Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Solving the Satisfiability Problem of Modal Logic S5 Guided by Graph Coloring

Pei Huang'®, Minghao Liu'?, Ping Wang'®, Wenhui Zhang'?, Feifei Ma'>3*, Jian Zhang'>*

!State Key Laboratory of Computer Science, ISCAS, China
?Laboratory of Parallel Software and Computational Science, ISCAS, China
3University of Chinese Academy of Sciences

{huangpei, liumh, wangping, zwh, maff, zj} @ios.ac.cn

Abstract

Modal logic S5 has found various applications in
artificial intelligence. With the advances in modern
SAT solvers, SAT-based approach has shown great
potential in solving the satisfiability problem of S5.
The scale of the SAT encoding for S5 is strongly
influenced by the upper bound on the number of
possible worlds. In this paper, we present a novel
SAT-based approach for S5 satisfiability problem.
We show a normal form for S5 formulas. Based
on this normal form, a conflict graph can be de-
rived whose chromatic number provides an upper
bound of the possible worlds and a lot of unneces-
sary search spaces can be eliminated in this process.
A heuristic graph coloring algorithm is adopted to
balance the efficiency and optimality. The number
of possible worlds can be significantly reduced for
many practical instances. Extensive experiments
demonstrate that our approach outperforms state-
of-the-art S5-SAT solvers.

1 Introduction

Modal logic provides a theoretical framework for impor-
tant applications in many areas of artificial intelligence, in-
cluding game theory [Lorini and Schwarzentruber, 2010],
knowledge compilation [Bienvenu er al., 2010], contingent
planning [Niveau and Zanuttini, 2016] and formal verifi-
cation [Aguilera and Fernidndez-Duque, 2016; Fairtlough
and Mendler, 1994]. In the past decades, automated rea-
soning techniques for modal logic has been vastly studied
(e.g. [Balco er al., 2018; Giunchiglia and Sebastiani, 1996;
Kaminski and Tebbi, 2013]).

S5 is a well-known modal logic system, which is suit-
able for representing and reasoning about the knowledge of
a single agent [Fagin er al., 2004]. Recently, modal logic
S5 is used in knowledge compilation [Bienvenu et al., 2010;
Niveau and Zanuttini, 2016] and epistemic planner [Wan et
al., 2015]. So, it promotes us to develop and improve auto-
mated reasoning technique for modal logic S5.

There are four common ways to tackle the modal logic
satisfiability problems: tableau methods [Gotzmann et al.,

*Corresponding Authors

1093

2010; Gasquet et al., 2005], first-order logic based methods
[Ohlbach, 19911, resolution methods [Auffray er al., 1990;
Nalon et al., 2017] and SAT-based methods [Kaminski and
Tebbi, 2013; Lagniez et al., 2018]. Due to the improve-
ment of modern SAT solvers, SAT-based methods are show-
ing their potential and strength such as the-state-of-the-art S5
solver named S52SAT [Caridroit et al., 2017]. The SAT-based
method has three advantages: 1) It can easily return a model
(compared with resolution methods). 2) It can learn from the
conflicts (CDCL) and utilize them. 3) It makes a good bal-
ance between guess and reasoning.

S5-SAT can be reduced to SAT based on the theoretical
proof showed in [Ladner, 1977; Fagin er al., 2004]. How-
ever, naive SAT translation method will produce numerous
variables and clauses. For some relatively large S5 formulas,
it will cause hundreds of thousands of variables and millions
of clauses. Existing SAT-based methods frequently run out of
memory for these intractable scale formulas. Besides, a large
number of variables and clauses will wear away the efficiency
and the advantages of the SAT core.

In this paper, we propose a novel SAT-based method for
S5-SAT which can save a lot of memory and significantly im-
prove the computation efficiency. We first show a CNF-like
normal form and name it S5-NF. Based on this normal form,
a diamond conflict graph can be derived whose chromatic
number provides an upper bound on the number of necessary
worlds. In practice, the chromatic number is obtained ap-
proximately with a heuristic graph coloring algorithm, so that
the extra cost is quite limited. Moreover, a lot of unnecessary
search spaces can be eliminated in this process. Experimental
results show that our solver outperforms the state-of-the-art
S5 solvers, on some instances even by orders of magnitudes
in efficiency. Besides, our solver consumes much less mem-
ory on many large scale S5 formulas.

This paper is organized as follows: first, we introduce some
preliminaries about modal logic S5; then we detail the S5-NF;
after that, the diamond conflict checking (DCC) strategy and
the framework of solving S5-SAT will be expounded; further-
more, we evaluate and discuss the experimental results; in the
final section, conclusions are drawn.

2 Preliminaries

This section briefly reviews the syntax and the semantics of
modal logic S5. The set of formulas ¢ of S5 is a language

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

L which extends the propositional language with the modal
connectives (or modal operators) (J and <». [J (box) means
necessity and {» (diamond) means possibility. For example,
Up expresses the concept that “It is necessary that p” and
{p expresses the concept that “It is possible that p”. The
language is defined by the grammar:

pu=L|TIpl-¢loneloVve|Us| O

where p € P and P denotes a countably infinite non-empty
set of propositional variables. Logical connectives ‘—’ and
‘>’ are omitted here.

Now-standard Kripke semantics for modal logic defines a
frame, which consists of a non-empty set W, and a binary
relation R. The members of W are generally called possible
worlds. The relation R, also known as the accessibility rela-
tion, is defined between the possible worlds in W. For exam-
ple, w R w’ means the world w’ is accessible from world w.
Iis a function W x P — {0, 1}.

