitivi-
ties to their design parameters (such as the number of sam-
pled scenarios and the look-ahead horizon). The approaches
from [John and Langley, 1996; Philpott and De Matos, 2012;
Lin et al., 2013] attempt instead to reduce the number of sce-
narios by increasing their relevance, and in particular by tak-
ing into account past observations while sampling.

3 “Taming” an Anticipatory Algorithm

Our goal is reducing the online computational cost of a given
sampling-based anticipatory algorithm, referred to as A, by
exploiting the existence of an offline phase. Such A algorithm
is the main input for all our methods.

Similarly to [Hentenryck and Bent, 2009], we view online
optimization under uncertainty as a stochastic n-stage prob-
lem. At each stage some uncertainty is resolved, and some
decision must be made. A stage k is associated to a decision
variable xj, (e.g. the power flows between loads and genera-
tors) and a state variable s; (summarizing the effect of past
decisions). All variables may be vector-valued.

We assume that uncertainty is exogenous, i.e. not affected
by the decisions (e.g. the RES generation does not depend
on how we choose to route it), and modeled via a set of ran-
dom variables &;. Which variables are observed at each stage
depends on the state, and is controlled by a peek function:

O = peek(sk) (D)

which returns a set O with the indices of the observed vari-
ables. We will use the notation &p to denote the observed &
variables, and £ for the unobserved ones.

Base Anticipatory Algorithm

Sampling-based algorithms rely on scenarios to estimate fu-
ture outcomes. Formally, a scenario w specifies a value £ for
all the random variables. Given a set €2 of scenarios, the sys-
tem state sy, and values for £ corresponding to the observed
uncertainty, we assume that A can compute the decisions for
stage k:

T = A(Ska§O7{£w}w€Q) (2)

Once the decisions are computed, the next state can be deter-
mined. This is controlled via a state transition function next
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Algorithm 1 ANTICIPATE (s1, &)

Sample a set of scenarios €2
fork=1...ndo

O = O U peek(sy)

zy = A(sk, §0, {€” twen)

sk1 = next(sy, vx, o)
return s, x

# observe uncertainty
# obtain decisions
# determine next state

that, based on the current state, decisions, and observed un-
certainty, computes:

Sk+1 = next(sk, xg, o) 3)

Given the initial state sq, a set of scenarios (2, and a set of
values sampled from &, (which represent the online observa-
tions), we can simulate the execution of the method via Al-
gorithm 1. The O set is assumed to be initially empty. This
generic anticipatory algorithm will be referred to as ANTICI-
PATE in the remainder of the paper.

Offline Information

Defining a representative set of scenarios ) is critical for the
approach effectiveness and it is usually done by exploiting
the available offline information. Here, we assume that the
such offline information is a collection of observed uncertain
values. This definition captures many practical cases (e.g.
forecasts or predictions, historical data, data from test runs).
More importantly, this means that the offline information is
in fact a collection of scenarios. We will denote the offline
information as I, index its element with w, and assume (as
it is usual) that I is representative of the true probability dis-
tribution of the random variables. A set 2 of scenarios for
ANTICIPATE can be obtained by sampling a number of ele-
ments uniformly at random from /.

3.1 Basic Contributions

All our methods rely on three techniques, which will be de-
scribed in this section.

Probability Estimation for Scenario Sampling

Using a fixed set of scenarios (as in ANTICIPATE) is beneficial
when the &; variables are statistically independent. When they
are not, however, the set of scenarios may loose relevance as
uncertainty is resolved. For example, a scenario based on
a cloudy day forecast becomes less likely if fair weather is
observed at the beginning of online execution.

Formally, at stage k£ we wish to sample scenarios that are
likely to occur given the past observations, i.e. to sample the
unobserved variables £5 according to the conditional distri-
bution P(£5 | £0). If we draw the scenarios from the offline
information (which guarantees physically meaningfulness),
then sampling requires to estimate the conditional probabil-
ities of the elements in I. From basic probability theory, this
is given by the ratio of two joint probabilities:

oo PlEogd)
where P(§0£) is the probability that observed values oc-
cur together with the remaining predictions from the scenario,
and P(&p) is the probability that the values are observed. The

Ywe I,
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Algorithm 2 BUILDTABLE (s, AA)

Algorithm 3 FIXING (s1, &, T)

for w € I do
s xv = AA(s1,8¥)
return {&,s¥, 2% },er

joint probability at the numerator can be approximated via
any density estimation method, such as Kernel Density Esti-
mation [Silverman, 20181, Gaussian Mixture Models [Gau-
vain and Lee, 1994], or recent Deep Learning techniques
such as Normalizing Flows [Rezende and Mohamed, 2015]
and Real NVP [Dinh et al., 2016]. Any such method can be
trained on the offline information to obtain an estimator P (&)
for the joint distribution of the random variables.