S5 has the following axioms:

K.O(A— B) —» (UA —0OB)
T.0A— A

B. A—0O0A

4. 0A - 0OOA

These axioms imply that the relation R in S5 is reflexive,
symmetric and transitive. So the possible-worlds semantics
for S5 can be simplified as a simple version without accessi-
bility relation [Fitting, 1999]. The satisfiability relation & for
formulas in £ is recursively defined as follows:

(W, w) k
(W,I,w)I:plffI(w p)=1

(W, 1,w) E — iff (W, 1,w) ¥ ¢
(W,I,w) E ¢ A @iff (W,1,w) F ¢and (W, I,w) F ¢
W, L,w)E ¢V iff (W, I,w)E ¢or (W, I,w)E ¢
(W, I,w) £ DO iff Vo' € W, (W, I,0') E ¢

(W, L,w) E Qo iff I’ € W, (W, I,w') E ¢

Following the semantics (satisfiability relation), we have a
list of equivalences as follows.

HDOToT.0Le LOTeT,0Lol
i) =0¢ < Ung, —Ué <> o
i) O(¢ A @) < Op A Op
iv) GV @) GoV O

The diamond degree of a negation normal form ¢, dd(¢),
is defined recursively as:

dd(T) = dd(=T) = dd(p) = dd(=p) = 0
dd(¢ A) = dd(¢) + dd(yp)

dd(¢V ¢) = maz(dd(¢), dd(¢))

dd(0¢) = dd(¢)

dd($¢) =1+ dd(9)

3 A Normal Form for S5

A normal form for S5 formulas, called S5-NF, is defined in
this section. It is a kind of CNF-like normal form. Actu-
ally, many CNF-like normal forms were defined in previous
works for resolution such as [del Cerro, 1982; Enjalbert and
del Cerro, 1989; Salhi and Sioutis, 2015]. The S5-NF is sim-
ilar to these CNF-like normal forms but with some textural
difference. It is designed for our solving framework, and we
will show how to transform an S5 formula into an S5-NF.

3.1 Reduction Rules

First, some key rules in the transformation process are listed
as follows. Note that © € {{J, $}.

1) "¢ = O¢
2) O"Op = P
3) O(p1 A da A oo Adp) = Oy Ay A ... Ay,

4) G(P1 Vo V.. Voy) = Cd1VEOPa V.. Voo,

5) O(p1 Vpa V.o Vo V O1 V O V ... V Oy,
= 0(@1Vea V. Vo) VEd VOds V... VOdy

6) O(p1 A2 A e A AOG1L A Od2 A ... A OPp)
= QP A2 A e A o) AOd1 A Opa A .. A Oy,

The correctness of these rules is easy to verify. We present
the sketch of the proof of these rules.

Lemma 1. $UOp <> Op, OOp < Op, OOp > Op, OOp <
.

Lemma 1 can be easily proved according to the reflexivity,
symmetry and transitivity of SS5.

Applying these rules recursively we can conclude that 1)
and 2) hold. These two rules can simplify multiple modal
operators to one, such as QOGO ¢ <> C¢p. That means
each formula can only keep the nearest modal operator.

Rules 3) and 4) can be easily proved via iii) and iv) of the
equivalences listed previously.

Rules 5) and 6) can be seen as supplements of 3) and 4). In
fact, we can not rewrite (I(p V q) to the disjunction Op Vv Og
because L(pV q) +» Op Vv Og. But we can rewrite d(p V $q)
to Op V <>q, as formulated in the following lemma.

Lemma 2. O(pV $q) + OpV $g, O(p v Oq) < Op Vv g,
OlpAOg) < OpALg G(p A Og) < Op A g

One can easily prove the lemma via axioms in S5. Apply-
ing these rules recursively we can prove that 5) and 6) hold.

3.2 S5 Normal Form

S5-NF is similar to the CNF in propositional logic. So, we
extend some concepts from propositional logic to name the
components of S5-NF. Any S5 formula can be reduced to
an equivalent one of modal degree 0 or 1 [Mints and Minc,
1992]. S5-NF is a kind of first degree normal form.

Definition 1 (S5-literal). Propositional literal p, O(py V p2 V

.V pj) and O(pr A pa A ... A py) are called S5-literal, iff
Vi € N, p; is a propositional literal. The S5-literal $(p1 A
D2 A ... A py) is called D-literal, and O(py V pa V ... V pj) is
called B-literal.

1094

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Example 1. p, —¢, Op, $—p, O(—p VgV —r) and $(p A—q)
are S5-literals.

Definition 2 (S5-clause). If Vi € N, [; is an S5-literal then
the disjunction of S5-literals, (I V la V ... V), is called
S5-clause.

Example 2. $—p VvV O(—p VgV —r)V O(p A —q) is an S5-
clause.

Definition 3 (S5-NF). IfVi € NT, C; is an S5-clause then
the conjunction of S5-clauses, C1 N\ Cy A ... A\ Cy, is called
S5 normal form (S5-NF).

Theorem 1. Any S5 formula can be transformed into an eq-
uisatisfiable S5-NF formula.

Proof. Stepl. Eliminate — and <». Then, transform S5 for-
mula into an equivalent negation normal form(NNF), that is,
negations appear only in front of propositional variables (def-
inition in [Robinson and Voronkov, 2001]).

Step2. Apply the 6 reduction rules and distributive rules re-
cursively, until the formula only contains S5-literals and V,
A.

Step3. Transform the formula into conjunction normal form,
in a way such as [Tseitin, 1968]. Note that during this step,
each S5-literal remains intact.