An estimator for the distribution P(£p) at the denominator
can then be derived from P () via marginalization, i.e. by av-
eraging the contribution of the unobserved variables. We per-
form this step over all possible completions of the observed
values in the offline information. Overall, we have:

P(§0&g)
>wer P6oE)
This estimator defines a discrete distribution over the offline
information I. The chosen marginalization technique guar-

antees an estimate that is approximately proportional (not ap-
proximately equal) to the true P(£o). Hence, we have that:

P(&5 | €o) < P(&5 | €0) (6)

Sampling from I according to Equation (5) yields scenarios
with a distribution that takes into account the observed values.

Vwel, P(E5|&)= ()

Ywel,

Building a Contingency Table

If a significant amount of time is available in the offline phase,
we can exploit the offline information more aggressively, by
trying to prepare for each likely future development. Intu-
itively, we can treat each scenario w € I as if it were an ac-
tual sequence of online observations, and process it via some
anticipatory algorithm. By doing this, we build a pool of so-
lutions that can then be used to guide an online method.

The process is outlined in Algorithm 2, which requires as
input the initial state s; of the system, and a solution algo-
rithm AA, accepting the same parameters as ANTICIPATE.
The result is an augmented version of the offline information,
where each scenario w is additionally associated to the se-
quence of states s* visited by the algorithm and its sequence
of decisions z*. We refer to this data structure as contingency
table, and to its elements as traces. We denote the table as T'.

Fixing Heuristic

We use the traces from 7" to guide an efficient fixing heuristic,
which tries to choose decisions having the largest chance of
being optimal. Formally, it solves:

arg max{P"(xy | sp€o) : xr € X} @)

where P* is the probability that the chosen zj is optimal,
given the state s; and the observed uncertainty. The X}, set
represents the feasible decision space, which is defined via
problem-dependent constraints and auxiliary variables.
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fork=1...ndo
O = O U peek(sy,)
Q) = top elements in 7" by descending Equation (10)
Compute pj, and/or p,, based on {2
Solve Equation (8)/(11) to obtain xj,
Sk41 = next(sg, Tr, o)
return s, x

Closed-forms for P* can be obtained separately for dis-
crete and numeric problems, based on the contingency table.
The process is described in detail in Appendix A, and relies
on several approximations. Overall, in case of discrete deci-
sions, the problem from Equation (7) translates into:

arg min —Z Z log pjolzr; =v] : 2 € Xk p (8)

j=1veD;

where [-] denotes the truth value of a predicate, D, is the
domain of xy;, and:

Div = ZwET,I‘,‘;j:v P(w)
Y EwET P(OJ)

Here, P(w) is a compact notation for the probability that we
reach the same state as trace w, and then everything goes
according to plan. It can be approximated using:

YVweT, Plw)x P(sfkﬂ | sk)p(ﬁg | £0) (10)

€))

where P(£5 | €o) is the estimator from Equation (5), and
P(ssp41 | sk) is a second estimator obtained via similar
means. The cost function in Equation (8) is linear if a one-hot
encoding is adopted for xy,;, and the size of T" affects only the
computation of the p;, values. Overall, the problem is effi-
cient to solve. In case of numeric decisions, we have instead.:

m
: 1 2
arg min Z Z pwﬁ(mkj — xfj) cxp € X p (11)
j=1weT
with:
Pw)
Po ="
Y Ywer PW)
The cost function is quadratic and convex, and the problem
size is small due to the same arguments as Equation (8).
Intuitively, the discrete version of the heuristic is related
to minimizing weighted discrepancies w.r.t. the traces in 7',
i.e. to weighted Hamming distances. The numeric version is
instead related to weighted Euclidean distances. The pseudo-
code for the heuristic is provided in Algorithm 3. The only
difference with the process described so far is that the p;,, and
P probabilities may be computed based on a subset 2 of the
full contingency table. This may be useful to bias the choice
of the online decision according to the most relevant traces.

3.2 Hybrid Offline/Online Methods

Our three solution methods can now be defined with relative
ease, by combining the techniques just described.