After the above 3 steps, the formula is transformed into the
S5-NF formula. O

Fig 1 shows an example that how to transform an S5 for-
mula into an equivalent S5-NF formula. After transformation,
we oef «ix SS-clanses

SoO-{C(p A VO(PAQ} AO{O(=pVIrVs)ApA-g}
AAar->[O@Ag) > O A Ao {—rvodp}

@ Stepl

Col{o@ Vv Aao(=pV g} A{O(—=pVrVvs)ApA-g}
AMrvO@AQVO@A-IAD{—-rvoOp}

] step2,3

OV AO(=pV-ag AO(pVrVs)A(p A-q)

G C, G Cy
ANMrvOAgVO@A-IA{o-ry Op}
¢) ;
Cs Ce

Figure 1: An example of transforming S5-NF

In step 2, We use distributive rules to show the feasibility.
Theoretically, only using distributive rules can blow up for-
mula size in some cases. Introducing new variables and ap-
plying a Tseitin-like transformation locally can alleviate this
problem. The following equivalences can be used to encode
subformulas and z is a new variable.

O+ pVe < OFHzVpVae) AO(@V-p) AO(zV —q)
O(z ¢ pAq) & O(@V-pV-q) AO(—zVp) AO(-x Vq)
Example 3. Consider the formula:
N M
OINLL(F VIR AD(V;Z (5 A1)

It can be rewritten as a conjunction of the following two for-
mulas with new variables x;, y;:

1095

N N
C(AZ1 zi) A (N2, Oz < (I VI7)))
M M
O(Vj=195) A (Nj=, Olyy < (B AL)
In practice, many problems are formalized as:

A, is an axiom (assumption, knowledge, state) and C' is a
conjecture (goal). The task is to check whether the formula
is a tautology. It is equivalent to proving the following one is
unsatisfiable.

AT NAs N NAL, NC

In order to get S5-NF, we only need to transform each sub-
formula A; and —C to S5-clause. Generally, the size of A;
and C' are not too large.

4 Dimond Elimination

In this section, we introduce a basic method to eliminate the
diamond operator based on S5-NF. This method is a variant
of Skolemization. In first-order logic, Skolemization is a key
technique in satisfiability testing which can remove existen-
tial quantifiers from formal logic statements. For example,
Jx A(x) may be changed to A(c), where ¢ is a new constant.
The difference is that our method will not introduce new func-
tions. In order to make our method more readable, we use
first-order logical language as a transition. How to model
S5-NF with propositional logic language will be discussed in
Section 6.

Definition 4. Translation function tr= () for an S5-NF ¢ is
a substitution procedure which can produce a new formula:

1. T=T L=1
2. For all propositional literals: p = p(0)

3. For all B-literals:
O(pvVveV---Vs)=Ve(px) V) V- Vs(x))
4. For all D-literals:
O ANgN---Ar) = (p(i) Ag() A--- Ar(i))
The constant i is the index of the S5-clause C; where
SpNgN---Ar) e C
Example 4. Based on the definition of tr—(¢), the S5-NF in
Figure 1 can be rewritten as:
Va(p(z) v q(x)) AVa(—p(z) V ~q(z)) AVz(=p(z) vV r(z) v
s(@)) A (p(4) A —q(4)) A {r(0) v (p(5) A q(5)) V (p(5) A
—q(5))} A (Vz=r(z) v p(6))
Theorem 2. The formula tr—(¢) is equisatisfiable with the
S5-NF ¢.
Proof. i) Assume tr~(¢) is satisfiable. That is, there exists
amodel M = (D, I’y for tr—(¢) where D is a non-empty
domain and I’ is an interpretation function. Then we can
construct a Kripke structure to satisfy ¢ where W = D and
I(w;, p) = 1iff (i) € I'(p).

ii) Assume ¢ = {Cy A Cy, ... A Cy, } is satisfiable, then for
each clause in ¢, there exists at least one satisfied S5-literal.
We pick out only one satisfied S5-literal from each Cj, these
S5-literals can be denoted as F' = AJ_; ra AAS_; O(bxq1 V
c Vb)ANAZ O(dr i A+ Adym,) where z+y+2z = n.
We know that F' = ¢, so the Kripke structure satisfies F' can
also satisfy ¢.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1) Create z + 1 possible worlds. wg € W and if the D-
literal {(da1 A -+ Adxm,) is picked out from C; then w; €
W. Next, for all ry, (W, I, wg) E 7).

2) For all B-literals O(bx1 V -+ V by j,), Yw € W,
(W,I,w) E b)\’l VeV b)\,ji'

3) For all D-literals, if the {>(dx,1 A -+ - A dx,m,) is picked
out from C; then we make (W, I, w;) Edx1 A+ Adxm,.

After 3 steps, a Kripke structure satisfying F' has been con-
structed. Based on this Kripke structure we can build a model
M = (D, I') for tr—(¢). D is composed by all the constants
that occur in the formula ¢r~ (¢) and element 0. Then make
(i) € I'(p) iff (W, I, w;) b p O

An S5-NF ¢ and ¢r~ (¢) are equisatisfiable but may have
different models. Some models can be eliminated in the trans-
lations. Intuitively, predicates p(i) can be seen as the truth
value of p in the world w;. The diamond elimination process
binds each D-literal with a specific world. For example, in
Fig 2, M1, M2 and M3 are tree models for the original for-
mula. However, M2 is eliminated from ¢r~(¢), because ¢
must be true in the world ws. M3 is an implied situation, —r

1 BV I I o1

op A (pV<Og) A (@-pVO-r) = Vap(x) A (=p(0)Vq(2)) A (Yx—p(x)V-r(3))
&_'_l L Y J L Y J
C G Cs

Ep:,q\' r} /{pf.rﬂq, r}

(\ N
_ X y
D ah |

v} W (wo) @
W oW /L Sl
‘\E@/" ‘@ ‘:\Wy
{p,—q, -1} {r,q,—-r} {p, ~q, 7}
Ml M2 M3

Figure 2: Three models of an S5-NF

It is easy to prove that if ¢r~ (¢) with m constants is sat-
isfiable, then there exists a model M=(D, I’} satisfying the
formula where |D| = m. So the satisfiability of the S5-NF
¢ can be decided with at most m possible worlds. Based on
the definition of dd(¢), we know that dd(¢) is equivalent to
m — 1. It is consistent with the conclusion that the satisfiabil-
ity of an S5 formula can be decided with at most dd(¢) + 1
possible worlds presented in [Caridroit et al., 2017].

5 Diamond Conflict Checking (DCC)

In Sect. 4, we know that the satisfiability of an S5-NF ¢ can
be decided with at most dd(¢$) + 1 worlds. The D-literals in
the same S5-clause can be realized via the same world and
the D-literals in different S5-clauses are realized via different
worlds. In this context, a question naturally arises: whether
can some worlds be reused to realize the D-literals in different
S5-clauses? Deciding the satisfiability of ¢ with dd(¢) + 1
worlds is in the sense of ‘at the most’ which considers the
worst case. Sometimes, an S5 formula can be satisfied with a
small-model where |T¥| is smaller than the theoretical upper

1096

bound. For example, the S5-NF in Fig 2 can be satisfied with
two possible worlds because {»>¢q and {)—r can be realized via
the same world simultaneously.

In this section, we propose a strategy called diamond con-
flict checking (DCC). The basic idea is to check whether D-
literals in two S5-clauses can be in conflict when they are
realized via the same world. Based on the conflict relation
among these S5-clauses, we can build a graph. And, deciding
which D-literals in different S5-clauses will be realized via
the same world can be reduced to graph coloring by nature.

Although the conjunctive form of the D-literals provide
convenience to identify the conflicts, determining the con-
flicts precisely is still difficult. We propose a conservative es-
timation of the conflicts among D-literals. What the method
can guarantee is that the estimated D-literals without conflicts
can be realized via the same world in safety.

Two D-literals dl; and dl, may interact with each other
through B-literals. For example, {p, ¢ and O(—p V —q)
occur in a formula simultaneously. If O(—p V —¢) must be
true, then $p and ¢ are in conflict when we try to realize
them with the same world.

Suppose that the S5-NF formula under consideration is
given and BL is the set of all B-literals in the given formula.
Let PL(l) denote the set of all the propositional literals in
an S5-literal [. An effect propagation set of a propositional
literal p is defined as:

EP(p) = U

ble BL and —pe PL(bl)

PLQI)\ {-p}

Then the D-literal infection set DI(dl) of a D-literal dl is
defined as:

DIo(dl) = PL(dl)

DI (dl) = DI,(dl) | EP(p)

peDI,, (dl)
DI(dl) = DI (dl)

DI(dl) is an estimation of which literals may become true
in the world w when we try to realize the D-literal dl via the
w. Apart from the literals in PL(dl), other literals also can
be true due to the B-literals.

Example 5. In Fig 1, we assume that dl is {p in Cg, then:

DIy(dl) = PL(d) = {p}
DI, (dl) = {p,—~q,r, s}Based on O(—p V —q),0(—p V1V s)
DI(dl) = DIy(dl) = {p,~q,r,s} Convergence

In the first iteration, when we assume p in DIy(dl) is true,
we can deduce r and s may become true based on O(—pVrV
s). So we have r,s € DI;(dl). Based on O(—p V —q), we
have =g € DI;(dl)

It is easy to know that the iteration of DI(dl) will converge
in 2 x V,, steps in the worst case where V,, is the number of
propositional variables.

Definition 5. Let dli and dls be two D-literals. dly and dls
are said to be in D-literal conflict with each other, if there
exists p such that p € PL(dly) and —p € DI(dly).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

The D-literal conflict relation is symmetric w
dly and dls. In fact, the following holds:

There exists p such that p € PL(dl3) an
DI(dly) iff there exists ¢ such that ¢ € |
and —g € DI(dls).

The details of the proof can be found in link'.

Definition 6. Two S5-Clauses C1, Cy are said
mond conflict with each other, iff 3dl; € Cy an
such that dly and dls are in D-literal conflict.

Definition 7. Diamond conflict graph of an .
noted as an ordered pair G = (V, E). V={C.
NF and C; has at least one D-literal} and E =
C; and Cj are in diamond conflict with each ot}

Based on the diamond conflict graph, a vertex
cess can be introduced to decide which D-literal
clauses can be realized via the same world. The
ing same color can reuse the same world. If t
number is Y, then the upper bound of the possi
decide the satisfiability of the S5-NF is y + 1. We name this
framework as diamond conflict checking (DCC).