(12)
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Algorithm 4 ANTICIPATE-D (s1, &)

Algorithm 6 CONTINGENCY-D (s1, &)

Train the P(£) estimator on [
fork=1...ndo
O = O U peek(s)
Sample 2 from 7', according to Equation (5)
Tk = A(Sk;, 507 {fw}weﬂ)
Skp1 = next(sg, Tx, o)
return s, r

Algorithm 5 CONTINGENCY (s1, &)

Train the P(£) estimator on [

T = BUILDTABLE(S1, ANTICIPATE)

Train the P(sysk+1) estimators on 7', for all k&
8, = FIXING(s1,&,T)

return s, x

ANTICIPATE-D. Our first hybrid method is obtained from
ANTICIPATE by simply replacing the static set of samples
with a dynamically adjusted one. The dynamic set can be
populated according to the estimated probabilities from Equa-
tion (5), so as not to loose relevance: this may enable to reach
similar solution qualities with fewer scenarios, at the cost of
training an estimator offline. We refer to this approach as
ANTICIPATE-D, and its pseudo-code is in Algorithm 4

CONTINGENCY. The second method is based on the idea
of computing robust solutions for the scenarios in the offline
information, and then use them as guidance for the FIXING
heuristic. Robust solutions are obtained by using ANTICI-
PATE, so that hopefully the (fast) fixing heuristic will be able
to match their quality: the price to pay is a hefty offline
computational effort. We refer to this approach as CONTIN-
GENCY, and its pseudo-code is reported in Algorithm 5.

CONTINGENCY-D. Our final method is similar to the pre-
vious one, except that the contingency table is populated with
non-robust solutions. This is done by using ANTICIPATE
with a single scenario, given by the values of £ (i.e. the
pretend online observations). This technique (referred to as
ANTICIPATE ) provides perfect information about the future,
so that achieving robustness is entirely delegated to the FIX-
ING heuristic. The approach is likely to loose reliability, but
has two important advantages: 1) lower offline computational
costs; and 2) while ANTICIPATE is a stochastic algorithm,
ANTICIPATE; is deterministic. So, this method may provide
anticipatory-like results even when no anticipatory algorithm
is available. We refer to this method as CONTINGENCY-D,
and its pseudo-code is reported in Algorithm 6.

4 Grounding the Approaches

Grounding our approaches requires to specify: 1) the x, s and
& variables, 2) the peek and next functions, 3) the sampling-
based algorithm A, and 4) the feasible space X, for the FIX-
ING heuristic. Additionally, evaluating the solution quality
requires to define 5) a cost metric.

We show how this can be done in two case studies: 1) a Vir-
tual Power Plant energy management problem with numerical
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Train the P(£) estimator on [

T = BUILDTABLE(s], ANTICIPATE )

Train the P(sjsy1) estimators on T, for all k
$,& = FIXING(s1,&,T)

return s, x

decisions; and 2) a combinatorial Traveling Salesman Prob-
lem with uncertain travel times. In both cases, the input an-
ticipatory algorithm A is given by a Mathematical Program-
ming model, based on the Sample Average Approximation.
The models are slight improvements over those by [De Fil-
ippo et al., 2018], whose work brought to attention the inter-
play between offline and online phases. Both approaches are
serviceable, but not necessarily representative of the state-of-
the-art (especially for the TSP). The full useful information
for grounding our approaches are in a companion repository!,
while here we focus on the minimal information needed.

4.1 The VPP Case Study.

A Virtual Power Plant aggregates different sources of power
generation and consumption to offer a predictable power en-
velope. Managing a VPP requires to route power flows so
as to satisfy the demand, to obey physical limits, and to
minimize the operating costs [Palma-Behnke er al., 2011;
Bai et al., 2015]. Both the demand and the RES generation
are uncertain. Formally, the decision vector xj, specifies the
power flow zy; to/from each node (demand, generator, stor-
age...). In particular, we assume that xg refers to flow for
the storage system. The state component s;g corresponds to
the storage charge level, while s p to its flow direction. The
random variable &, corresponds to the load, while & to the
RES generation. The peek function simply returns the pairs
(k, L) and (k, R). The next function is given by:

Sk+1,5 = Sk + NTks (13)
Sg+1,p = 0if x5 < 0 and 1 otherwise (14)

where 7 is the charging efficiency of the storage system. The
feasible space X, is given by the Mathematical Program:

e = Zxkj +&kr (15)
j=1

lj <apy <y Vi € [1..m] (16)

0<sp+nrrs <T (17

zi €R™ (18)

where Eq. (15) enforces power balance, Eq. (16) states the
physical limits for the power flows, and Eq. (17) those for the
storage charge. The cost incurred at each stage is given by:
chjxkj + alsgp — Sk+1,D| (19)
j=1
where cy; is a cost associate to each flow. Unlike the model
from [De Filippo et al., 2018], we include a cost term « re-
lated to storage wear-off, which increases each time the corre-
sponding flow switches direction. Due to this term, the input

'https://github.com/alleDe/OffOn
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algorithm A needs to solve an NP-hard problem, while the
fixing heuristic has no such need.