Algorithm 1: Dimond Conflict Checking (DCC)

Input: An S5-NF formula ¢
Output: Color(C;) and x
1 Construct diamond conflict graph G =
2 Apply coloring algorithm to G ;
3 VC; € V, record Color(C;);
4 X < The chromatic number ;
s return Color(C;) and x

(V,E)of ¢;

Color(C;) is the color of the clause C; and Color(C;) €
NT. Finding the optimal is NP-hard. It may cost too much
time when the diamond conflict graph is large. Thus, we use a
heuristic coloring algorithm when we implement this frame-
work. The is found by a greedy algorithm which considers
the vertices in descending order according to their degrees
and assigns to each vertex the smallest available color in this
order. This heuristic is sometimes called the Welsh-Powell
algorithm [Welsh and Powell, 19671.

Improved by DCC, the 4th rule in definition 4 can be mod-
ified as:

e For all D-literals:
S AgA---AT)= (p(c) Nglc) A~ Ar(c))
The constant ¢ = Color(C;) where ((p Ag A -+ A

Fig 3 shows the diamond conflict graph of the S5-NF in
Fig 1. The graph can be colored with two chromatics.

We assume that Green — 1 and Yellow — 2. Based
on the coloring result in Fig 3, the S5-NF in Fig 1 can be
rewritten as:

Va(p(z) V q(z)) AVz(—p(z) V —q(z)) AVe(-p(x)
s(x)) A (p(1) A—q(1)) A{r(0) v (p(2) Aa(2) v
—q(2))} A (Yz=r(z) V p(1))

"http://www.square16.org/tools/s5cheetah

) Vr(x)V
(p(2)A

r)GC’i.

) Green

Yellow Cs
\6 Green

Figure 3: Diamond conflict graph

Compared with the basic method in Example 4, it saves a
world to decide the satisfiability of the formula.

6 Solving Framework

In section 4 and 5 we use FOL and ¢r~ (¢) as medium to in-
troduce our method. In this section, tr~ (¢) embedding with
DCC will be modified to SAT version.

If an S5 formula with m modal operators is satisfiable, then
there exists an S5-model satisfying the formula with at most
m+ 1 worlds (upper-bound) [Ladner, 1977]. Since S5-SAT is
NP-Complete, encoding the S5-SAT problem into SAT can be
done in polynomial time. [Caridroit et al., 2017] has shown
a translation method. They also improve the upper-bound
with the new metric called diamond degree. These two upper-
bounds are theoretical results which consider ‘the worst’ case.

However, for many practical instances, the satisfiability of
the formula can be decided with a small number of worlds.
Our method can automatically discover that potential of the
input S5 formulas. The upper-bound of necessary possible
worlds (x + 1) is determined by a graph coloring algorithm.

Definition 8. The translation function tr(¢) can produce a
propositional formula for an input S5-NF ¢ with x+1 worlds:

1. T=T 1L=1
2. For all propositional literals: p = pg
3. For all B-literals:

OpVaV---Vs)= N_gpj VeV Vs))
4. For all D-literals:
QOAGA- A1) = (Pe Nge N+ - A1e)

The constant c=Color(C;) where {(pAgA- - -Ar) € C;.

Fresh Boolean variables p; are added to the formula, de-
noting the truth value of p in the world w;. In this function,
the i represents the index of world. If two S5-clauses C'; and
C5 are in different colors and both have <> as a subformula,
then the SAT encoding of {¢ in them are different such as
Peolor(Cy) A Poior(cy)- SO, the framework of solving S5-
SAT problem is shown as Algorithm 2.

Algorithm 2: The Framework of solving S5-SAT

Input: An S5 formula 6
Output: The satisfiability of 6
1 Transform the formula € into an equivalent S5-NF ¢;
2 (Color(C;), x) + DCC(¢);
3 X< tr(o);
4 return result < SAT-Solver(2);

1097

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

This framework can be divided into two stages. The first
stage uses axioms and basic rules to reduce the formula to
S5-NF and applies DCC to determine the upper bound. It
can help the second stage avoid some unnecessary searching
spaces and reduce the upper bound of possible worlds. It also
has potential to improve other methods to tackle S5-SAT.

The second stage is trying to assign some variables and
find a model via SAT solvers. Clauses learning, non-
chronological backtracking, and good decision heuristics of
modern SAT solvers make this stage to be efficient.

For SAT-based method, the number of variables and
clauses of the propositional logic are greatly influenced by
the upper bound of possible worlds. The S5-NF transforma-
tion process will eliminate a lot of modal operators and DCC
will reuse some necessary worlds.

Suppose the input S5 formula # has m modal operators,
dd(0) is diamond degree and is the chromatic number of its
diamond conflict graph. Generally, is less than dd(#) and
m. For example, if 0 is the original formula in Figure 2, then:

X =2,dd(0)=7,m=12.

If the input is an S5-NF ¢, the situation x = dd(¢) occurs
when the diamond conflict graph is a complete graph.

7 Experiments

Based on our method, we implemented an S5-SAT solver
named SS5cheetah'. We compared it with the state-of-the-art
solver S52SAT and tableau method solver LCKS5TabProver
(LCK) [Abate ef al., 2007]. S52SAT uses Glucose 4.0 as the
back-end SAT solver. For fair comparison, we also choose
Glucose 4.0 as back-end SAT solver and use the same InTo-
HyLo format benchmarks. LCK is able to read that format
via a simple transformation.

The well-established modal logic benchmarks include
QMLTP? 3CNF [Patel-Schneider and Sebastiani, 20031,
QS5, MQBFy [Massacci, 19991, TANCS2000x [Mas-
sacci and Donini, 2000] and LW Bk k. s4 [Balsiger er al.,
2000]. QM LTP are designed for testing automated theo-
rem proving systems for first-order modal logics. It contains
177 propositional benchmarks for S5 from different domain
(e.g. planning, querying databases, natural language process-
ing, general algebra). All the benchmarks in QS5 are satis-
fiable which are generated based on hard combinatorial de-
sign about quasigroup. Note that M QBFx, TANCS2000 g
and LW Bk kT,54 are not designed for S5. However, the re-
sults on those benchmarks are still valuable. They share the
same grammar and S5-SAT entails K, KT and S4-SAT. All
the benchmarks can be downloaded from the link'

The experiments are performed on a server with Intel(R)
Xeon(R) CPU(2.40GHz), Ubuntu 16.04 and 64G RAM. We
set the best performance parameters for S52SAT.

Table 1 shows the comparison of efficiency on each in-
stance family. We report the number of instances which are
firstly solved by each solver. And the mean time of tack-
ling each instance family is listed in the column ‘Tg,,4(ms)’.
The time bound is set to 120s and memory bound is set
to 16GB for QM LTP, LWB, MQBFk (qbfMS), and

“http://www.iltp.de/qmltp/

1098

Ins (Htotal) S5cheetah S52SAT LCK

#Win Tavg #Win Tavg #Win Tavg
QMLTP (177) 174 3.26 0 33.08 3 23873.18
QS5 (252) 252 4122.89 0 107378.17 0 293357.79
3CNF (1000) 953 1964.31 46 40932.57 0 300000.00
LWB_k (378) 319 3862.77 18 11046.25 25 36487.63
LWB _kt (378) 346 3827.13 0 4621.00 21 31513.81
LWB_s4 (378) 333 3899.80 0 5058.72 34 33251.75
qbfL (80) 80 19.87 0 109.65 0 120000.00
qbfMS (240) 240 4.54 0 210.86 0 120000.00
qbfS (240) 240 220 0 69.08 0 120000.00
qbfML (240) 240 5148.92 0 83833.55 0 300000.00

- "
10° 10°
. % S
o

104 o 104 LW
%
glo3 gm3 gt o
jiEjlo2 ? gm? e
T T
10° Cheetah vs. Ick 10° Cheetah vs. Ick

Cheetah vs. S52SAT QS5

107! 10° 10' 102 10° 10* 10°
Time (ms)

Cheetah vs. S52SAT 3CNF

107! 10° 10' 102 10° 10* 10°
Time (ms)

Figure 4: The comparison of run time on 3CNF and QSS5.

TANCS2000x (qbfS, gbfL) as most instances of these
benchmarks are relatively easy to solve. However, many in-
stances in QS55, MQBFk (gbfML) and 3C' N F cannot be
solved by S52SAT within 120s with 16GB RAM. So, we set
the time bound to 300s and memory bound to 64GB for them.

In Table 1, the sum of #Win of all solvers is not necessary
equal to #total, since there can be certain instances on which
all solvers fail. We can see that our solver S5cheetah is more
efficient on these benchmarks.

Figure 4 and 5 show the comparison of run time for
all instances. The x-axis corresponds to the time used by
S5Cheetah and the y-axis corresponds to the time used by
S52SAT and LCK. The axes are in logarithmic scale. The
points above the line y=r means that our solver consumes
less time on these instances.

Most of the instances in 3CNF are unsatisfiable and all in-
stances in QS5 are satisfiable. We solved all QS5 instances
and 999 3C N F' instances within time bound while S52SAT
solved 168 S5 instances and 930 3C'N F instances.

Table 2 shows the average number of necessary possible
worlds (#W), SAT variables (#Var) and clauses (#Clauses) of
each instance family. We can see that our method reduces the
number of necessary worlds. It generates fewer propositional
variables and clauses compared with S52SAT.

Ins SS5cheetah S52SAT

#W #Var #Clauses #W #Var #Clauses
QMLTP 33 484.8 1386.15 7.5 941.1 3254.2
QS5 16.1 110365.3 278383.1 2826.7 3641914.2 12934423.3
3CNF 251.5 66395.9 1275616.9 329.1 391789.8 1909235.3
LWB_k 21.0 2039.3 71388.0 194.9 580469.9 1839919.7
LWB _kt 13.1 1877.6 8496.0 149.8 464861.9 1353167.9
LWB_s4 10.1 893.4 8054.5 218.2 568944.3 1807557.8
qbfL 18.1 3476.1 11766.5 225 16922.3 70339.1
qbfMS 10.5 36.7 793.1 96.9 19244.3 912724
qbfS 3.0 252.4 787.3 40.3 6938.3 19326.1
qbfML 10.5 295 409.6 3151.9 10066060.9 44051455.1

Table 2: The comparison of necessary possible worlds, SAT vari-
ables and clauses between S5cheetah and S525AT.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

105 4 * sosemmemo 105 4 - = -.‘X‘ o 105 J o® wemmem o
% 10° —
104 1 58 10 1 & 104 1 X
2 e 104 4
10% 4 10° 4 10° 4
= < 0 103
E 102 E102] 102] E
(9] () 1024 .
E 1014 E 10t 10t E \,"Sﬁ*
- . 1] 3
100 7 100 w00] " ’ 1071 aak
1014 Cheetah vs. Ick 1071] Cheetah vs. Ick 10714 Cheetah vs. Ick 10° Cheetah vs. Ick
Cheetah vs. 5525AT Wb_kt Cheetah vs. 5525AT [Wb_kK Cheetah vs. S525AT Wb_s4 | Cheetah vs. 5525AT QMLTP
102 S S — Y N [7, st M .
102 101 10° 10' 102 10° 10 10° 102 10~ 10° 10' 102 10° 10 10° 102 101 10° 10 102 10° 10% 10° 1071 10° 10' 102 10° 10% 10°
Time (ms) Time (ms) Time (ms) Time (ms)
105 4 c— 105 4 105 4 © commmmmn . —— — -’“
10° }
10° 10¢ 10°
1044 xf
__10%4 __10%4 10° 4 _
) 0 < P » 10°
E102] soloh E 102} f 102 ‘ £
9] 9] } . 1024
€10 £101 4 £ 10t £
[= = F 1]
10° 10° 4 10° 4
10-1] Cheetah vs. Ick 10-1] Cheetah vs. Ick 10-1] Cheetah vs. Ick 10° 5 Cheetah vs. Ick
Cheetah vs. 5525AT dbfL Cheetah vs. S525AT dbfMS Cheetah vs. S525AT AbFS |) Cheetah vs. 5525AT dbfML
2 -2 -2