4.2 The TSP Case Study.

As a second case study, we consider a TSP over an asymmet-
ric, fully connected, graph with uncertain, exogenous, travel
times (e.g. the visits have a negligible impact on traffic). In
this case, the x vector includes m components xy;, each
equal to 1 iff j is the next node to be visited. There is no xy;
variable for the depot, which is reached by default once all
other nodes are visited. The state vector contains a compo-
nent sy; equal to 1 iff node j (excluding the depot) has been
visited at stage k, plus a sy component specifying the index
of the current node. The uncertainty is modeled via random
variables &, ;, each associated to the travel time between nodes
i and j. The travel times for all outgoing arcs from ¢ are ob-
served when the node is visited, i.e. the peek function returns
the pairs (sxc, j) with j € [1..m]. The next function is:

SkiLc = Y J Tk (20)
j=1

Sk+1,5 = maX($kj75k+1,j) Vj e [1..m] 21

where Equation (20) makes sure that the value siy1c
matches the index of the next node to be visited. The fea-
sible space X}, is given by the Mathematical Program:

> ap =1 (22)
j=1

Tpj <1 —sg; Vj € [1..m] (23)

which forces moving to a single, unvisited node. The cost
incurred at each stage is the travel time to the next node, i.e.:

D Eore s Ths (24)
j=1

The final cost is obtained by summing the cost of each stage,
plus the distance from the last visited node to the depot. Once
again, while the anticipatory algorithm A needs to solve an
NP-hard problem (stochastic TSP), the fixing heuristic has
no such need and is therefore much faster.

5 Experimentation

We empirically evaluated the three hybrid offline/online
methods on realistic instances for the two case studies. The
baseline in both cases are myopic heuristics, obtained by run-
ning ANTICIPATE with an empty set of scenarios.

5.1 Experimental Setup

Our methods are evaluated over different uncertainty realiza-
tions, obtained by sampling the random variables for the loads
and RES generation in the VPP, and for the travel times in the
TSP. We use models of uncertainty that ensure realistic statis-
tical dependence between the variables. This process yields
the offline information I and the sequences of observations
for the experiments.

275

— ANTICIPATE

270+ - ANTICIPATE-D
@-® CONTINGENCY
s 265p s - * e CONTINGENCY-D
5 260 e MYOPIC HEURISTIC (~ 316)

5 10 15 20 25 30

— ANTICIPATE
- ANTICIPATE-D
©-@ CONTINGENCY
102 [+ = conTinGENnCY-D
MYOPIC HEURISTIC (~ 2)

10t [

Online Comp Time (s)

-
o
S

10 15 20 25 30
# of scenarios/traces

v

Figure 1: Methods solution/quality comparison for the VPP

For the VPP, grid electricity prices change every 15 min-
utes, which is also the duration of our online stages. New
offline information (e.g. market prices) becomes available
every day, hence our horizon corresponds to 24 x 4 = 96
stages. We use (real) physical bounds for power generation
from [Bai et al., 2015; Espinosa and Ochoa, 2015]. The ini-
tial battery state, efficiency, and power flow limit, etc. are
also based on real data [Bai et al., 2015; Espinosa and Ochoa,
2015]. Different instances have then been obtained by man-
ually scaling load and RES generation. For the TSP we use
classical benchmarks?, by including problems from 10 to 40
nodes. In the TSP each stage represents a visit, hence our
horizon corresponds to the total number of nodes.

We use Kernel Density Estimation (with Gaussian Kernels)
to obtain all approximate distributions. As an underlying
solver we use Gurobi 3, which can handle both MILPs and
Quadratic Programs. Each evaluated algorithm and configu-
ration is run 50 times, with the same 50 sequences of realiza-
tions. We use a time limit of 300 seconds for both the VPP
and the TSP. For each run we record both the time required
by each approach and the corresponding solution cost, and
we report their average values over the 50 realizations. In all
cases, |I| = |T'| = 100, and for the CONTINGENCY method,
the contingency table is built using ANTICIPATE with 20 sce-
narios. Due to space constraints, we report results only for a
few representative instances.

5.2 Discussion

The offline training times of the KDE models are roughly
the same for all the three hybrid methods (~ 65 sec for the
VPP and ~ 32 sec for the TSP). Building the contingency ta-
bles for CONTINGENCY takes ~ 6,000 sec in the VPP and
~ 15,000 sec in the TSP, but only ~ 400 and ~ 2,000 sec
for CONTINGENCY-D.