1072 107! 10° 10' 102 10° 10* 10° 1072 107! 10° 10! 102 10° 10% 10°

10-1 10° 10' 102 10° 10 10°
Time (ms)

102 10-1 10° 10* 102 10° 10¢ 10°
Time (ms)

Figure 5: The comparison of run time on LWB, MQBF, TANCS2000 and QMLTP

Time (ms) Time (ms)

S5cheetah S52SAT LCK
Instances

Avg Max Avg Max Avg Max

QMLTP 0.3MB 3. 7MB 4.8MB 100MB 5.9GB 21.2GB
QS5 124.0MB 1.4GB 8.5GB 50.0GB - -
3CNF 67.5MB 1.1GB 440MB 1.6GB - -
LWB_k 8.4MB 100.0MB 567.9MB 1.2GB 385MB 6.9GB
LWB_kt 3.0MB 162.0MB 788.5MB 20GB 200MB 1.3GB
LWB_s4 5.0MB 84.0MB 4.0GB 20.0GB 200MB 1.2GB
qbfL 3.6MB 6.9MB 10.IMB 46.8MB - -
qbfMS 0.4MB 9.5MB 41.3MB 90.5MB
qbfS 2.9MB SMB 28.6MB 41.9MB
qbfML 50.1IMB 100.0MB 10.0GB 49.0GB

Table 3: The memory usage of three solvers

The number of SAT clauses can reflect memory usage from
a certain angle. However, it does not mean actual memory
usage. The solver may store some intermediate information
while running. Besides, LCK is not based on SAT. So, we
record the maximum memory usage for each instance family
and the results are shown in Table 3.

We did not record the LCK memory consumption on
TANCS, QS5 and 3CN F since LCK is barely able to solve
any instance in these benchmarks. The results in Table 3 show
that SScheetah uses much less memory than other solvers.
The maximum memory usage of SS5cheetah for these bench-
marks is 1.4GB. By contrast, S52SAT often consumes more
than 1GB memory on many benchmarks and even 50GB in
some extreme circumstances. Therefore, our solver is much
more practical in terms of memory consumption.

8 Conclusion

We propose a novel SAT-based method to solve the S5-SAT
problem and implement a fast solver called S5cheetah. First,
an input S5 formula is normalized to a kind of first degree
normal form, namely, S5-NF. Apart from reducing the modal
degree of the original S5 formula, it can make structural and
semantic information more obvious. So, a reasoning method
for the candidate Kripke model comes into being. We design

a strategy called diamond conflict checking (DCC) which can
make good use of the structural and semantic information of
the S5-NF to eliminate a lot of unnecessary search spaces and
automatically discover the small-model potential of a modal
logic formula.

The experiments show that our S5-SAT solver is much
more efficient than some state-of-the-art S5 solvers and it
consumes less memory. This significant improvement in-
spires us to improve other methods (e.g. Tableau) to tackle
S5-SAT and study how to migrate this idea to other modal
logics in the future work.

Acknowledgments

This work is supported by the Key Research Program of
Frontier Sciences, Chinese Academy of Sciences (CAS),
Grant No.QYZDJ-SSW-JSC036, and National Natural Sci-
ence Foundation of China (NSFC) under grant No.61672504.
Feifei Ma is also supported by the Youth Innovation Promo-
tion Association, CAS.

We would like to thank the anonymous reviewers for their
comments and suggestions. We thank Yongmei Liu and
Qiang Liu for providing some benchmarks.

References

[Abate et al., 2007] Pietro Abate, Rajeev Goré, and Florian
Widmann. Cut-free single-pass tableaux for the logic of
common knowledge. In Workshop on Agents and Deduc-
tion at TABLEAUX, volume 2007. Citeseer, 2007.

[Aguilera and Ferndndez-Duque, 2016] Juan P. Aguilera and
David Ferndndez-Duque. Verification logic: An arithmeti-
cal interpretation for negative introspection. In Proc. of
AiML ’16, pages 1-20, 2016.

[Auffray er al., 1990] Yves Auffray, Patrice Enjalbert, and
Jean-Jacques Hébrard. Strategies for modal resolution:

1099

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Results and problems. J. Autom. Reasoning, 6(1):1-38,
1990.

[Balco et al., 2018] Samuel Balco, Sabine Frittella,
Giuseppe Greco, Alexander Kurz, and Alessandra
Palmigiano. Software tool support for modular reasoning
in modal logics of actions. In Proc. of ITP 18, pages
48-67, 2018.

[Balsiger er al., 2000] Peter Balsiger, Alain Heuerding, and
Stefan Schwendimann. A benchmark method for the
propositional modal logics k, kt, S4. J. Autom. Reason-
ing, 24(3):297-317, 2000.