In Figure 1 we show the cost/quality tradeoff of the pro-
posed methods and of ANTICIPATE for the VPP (base in-
stance) and in Figure 2 for the TSP (a representative 20 cus-
tomers instance). The use of a dynamic set of scenarios al-

Zhttp://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm
3 Available at http://www.gurobi.com
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Figure 2: Methods solution/quality comparison for the TSP

Method VPP (o) TSP (o)
Myopic H 8.499 7.106
ANTICIPATE 4.994 1.889
ANTICIPATE-D 5.730 2.846
CONTINGENCY 5.557 3.788
CONTINGENCY-D 7.017 5.934

Table 1: Standard deviation comparison for the VPP and the TSP

lows ANTICIPATE-D to work better than ANTICIPATE. The
CONTINGENCY method is surprisingly close in terms of qual-
ity to the original anticipatory algorithm, especially consid-
ered its dramatically smaller online computational cost (up
to two orders of magnitude). CONTINGENCY-D performs
slightly worse than CONTINGENCY, but it still much better
than the myopic heuristic. Increasing the number of guiding
traces is beneficial in particular for CONTINGENCY-D.

In Table 1 we show the standard deviation for the solu-
tion quality over the 50 realizations with 20 scenarios/traces
for both the VPP and the TSP (on the same instances as
Figure 1 and Figure 2). All values are significantly lower
than the quality gap with the myopic heuristic. As expected
CONTINGENCY-D tends to be less stable than the other meth-
ods due to its reliance on non-robust guiding traces.

6 Conclusion

We have presented three methods that can be applied to a
generic anticipatory algorithm to reduce its online compu-
tational effort by exploiting offline information. In particu-
lar, both CONTINGENCY and CONTINGENCY-D are dramati-
cally faster than ANTICIPATE during online operation; CON-
TINGENCY is significantly more reliable in terms of quality,
but may require a substantial amount of offline computation.
The ANTICIPATE-D technique provides a modest advantage
in terms of solution time, but can match and even surpass
ANTICIPATE in terms of quality.

The ability to shift part of the computational cost to an
offline stage provides a significant degree of flexibility to
stochastic anticipatory algorithms, and is likely to increase
their applicability. We believe there is room for improving the
scalability and efficiency of our methods, and achieving this

goal is part of our current research directions. We also plan
to apply our approaches to different application problems.
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A Deriving the FIXING Heuristic

Our main goal will be to obtain a closed-form for P* in Equa-
tion (7), which will require several approximations. We start
by treating all components in zy, as statistically independent.
This allows to state P* as a product of P*(z; | sx€o) prob-
abilities, related to individual components of z;. Applying a
log transformation then leads to the equivalent problem:

m
arg min { — Zlog P*(zy; | skéo) 1z € X p (25)

j=1
where m is the cardinality of z;. We then assume that a de-
cision xy; is optimal if the current optimization process is
similar to a trace in the contingency table, and x; is similar
to the decision made in that circumstance. Formally, we can

obtain P*(z};) via marginalization:
2wer Pw) P (z1; | w)
ZUJET P(w)

where P(w) is compact notation for P(sg, ;£5 | osk). By

assuming independence between the s and ¢ variables, and
applying the techniques used for Equation (5), we get:

P (Sksfﬂ)
Zw’eT P(sks°,;’+1)
where the estimator for P (skSk+1) can be trained over data
from the contingency table. We now need a way to estimate
P*(z; | w). In the discrete case, we assume that xy; is
optimal iff it matches the value from the contingency table,

ie. P*(xy; | w) is equal to the truth value of the predicate
Thi = asyjj. Hence, Equation (26) becomes:

P*(zyj | siéo) = Z Pjv[Tr; = v] (28)

veD;

P*(z15 | skéo) = (26)

P(w) oc P(£5 | €0) 27)

with pj, as in Equation (9). By applying the log transforma-
tion, and using the fact that values in D; are mutually exclu-
sive, we get the discrete formulation from Equation (8).

In the numeric case, we assume that decisions close to the
one in the trace have a chance of being optimal, which follows
a Normal distribution. Formally, we have that:

Lo (on—ay)? 29)
\/% gj
where o is the standard deviation of the value of xj; in
the contingency table. By applying the log transformation
to Equation (26), then Jensen’s inequality, and by getting rid
of offset terms (which have no impact on optimization), we
get the numeric formulation from Equation (11). Note that,
due to the use of Jensen’s inequality, the resulting cost func-
tion is actually an approximated upper bound for the original
probability.

Py |w) =
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