[Bienvenu et al., 2010] Meghyn Bienvenu, Hélene Fargier,
and Pierre Marquis. Knowledge compilation in the modal
logic S5. In Proc. of AAAI ’10, 2010.

[Caridroit et al., 2017] T. Caridroit, J. Lagniez, D. Le Berre,
T. de Lima, and V. Montmirail. A sat-based approach for
solving the modal logic s5-satisfiability problem. In Proc.
of AAAI ’17, pages 3864-3870, 2017.

[del Cerro, 1982] Luis Farifias del Cerro. A simple deduction
method for modal logic. Inf. Process. Lett., 14(2):49-51,
1982.

[Enjalbert and del Cerro, 1989] Patrice Enjalbert and
Luis Farifias del Cerro. Modal resolution in clausal form.
Theor. Comput. Sci., 65(1):1-33, 1989.

[Fagin er al., 2004] Ronald Fagin, Joseph Y Halpern, Yoram
Moses, and Moshe Vardi. Reasoning about knowledge.
MIT press, 2004.

[Fairtlough and Mendler, 1994] Matt Fairtlough and
Michael Mendler. An intuitionistic modal logic with
applications to the formal verification of hardware. In
Proc. of CSL "94, pages 354-368, 1994.

[Fitting, 1999] Melvin Fitting. A simple propositional S5
tableau system. Ann. Pure Appl. Logic, 96(1-3):107-115,
1999.

[Gasquet et al., 2005] Olivier Gasquet, Andreas Herzig, Do-
minique Longin, and Mohamad Sahade. Lotrec: Logi-
cal tableaux research engineering companion. In Proc. of
TABLEAUX ’05, pages 318-322, 2005.

[Giunchiglia and Sebastiani, 1996] Fausto Giunchiglia and
Roberto Sebastiani. Building decision procedures for
modal logics from propositional decision procedure - the
case study of modal K. In Proc. of CADE "96, pages 583—
597, 1996.

[Gotzmann et al., 2010] Daniel Gotzmann, Mark Kaminski,
and Gert Smolka. Spartacus: A tableau prover for hybrid
logic. Electr. Notes Theor. Comput. Sci., 262:127-139,
2010.

[Kaminski and Tebbi, 2013] Mark Kaminski and Tobias
Tebbi. Inkresat: Modal reasoning via incremental reduc-
tion to SAT. In Proc. of CADE 13, pages 436442, 2013.

[Ladner, 1977] Richard E. Ladner. The computational com-
plexity of provability in systems of modal propositional
logic. SIAM J. Comput., 6(3):467-480, 1977.

1100

[Lagniez er al., 2018] Jean-Marie Lagniez, Daniel Le Berre,
Tiago de Lima, and Valentin Montmirail. A sat-based ap-
proach for PSPACE modal logics. In Proc. of KR 18,
pages 651-652, 2018.

[Lorini and Schwarzentruber, 2010] Emiliano Lorini and
Frangois Schwarzentruber. A modal logic of epistemic
games. Games, 1(4):478-526, 2010.

[Massacci and Donini, 2000] Fabio Massacci and
Francesco M. Donini. Design and results of TANCS-2000
non-classical (modal) systems comparison. In Proc. of
TABLEAUX 00, pages 52-56, 2000.

[Massacci, 1999] Fabio Massacci. Design and results of the
tableaux-99 non-classical (modal) systems comparison. In
Proc. of TABLEAUX ’99, pages 14-18, 1999.

[Mints and Minc, 1992] G. Mints and G. E Minc. Short In-
troduction to Modal Logic. Center for the Study of Lan-
guage, 1992.

[Nalon et al., 2017] Claudia Nalon, Ullrich Hustadt, and
Clare Dixon. KSP: A resolution-based prover for multi-
modal k, abridged report. In Proc. of IJCAI 17, pages
49194923, 2017.

[Niveau and Zanuttini, 2016] Alexandre Niveau and Bruno
Zanuttini. Efficient representations for the modal logic S5.
In Proc. of IJCAI 16, pages 1223-1229, 2016.

[Ohlbach, 1991] Hans Jiirgen Ohlbach. Semantics-based
translation methods for modal logics. J. Log. Comput.,
1(5):691-746, 1991.

[Patel-Schneider and Sebastiani, 2003] Peter F. Patel-
Schneider and Roberto Sebastiani. A new general method
to generate random modal formulae for testing decision
procedures. J. Artif. Intell. Res., 18:351-389, 2003.

[Robinson and Voronkov, 2001] Alan JA Robinson and An-
drei Voronkov. Handbook of automated reasoning, vol-
ume 2. Elsevier and MIT Press, 2001.

[Salhi and Sioutis, 2015] Yakoub Salhi and Michael Sioutis.
A resolution method for modal logic S5. In Proc. of GCAI
’15, pages 252-262, 2015.

[Tseitin, 1968] Grigori Tseitin. On the complexity of deriva-
tion in propositional calculus. J. Stud. const. math. and
mathematic. logic, pages 115-125, 1968.

[Wan et al., 2015] Hai Wan, Rui Yang, Liangda Fang, Yong-
mei Liu, and Huada Xu. A complete epistemic planner
without the epistemic closed world assumption. In Proc.
of IJCAI ’15, pages 3257-3263, 2015.

[Welsh and Powell, 1967] Dominic JA Welsh and Martin B
Powell. An upper bound for the chromatic number of a
graph and its application to timetabling problems. Comput.
J., 10(1):85-86, 1967.

